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K Y B E R N E T I K A — V O L U M E 13 (1977), N U M B E R 2 

Least Squares in Identification Theory*) 

VLADIMÍR STREJC 

This article demonstrates the application of least squares for the estimation of system para
meters. Analytic as well as numerical approaches are described. The model of the system dynamics 
is assumed in the form of regression model and in the form of discrete impulse response. Solu
tions are discussed for the case of white noise and correlated noise corrupting the useful output 
signal of the system. 
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1. INTRODUCTION 

The method of least squares was invented by a young revolutionary of his day, 
Karl Friedrich Gauss. He was 18 years old at the time of his first use of the least 

*) The redaction of the journal intends to publish a series of survey papers on actual topics 
in Cybernetics. The papers should give a concise critical review on recent results in the consi
dered field. The paper of Prof. Strejc starts this series. 

Redaction. 



squares method for astronomical computations in 1795. He suggested that the most 
appropriate values for the unknown but desired parameters are the most probable 
values. He defined that "the most probable value of the unknown quantities will 
be that in which the sum of the squares of the differences between the actually ob
served and the computed values multiplied by numbers that measure the degree of 
precision is a minimum". The difference between the observed and computed values 
is generally called the residual. 

To make the discussion more precise, consider the following statement of the 
estimation problem. Suppose the identification problem. Let the mathematical 
model of the dynamic time invariant single imput single output system be of the 
regressive form 

(1) y(k) = £ ß. У(k - í) + £ pi "(k ~ 0 + <k), 
/ = 1 i = 0 

where y(-) is the outputvariable, «(•) the inputvariable and e(k) represents the 
measurements errors that occur at each observation time k, k = 1, 2, . . . , K, Qh 

i = 1, 2, . . . , N and Ph i = 0, 1,2, ..., N are the weighting factors. The equation 
(1) can be written in the form 

(2) 

where 

y(k) = zт(/c) 3 + e(k), 

zr(k) i [u(k - N), y(k - N), ..., u(k - l), y(k - 1), u(k)] , 

ť -ІPн,Qн,--чPi,QьPol< 

or in the vector-matrix form 

(3) 

with 

Y = ZS + E 

and 

Ут = 1X1)^(2), ...,y(K)], 

£T = [<1),Є(2), . . . , , ( !<)] 

Z = Гu(l - N), y(l - N), ..., м(0), y(0), u(í] 

lu(K - N), y(K -N), ..., u(K - l), y(K - l), u(K)\ 

For statistical and probabilistic considerations the number of observations K need 
to be much larger than the number 2At + 1 of parameters to be estimated in equation 
(1) or (2). Hence, 

(4) K > 2Af + 1 . 



In addition to the requirement (4), from equations (l) through (3) can be seen, 
that the measurement data and the parameters are assumed here to be lineary related, 
thereby making explicit the assumption about the kind i.e. linear or nonlinear pro
cedure of estimation. 

Denote the estimate of # based on the K data samples as #A(fc). Then the residual 
associated with the fc-th measurement is 

(5) r(k) = y(k) - zT(fc) »A (k), k = l,2,...,K. 

The least squares method is concerned with determining the "most probable" value 
of 9, that is #A , which is defined as the value that minimizes the sum of the squares 
of the residuals. Thus calculate # so that 

(6) J=\i\y(k)-z\k)»YW(k) 
fc=i 

is minimized. The weighting factors W(k) indicate the degree of confidence that one 
can place in the individual measurements. In vector matrix notation, e. g. in (10), the 
factors W(k) are arranged in weighting matrix W of general quadratic form. 

The sum (6) is denoted in different ways in technical literatute according to the 
problem solved e.g. cost function, loss function, risk function, objective function 
etc. 

In most expositions W is restricted to being both symmetric positive definite 
although the symetric condition is redundant, because there exist the decomposition 

w=ws+wss, 

where Ws is symetric and Wss skew-symetric. But, since, for any nonzero column 
matrix c, cTWssc = 0, it is apparent that only symmetric part Ws of W contributes 
a nonzero value to the cost function. 

It is assumed that errors in the measurements expressed in equation (l) by e(fc) 
are independent of each other so the joint probability density function of measure
ment residuals can be expressed as the product of the individual density functions 

(7) f(rur2, •..,rK)=f(r1)f(r2),...,f(rK), 

rk = r(k), k = 1,2, ...,K. Moreover it is considered that the joint density f(r) 
would be a normal density 

00 / W = * ^ e x P [ - i r T W r ] , 

rT = [ r l 5 r a , . . . , r * ] . 

In the contemporary literature dealing with estimation theory there are distinguished 



mostly three different types of least squares with respect to the form of the weighting 
matrix W. 

For W equal to identity matrix / the procedure of minimizing the sum (6) is simply 
called procedure of least squares. For W of general form unequal zero, the denota
tion of weighted least squares is usual. For W = R - 1 , where R = S'{E E1} 
is the covariance matrix of the observation errors, the result is minimum variance 
estimate called also Markov estimate. 

Although not essential to the theory, it is almost universally agreed that the linear 
estimates be unbiased. This restriction is equivalent to postulating that 

(9) «?{£}= 0 . 

2. ANALYTIC SOLUTION OF LEAST SQUARES 

The cost function (6) for k = 1, 2, .. .,K can be expressed in the vector matrix 
form 

(io) J = jpr - z»f W[Y - Z9]. 

To determine the conditions that minimize the quadratic cost function (10), let us 
differentiate it with respect to the parameters and equate the result to zero. Thus 
for W = / we have 

(ii) g=-z T [r -za] = o 

and the least square estimate is 

(12) 9A =(zTzy1 ZTY. 

It can be proved (R. Deutsch [1969]) that the estimate (12) yields an absolute mini
mum of the quadratic cost function (10). 

It is now easy to demonstrate that 9A is unbiased estimate. Consider 

(13) S{9A -3} = S^Zy1 ZTY} - 9 = (Z^Z)'1 ZT <g{Y} - 9 . 

From equation (3) it follows that 

£{Y} = Z9 + £{E} , £{E} = 0 . 

Hence, substituting for ${Y} in (13) we obtain finally that 

(14) £{9A - 9} = 0 . 

Therefore, #Ais an unbiased estimate. 



Theorem 1. The estimate of parameters of the vector 9 in the sense of least squares 
is unbiased if the mean values of the components of the error — vector £ are equal 
to zero and if the measurement matrix Z and the error-vector £ are mutually inde
pendent. 

For the covariance matrix of the estimate 9A it holds: 

Theorem 2. If the measurement matrix Z and the error-vector £ are mutually 
independent, S{E} = 0, S{EET} = a2lK, where \K is the identity matrix of the 
dimension K, and if S{E(k) ET(k - /)} = 0 for i, k = 1, 2, . . . , K, then 

(15) S{(9A - 9) (9A - 9f} = a^Z)-1 . 

Proof. 

<FLS = S{(9A -9)(9A -9)T} = 

= S{9A9AT - 29"9T + 99T} = 

= S{9A9AT - nT} = 

= s^zy1 ZTYYT z(zTzyi -

- (ZTZ)-1 (ZTZ)9 9r(ZTZ)(ZTZ)-1} = 

= (zTzy1 zT S{(Y - za) (Y - z»)T} z(zTzyi = 

(16) = (zTzy1 z T S{EET} z(zTzy > = o2
e(z

Tzy >. 

It was used the fact that S9A = S9-. 

In a similar way for the weighted least squares the following relations may be 

derived: 

The estimate of parameters 

(17) 9A = (ZTWZ)-1 ZTWY = QY . 

The covariance matrix of the estimate is 

(18) VWLS = S{(9A - 9) (9A - 9)T} = Q S{EET} QT , 

where Q follows from relation (17). 

For W _ 1 = R = S{EET} we have the minimum variance estimate (Markov estimate) 

(19) 9A = (ZTR-1Z)~1 ZTR1Y 

and the covariance matrix of the minimum variance estimate 

(20) vMW = s{(9A - 9)(9A - 9)T} = (zm-'zy1. 



3. RECURSIVE SOLUTION OF LEAST-SQUARES 

It happens when solving practical problems that the number K of rows of the 
matrix Z in (3) is successively updated. Because K may be a very large number, it is 
uneconomical to repeat in all instants of sampling the calculation of parameters with 
all past measured data stored in the matrix Z, namely if the number of rows was 
increased by one row only. Such a situation occurs when identifying the dynamic 
system properties on line. 

For single input single output system the following denotation will be used 

(21) Yk+1 = [y , 1 , zk+i =\zk 1 , 

U J U+J 
where the last row of Zk + 1 is 

4 + 1 = [u{k + 1 - JV), >'(/c + 1 -N), ..., u(k), y(k), u(k + 1)] . 

The least-squares estimate of parameters is according to (12) 

(22) ^i+i = \Zk+1Zk + 1J Zk+1Yk+l = 

= (ZlZk + z, + 1zT
+1)-< (ZjYk + zk+1yk+l) . 

Using the matrix inversion lemma, the inversed matrix on the left-hand side of (22) is 

(z\zk + z,+1z,T
+1)-' = (z,Tz,)- - (zjzky

l zk+l. 

. [i + zT
+1(z,Tz,r - Z t + l ] - zT

+1(z,Tz,r-. 

Introducing 

(23) Mk = (ZjZk)' ' z , + , [1 + z,T+ ,(Z,TZ,)- ' z ,+ 1 ] " ' 

and noting that 

(24) (ZlZky z,+ 1 - (ZlZk)^ z,+ 1 [ l + zT
+ 1 (Z,TZ,)- z,+ 1 ] - ' . 

z , T
+ 1 ( Z T Z , ) ! z , + t =Mk, 

ic is possible to write, that 

(25) ,9;+1 = fl,A + Mk(yk + 1 - zT
k+X). 

It is evident that the estimate corresponding to k + 1 samples equals to the previous 
estimate 9k corrected by the term proportional to (yk+i. — zT

+1#;;). The product 
zk+i$k m a y b e considered as the prediction of the value yk + 1 based on the estimate 
of parameters Sk and on the set of measurements zT

+1 . The predicted value yk+1 = 
= zl+iK equals to the right value yk+1 only if the exact system model with para-



meters 9k = 9k +, is available and if the noise is absent. In such a case the correction 
is zero. 

Elements of the matrix Mk are weighting coefficients. In ordre to calculate Mk 

in a recursive way, it is possible to introduce 

(26) P(/c) = a (Z T Z,) - 1 , 

where a is a positive constant. Then 

(27) Mk = P(k) zk+1 [<x + zT
+ , P(k) zk+ J ~ J . 

Substituting the matrix P(/c) defined by (26) into (22), we have 

(28) P(k + I) = P(k) - P(k)zk+l[x + zT
+) P ( l c ) z H 1 ] - ] zT

+ 1 P(/c) = 

P(fc) - A4tzJ+1 P(/c) = [/ - MkzJ+r] P(k). 

Hence, the estimate of parameters according to least squares approach may be cal
culated by the following recursive formulas: 

(29) Mk = P(k) zk + t [a + zT
+ , P(k) zk +, ] - ' , 

(30) P(fc + ! ) = [ / - M,z[+ 1]P(fc), 

(31) 9 * A
+ 1 = ^ + Mk[yk+l - zj+l9£] . 

These formulas have a very close relation to the recursive algorithms of the Kalman's 
filtration and can be easily extended for the multidimensional systems. 

The details concerning the starting of the numerical calculation will not be consi
dered here. 

4. DISCRETE SQUARE ROOT FILTERING 

In many practical problems of parameter estimation it arises the problem to solve 
an overdetermined ill conditioned set of algebraic equations. To circumvent this 
difficulty it is possible to apply the method for propagating the error covariance 
matrix in a square root form. This method is very successful in maintaining the posi
tive semidefinite nature of the error covariance and can provide twice the effective 
precision of the conventional filter implementation in ill-conditioned problems. 
The outstanding numerical characteristics and a relative simplicity of this recursive 
square root approach led to its implementation in many practical applications. 
A survey of current techniques is described by P. G. Kaminski et al. [1971]. 

For the sake of generality consider the multi input multi output system the mathe
matical model of which is described by equation 

(32) Y-Z0 = E, 



90 where for r inputs and p outputs the matrices in (32) are of the dimensions 

Y(K; p) , Z(K; v) , 0(v; p), E(K; p), v = N(p + r) + r . 

The respective cost function corresponding to the least squares may have the form 

(33) ER; 1ET = (Y~ ze) R; \Y - zef 

or 

(34) l|£R;1/2l|2 = ||£*||2 = \\(y - 20) R ; 1 / 2 | | 2 . 

In this particular case K is the number of lineary independent equations, p is the 
number of linearity independent sets of solutions, v is the number of estimated para
meters in one set of solutions. The matrix £* is the matrix of random errors, Y and Z 
are matrices of data enabling to estimate the required parameters in the matrix 0. 

(35) Re = £{e(k) eT(fc)} , 

eT(/c) = [ e i (k) , e 2 ( /c) , . . . ,e p (k)] , 

is in general the covariance matrix of the noise of the components of the vector 
yT(/c) = \yl{k),y2(k), ...,yp(k)], which for k = 1,2 K gives the matrix V. 
|E*||2 is the square of euclidian norm i.e. the sum of squares of all elements of the 
matrix £* 

(36) | | £* | 2 =i i ; e* T (k )e* (k) = I t r{£*£* T }, 
A. k = l A-

e*\k) = [e*(k),et(k),...,e*(k)-\. 

Let us remind that the norm of a matrix remains unchanged by orthogonal transfor
mation because 

£ * T T T £ * T = £ * £ * T = || £ * || 2 

for TTT = I, where T is an orthogonal transformation matrix. (For advanced version 
see V. Peterka [1975].) 

For the numerical solution it is useful to write the equation (34) in the form 

(37) |£* | | 2 = | |D0~R; 1 / 2 | | 2 , 

where D = \Z,Y~\ and 0~T = [ — 0, /p] and the index p denotes the dimension 
of the identity matrix lp. The main idea of square root filtering is to find such an 
orthogonal transforming matrix T in order to compress the matrix D into upper 
triangular matrix Dv of the dimension (v + p; v + p) so that 

(38) | |£* | 2 = |TD6>~R;1/2 | |2 = ||Dv6»~Re-
J/2||2 . 



The indicated transformation is performed successively by transforming matrices 91 
T;, i = 1, 2, . . . , / so that 

T-IIT.. 
; = i 

T; may be so called matrices of elementary rotations (D. K. Faddeev, V. N. Faddeeva, 
[i960]) of the dimension (v + p+l;v + p + l) and of the form 

T, = 

(39) 

- C-sO 1 4 I 

where all other elements are equal to zero. In order that the matrix T; be orthogonal, 
is necessary to fulfil the condition 

(40) c\ + s? «- 1 , 

however one of the coefficients is possible to choose. When multiplying only (v + p + 
+ l) rows of the matrix D = [dy] by T; and when denoting the elements of TtD 
by djj, then 

(41) dk"j = du for k 4= i and fc 4= j , 

d,̂  = c ;d ; ; + s;dj-; for k = i, 

dji = — Sfd;/ + c;d,-; for k=j, 

I = 1, 2, . . . , v + p . 

Hence, we can choose one of the coefficients so that dj^ = 0, \i = 1, 2, . . . , j — 1-
By the repetition of this procedure the upper triangular matrix of the dimension 
(v + p; v + p) is obtained. The row (v + p + l) has all elements equal to zero. 
Shifting to this place the next row (v + p + 2) of the original matrix D it is possible 
to zero again all elements of this row by the described procedure and correct in this 
way the previous triangular matrix. The matrix Dv is obtained when all rows of the 
original matrix D are transformed into the triangular form. For the transformation 
of the row v + p + /, / = 1, 2, ..., (K - v — p) it is necessary to apply v + p 
transformations. 

It is worth-while to mention that it is sufficient to store in the computer memory 
only the nonzero elements of the triangular matrix and elements of the new rows 
which are to be transformed. The latter ones may be just measured values. This 
kind of data reduction is advantageous namely when updating succesively the matrix 
Dv according to the new measurements. 



9 2 The algorithm of calculation can be proposed in such a way that in the matrix 
(39) the row index is allwaysy = v + p + 1 and only the column index i = 1, 2, . . . 
. . . , (v + p) is changed. Then the algorithm starts even for Dv = 0. 

In order to keep the value of the elements of the matrix Dv in reasonable limits 
even for K increasing it is useful to reduce these elements according to the relation 

(42) "£•• 
where F is so called information matrix. This matrix may be devided with respect 
to the dimensions v and p into four fields 

F = 

(43) 

ғ  
ғ Г 

0 

47" P 

Matrices Fe0(v; v) and FKR(p; p) have upper triangular form and the matrix F0R(v; p) 
is rectangular. 

Using (43) for the norm (38) we have 

íjE~*|j2 = | І ҒÉГ R ; 1 / 2 | | 2 , £~* = — E* 

Jк 
(44) E ~ * j ] 2 

E~* l!L°> Ғ «JL ' J 
The last equation defines two relations 

(45) E r * = ( F e R - F e e o ) R ; , / 2 , 

(46) £ 2 ~ * = F K R R ; 1 / 2 . 

For 

(47) F0R - F000 = 0 

we have the residuals E~* = 0. Since F00 is a regular matrix, equation (47) enables 
to determine the required parameters 

(48) 0*=F0^F0R. 

The calculation is very simple because F00 and F00 have upper triangular form. 
The matrix EJ* approaches to identity matrix for K limiting to infinity (T. W. 

Anderson [1958]). Hence, from equation (46) we have 

(49) FR* = R; , / 2 , 



i.e. the estimate of the right Cholesky's square root of the covariance matrix Re(p; p). 9 3 

(50) Rл = FІBFB = Rí 

The results (48) and (49) correspond to the maximum likelihood estimate of the 
matrix 0 if the errors in the matrix £* are Gaussian and mutually independent. 

In the case of least squares estimate of the matrix 0 it is assumed that the errors 
are mutually independent as well but that they all have the same variance a2,. Hence 
the covariance matrix R„ is 

(51) 

and 

(52) 

R, = a;L 

Rï12 = ajn . 

The information matrix (43) of the single input single output system has the follow
ing form 

(53) 

Ҝ -eГ 
* P* 1 

\ cv> 

1 ev-И 

ÍÌГ 

where e*, i = 1, 2, . . . , v + 1 are observation errors transformed by the same 
orthogonal matrices T ; as the matrix D in relation (38) and R<T1/2 = \\ae for the 
single input single output system. When solving (53) according to (47) it is possible 
to zero all residuals e*, i = 1, 2, . . . , v. It is not possible to influence the last residual 
e*'+,. Hence, in accordance with (49) a (53) we have 

(54) ř я я = j v + t , v + i = Re

L/2 = ae 

The relation (54) implies that 

(55) 
JK 

The value of the cost function is 

(56) i m i „ = L 2 + , , v + 1 = < 2 -

Knowing ae from (54) it is possible to calculate the covariance matrix TLS of the 
estimates of parameters &h i = 1, 2, ..., v by means of (16). 



94 The cost function of the multi input multi output system may have the form 

(57) J 1 = i f ; e T ( / c ) W e ( f c ) = i i r ( E W £ T ) , 
A . k= I 1C 

eT(/c)=[,1(fc),e2(/c) , . . . , e p(fc)] , 

where W is an arbitrary positive semidefinite weighting matrix of the dimension 
(p; p). The minimum value of the cost function is 

(58) JL^W^W^W2. 

As it was mentioned before the cost function (57) is called the weighted least-squares. 

For the minimum variance estimate (Markov estimate) of parameters of the multi 

input multi output system it is necessary to introduce in (57) 

(59) W = R ; ' , 

where Re corresponds to (35). The minimum value of the cost function is 

(60) i2
i n = | |F,«R;1 / 2I2 , 

where 

(6i) F « * ; 1 / 2 - ' , . 

Hence, 

(62) J2
min = P-

It holds in general that 

(63) J2
min < Jmin . 

The last inequality is proved by R. Deutsch [1969]. 

The knowledge of FRR enables to calculate Re (50) but the covariance matrices 
"Vis a n d ¥MV cannot be calculated by formulas (18) and (20) respectively. The 
calculation of the parameter-variances is in the multidimensional case much more 
difficult. For the Markov estimate it holds that 

1 -~1-"1 

j , s = 1,2, . . . , / , . 

(64) ď{( л - )j ( é? л - )]} = R,yř - Ғ - в 'Ғ в - т . 
к. 



5. CHOLESKY'S ALGORITHM 

Instead of orthogonal transformations proposed in section 4 for the trianguliza-
tion of the matrix D in (37) we can use the so called Cholesky's algorithm published 
for example in P. G. Kaminski et al. [1971] or in D. K. Faddeev et al. [i960]. 

In general any symetric positive definite matrix M of the dimension (n; n) is possible 
to write in the factored form 

(65) M = FrF, 

F being the upper triangular matrix. It holds 

(66) Mij = tFkiFkj, i£j 
k = l 

and just for i = j 

(67) Mu = iF2
ki = F2

u+~iF2
ki. 

Hence 

Fu"y/(Mtt-ZHd. 
k=í 

For j > i it follows from relation (66) that 

(69) F i . F y - . J V f y - ' j n F w F y 
k=l 

and for M regular 

(70) det M = det FT det F = det F2 = f[ F2
n * 0 . 

i = l 

Finally from (69) we have 

(71) Flj=±{Mtj-l~iJFkiFkj). 
Fit k=l 

Relations (68) and (71) describe the Cholesky's algorithm enabling to generate the 
matrix F successively row by row. For i = 1 it holds that 

Fn = VM„ and Fu = -£=-
Fn 

and the next elements of the matrix F are to be calculated according to (68) and (71). 
For M being positive semidefinite, FtJ = 0 everywhere FH = 0, j > i. 
Without any doubt there are still other approaches how to triangulize the given 

matrix. Among different possibilities it is worth-while to mention the Householder 
algorithm (A. S. Householder [1964]) and the modified Gram Schmidt algorithm 
(A. Bjorck [1967]). 



6. THE EXPONENTIAL FORGETTING 

For some problems, like in the case of identification, the solution 0A represents 
the parameters of the mathematical model. In such kind of problems it may be 
useful to attach to the oldest values i.e. to values with the lowest indexes, the lowest 
weighting factors, in order that the newest values influence most significantly the 
resulting estimates of parameters. Such a requirement can be reached by exponential 
forgeting i.e. by multiplication of all rows of matrices £*, V, Z in equation (34) by 
weighting factor <pK~k, 0 < q> = 1, k = 1, 2, . . . , K. In equation (42) jK is then 
necessary to replace by x/xK where 

(72) Xi-'fW-
; = o 

For K increasing the value x can be calculated recursively. It holds that 

(73) xK+1 = E(yy = i + < / L > 2 ) ' , 
; = o / = o 

so that 

(74) xK+l = 1 + cp2xK. 

7. EXAMPLES OF LEAST-SQUARES APPLICATIONS 

There is a great number of different modifications of least squares evaluations 
according to the problems to be solved. In the field of identification and system para
meter estimation it is possible to apply the least-squares not only in connection 
with the regression model of the system', the model which was used in preceeding 
sections, but also in connection with other types of models. For the sake of illustra
tion let us consider two other examples. 

7.1. Discrete impulse response estimation for nonrandom inputs 

Consider the system output expressed by convolution sum 

(75) yk = 2 > t _ r f . + e*, k = 0, 1, 2, . . . , 

where gh i = 0, 1, 2, . . ., m are the ordinates of the discrete impulse response g(k) 
and yk, uk, k = 0 ,1 , 2, .. .,K are the sequences of values of output and input 
variables respectively, however the input is not a random variable. The relation (75) 
may be written in the vector-matrix form 

(76) y = Ug + e , 



where 

y = y0 , U = Гu 0 u_, . . . и_m ~[> ř = Гøo~Ь e = eo , ^ > w 

Уi. 

Уi 

Jк _ 

и_„, • g = 00 , e = ~ 

" - m + 1 01 e, 
M - ш + 2 02 e2 

"o . Øш- eк 

" - ш _ 

If the ordinate g0 = 0 then the lower bound of the sum (75) can be changed into 
i = 1 and the vectors and matrices of the equation (76) can be reduced to columns 
and fields demarcated by dashed lines. In this particular case the value y} of the 
variable y does not depend on the value wy of the variable u, but it depends only 
on past values of the input u. 

Equation (76) has the same form as equation (3) and the vector g of ordinates 
can be calculated exactly in the same way as the vector # in section 4. 

7.2. Discrete impulse response estimation for random inputs 

It is a similar problem as that one solved in the preceeding paragraph. Assuming 
that it is possible to determine the estimates of the autocorrelation function of the 
random input u and of the crosscorrelation function of the input u and output y 
then the problem can be treated as the solution of Wiener-Kolmogorov equation 

(77) £ g(v) R„„(T - v) - Rjr) = 0 , 

for T = 0, 1, 2, . . . For x P I, equation (77) can be expressed in the vector matrix 
form 

(78) Я„„(0), R„„(l), 

«„„(!), Я„„(0), 
.. lao i 
. . Rjl-1) 

ø(o) 
ø(0 

kђ. 

Г«„,(o)" 

*Áђ 

Ř.,y(ђ 

^Rjкi 

-(<oГ 
e(í) 

e(I) 

J(KІ 

«„„(/), lU' - ! ) . • • • Rjo) 

ø(o) 
ø(0 

kђ. 

Г«„,(o)" 

*Áђ 

Ř.,y(ђ 

^Rjкi 

-(<oГ 
e(í) 

e(I) 

J(KІ 

or 

(79) 

R„„( ) RjK - 1), . • • Rjк - 0_ 

R„„g - R„v = -- e . 

Г«„,(o)" 

*Áђ 

Ř.,y(ђ 

^Rjкi 

-(<oГ 
e(í) 

e(I) 

J(KІ 

This is again the standard form of the overdetermined set of algebraic equations the 

numerical solution of which was described in section 4. 



8. GENERALIZED LEAST SQUARES 

The procedure of generalized least-squares refers to the mathematical model (2) 
where 

N 

(80) e(k) = n(k) + £ Ci n(k - i). 
;= i 

In this case e(k) is not a white noise as it is assumed originally but the noise e(k) 
is derived from white noise by a filter having the same autoregressive parameters as 
the process. In general the noise is not white and the estimator (12) will yield biased 
results. The amount of this biasing has been found to be highly significant for even 
low noise-signal ratios on the system output. In order to remove the bias we define 
a weighted least-squares estimator (17). Following P. Eykhoff [1967], let the weighting 
matrix W has the property that 

(81) W = VTV, 

V being a lower triangular matrix. Using this notation, equations (10) and (17) can 
be written as 

(82) J = i(VE)r VE , 

(83) » A = [(vzy vz] -i (vzy VY . 

The matrix V represents a "noise-whitening" filter; given n(k), k = 1, 2, . . . , as 
an input sequence, the output of that filter is white noise. If the sequence EY = VE 
is uncorrelated with Zv = VZ then 

(84) #A = [zlzvY
l ZVVY = [zvzvy

i Zy V(Z» + E) = 
= »+ [ZlZv~\~' ZVEV = » 

and the estimate is asymptotically unbiased. This is the case if Ev is a white noise 
sequence, i.e. V is a "noise whitening" filter. This estimator coincides with the 
Markov estimator, where W = R - 1 , R being the covariance matrix of the noise e. 

When an apriori knowledge of the noise is lacking, the noise parameters c;, 
i = 1, 2, . . .,N in (80) have to be estimated first. D. W. Clarke [1967] suggested 
an explicit method for the off-line calculation of these parameters 

(85) CA = - ( £ A T E A ) - ' £ATeA , 

where 

C A T = [Cl,c^, . . . , c A ] , 

e-T =[e*(N + l),eA(N+ 2), ...,eA(K)]; dim eA = (K - N; l ) , 

e*(k) = y(k)-z\k)K, 



= V(JV), . . . , eA(i) 1 ; dim£A - (K - N;N). 

eA(K - 1), . . . ,eA(K - N)_ 

The filtered sequences 
N 

(86) uv(k) = u(k) + £ cf u(k - J) 

and 

(87) yv(k) - y(k) + £ *t Ak - i) 
i= I 

are used for the calculation of the estimate 

(88) $v = [Z\uy, yv) Z(ur, yvJ]"~' ZJ(uvyv) Yv 

which can be considered as the first approximation of 9 A in (84). With this &v a new 
improved sequence eA(k) can be generated and then again a new.i.e. the second 
approximation of #A , etc. 

Inspired by Clarke's algorithm, a recursive method was suggested in the article 
by R. Hastings-James and M. W. Sage [1969] for the system model of the type 

(89) A\r')y(k) = r(r>(fc) + c^y(k)-

It consists of two recursive least squares estimators combined via filtering. Introduce 
the notation 

,9AT = [«r, ...,aA, b?, ...,£>A] = [AA ,B* ] , 

42
AT = v , . . . , c ; ] = c * , 

C'y(k)~y(k-1), 

CA(C') )'(k) = y(k) + cA y(k - 1) + . . . + cA y(k - N), 

AA(r]) y(k) = y(k) + at y(k - 1) + . . . + aA j<fc - iV), 

J 5 A ( r ' ) u(k) = b? u(k - \) + .. . + bA u(k - N), 

cpT(k) = [~cA(r')y(k - l ) , . . . , - cA(r')y(k - N), cA(C')u(k - l ) , . . . 

...,CA(Cl)u(k-N)], 

9l(k) = [-e~(fc - 1), • . . , -e~(k ~ N)-] , 

e~(k)~AA(C')y(k)-BA(r')u(k). 

Note that the degree of polynomials A A, £ A and CA need not be necessarily the same. 
Unequality of the degrees of these polynomials does not introduce any changes in the 



described algorithms. This note holds for all other following polynomials of the 
same kind. The algorithm can be written as 

»í(k + 1) = »í(k) + Mг(k + 1) Єl(к + 1), 

ML(к + 1) = 
Pt(к) 9l(к + 1) 

1 + <p\(k + 1) PL(k) <px(k + 1) ' 

P.(k + 1) = p.(fc) - M.(k + 1) -,í(fc + 1) PL(k) , 

ei(k + i) = c^r1) y(k + i) - A»T(fc + i) »í(fc), 

52
A(/c + 1) = S2

A(/c) + M2(/c + 1) e2(k + 1) , 

(90) 

(91) 

(92) 

(93) 

(94) 

(95) 

(96) 

(97) 

In the computations for #;/(fc + l) the polynomial CA(£ - 1) is required. It is obtained 
via the estimate #2(fc). 

For the generalized least squares the parameter estimates will converge to the true 
values if the signal-to-noise ratio is large enough. On the other hand, if this ratio 
is small, it is possible that the estimator converge to false values. 

M2(k + 1) = 
P2(k)<p2(k+ 1) 

1 + <f>l(k + 1) P2(k) ę2(k + 1) ' 

P2(k + 1) = P2(k) - M2(k + 1) <Ą(k + 1) P2(k), 

ф + 1) = e2(k + 1) - <pт

2(k + 1) Эï(k) . 

9. INSTRUMENTAL VARIABLE METHOD 

An off-line estimator which will always give asymptotically unbiased estimates 
is the instrumental variable method. The basic idea, see e.g. M. G. Kendall and 
A Stuart [1961], is the generation of an extra signal, i.e. the instrumental variable, 
which is correlated with the usefull signal of the process but which is uncorrelated 
with the noise. 

Introduce 

(98) 

where Z may have the form 

З л = [ ^ т z ] - ' ЗГY, 

Z = [ > T ( 1 ) r=ф(i) 

У(Ҡ)J Іy(K)] 

(99) ę\k) = [-y(k - 1), . . ., -y(k - N), u(k -l),...,u(k- JV)] 



and 

(100) 

J(k) -[_____)„(*_!), 
«. > L Ącl) ^ Һ 

ш V ( l ) - , 

/(к)_ 

ML!)м(fc_jv),«(k-i),...,м(fc-JV)J 

_" is called the instrumental matrix if the following two conditions are fulfilled: 

(101) p lim X- _ ° T z l = R , 

i.e. the probability limit of the sequence is non-singular (quadratic) matrix and 

(102) p lim X- S?T(Y - Z»A)\ = 0 , 

where Y — Z9 = e. 

Matrix _* defined by relations (100) meet the assumptions (101) and (102) for open 
loop operation only. Note that the matrix _" is formed like the matrix Z but the 
values of the output variable are suggested without noise. The instrumental variable 
estimate (98) can be modified into an equivalent recursive algorithm of the form 

»A(k + 1) = 9A(k) + M(k + 1) e(k + 1), 

M(k + 1) = 
P(fc) Ąk + 1) 

(103) 

(104) 

(105) 

P{k +1) _ p(k) - m^±^+f])^) _ [, _ M(k + 1} „ r ( f c + 1 } ] P(fc)> 

1 + <pr(k + l)P(fc)*(fc + 1) ' 

(106) 

1 +<pт(fc + l)P(fc)*(fc + 1) 

e(k + 1) = V'(fc + 1) - ęт(k + l)Ял(fc) . 

It is evident from (100) that A(c_1) and B(ifx) are required for the calculation 

of *(k + l) but A(c^!) and B ( t _ 1 ) are just the final results of computation which are 

not available in the instant when x(k + l) is needed. In order to anable the calcula

tion, the values of parameters known from the preceding steps need to be used. 

Introducing 

(107) *T(fc) = [~x(k - 1), . . . , ~x(k - N), u(k - 1), . . ., u(k - N)] , 

(108) x(k)-S(k)»A(k) 



(109) x(k) = xT(k)»A(k - x), 

where x is a small positive integer, we can overcome the mentioned difficulty. 

For more details for this type of algorithm the reader is referred to D. Q. Mayne 
[1965] and to K. Y. Wong, E. Polak [1967]. Another procedure, called tally estimate, 
which may be included into the category of instrumental variable methods is that 
one published by V.Peterka, K. Smuk [1969] and V. Peterka, A. Halouskova [1970]. 

For the instrumental variable methods the parameter estimates will always converge 
to the true values. This is a well-known result effected by the properties of the off
line methods. 

10. EXTENDED LEAST SQUARES METHOD 

Consider a single input single output system given by 

(110) Ar1) y(k) = B(rr) u(k) + | | p e(k) , 

where 

A(rJ) = i + «,rx + • • • + aNi~N etc. 

and 

(111) r 1 y(k) - . y(k - 1). 

The publications P. C Young [1971] and P. C. Young, R. Hastings-James [1970] 
are devoted to the general form (110). Most other authors consider the simplified 
form where either COT1) = 1 or D^'1) = 1 (e.g. V. Panuska [1968]). In the 
following the case D(£~]) = 1 will be discussed. Moreover it is assumed that b0 = 0 
and c0 = 1. 

Introduce 

(112) <p\k) = [-y(k - 1), . . . , -y(k - N), u(k -\),...,u(k- N), 

e(k - 1), ...,e(k - N)] , 

(113) ST = [a . , . . . , aN, bt, . . . , bN, c„ . . . . cN~] . 

SA corresponds to the estimate of the set of parameters in (113) and 

(114) <pAT(k) = [-y(k - I), ..., -y(k - N), u(k - l), ..., u(k - N), 

e(k - 1), ...,s(k-N)~], 

(115) e(k) = y(k) - $AT(k - l)<pA(k). 



The calculation of the error estimate e(k) by means of past estimates of parameters 103 
in »A(k — l) or, which is the same, by means of the relation 

s(k) = y(k)-yA(k\(k-})), 

is called extended least squares principle. 

The respective recursive identification algorithm is given by 

(116) »A(k) = »A(k - 1) + M(k)e(k), 

(117) Njk)~- J ^ - 1 ) ^ ) , 
^ • W 1 + <pA"(k)P(k-\)<pA(k) 

(us) P(k) - P(k - i) - gL-i)^( f c )yA T ( f c )^-0 = 
* ; w l J 1 + «pAT(fc)p(fc-l)<z>A(fe) 

= [/-M(fe)«? ,^(A-)]P(fe- 1). 

L. Ljung and others [1975] have analyzed thoroughly the convergence properties 
of the formulas (116) through (118). For an exponentially stable system and for 
df|e(fc)|* < oo for all p > 0, they concluded that if »A(k) tends to a stationary con
vergence point »A* with the probability strictly greater then zero, then 

(119) «{<pA(k, »*) e(k, »*)} = f(»*) = 0 

and all eigenvalues of G~1(»*)H(»*) have nonpositive real parts, where 

G(»*) = ${<pA(k, »*) <pAT(k, »*)} , 

H(»*)=~f(»)\^, 

f(») = £{<pA(k,»)£(k,»)}.. 

and provided that G(»*) is invertible and <pA(k, ») and e(/c, ») are stationary processes. 

In order to satisfy the above mentioned conditions, and in order to ensure the 
convergence of calculations, the modified recursive formulas were proposed 

(120) »A(k) = »A(k - 1) + M(k) s(k) , 

( m ) M(k) - P(k-l)**(k)  

( 1 2 1 ) M(k) l+«A?(k)P(k-l)*A(k)' 

(122) P(k)~[l-M(k)**r(k)]P(k-l), 

(123) E(/C) = y(k) - »AT(k - l)<p(k), 



where %A(k) is defined by 

(124) c*A~i(r1K(fc)-=pA(fc) 

and CC-i is given by the estimate 9A(k - l). The algorithm (120) through (124) 
guarantees that the true value of $ is always a possible convergence point. 

(Received September 8, 1976.) 
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