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K Y B E R N E T I K A — VOLUME 33 ( 1997) , NUMBER 2, P A G E S 231 - 2 3 8 

ALTERNATIVE POLYNOMIAL EQUATION A P P R O A C H 
TO LQ D I S C R E T E - T I M E O P E N - L O O P CONTROL 

VACLAV S O U K U P 

Like [4] for the feedback control this contribution brings the modification of the poly
nomial equation way of solving LQ discrete-time SISO control problem in the open-loop 
structure. Using this approach the conditions are found under which the only implied 
equation minimum solution is the LQ optimal one. 

1. INTRODUCTION 

A single-input, single-output (SISO) open-loop control problem is considered ac
cording to Figure 1. A controlled process output Y , load disturbance V (referred 
to the output) , possible nonzero starting conditions Yo, as well as the model P of a 
controlled process, are assumed to be described in the discrete-time form. 
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Fig. 1. 

The error signal 

E=Wr-Y = W-PU, where W=Wr-V-Y0 (1) 

represents the only equivalent reference input. 
Such a control sequence U is to be determined in LQ open-loop control, which 

minimizes the performance index 

ů = J2[фe2(kT) + фu2(kT)] , (2) 
fc=0 
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where e(kT) and /o r u(kT) are the error and /or control signal values at t ime kT, 
k = 0 , 1 , . . . ; V>>0 and <f> > 0 are chosen weighting scalars. 

Quadratic or the least squares control strategy is widely applied in both state-
space as well as transfer function methods of the control design foi a long time. Many 
contributions concerning polynomial and polynomial matr ix input-output methods 
in LQ and LQG control have been written following the fundamental book [2] in 
this field. Feedback SISO LQG control problems are treated in [1]. Based on the 
general results contained in [2], open-loop SISO LQ control solution using coprime 
polynomials for a system and signal description, has been presented in [3]. The same 
approach is used in this work. 

Polynomials and sequences in d (one step delay in the time domain or the in
verse Z-transform complex variable in the complex frequency domain) as well as 
usual symbols of polynomial theory [2] are used in the paper. Namely, dega, a* = 
a(d-1), a~ = dde&aa*, a = a+a°a= , where all zeros d,- of a + ( d ) , a°(d) and a=(d) have 
the property \d{\ > 1, |d,-| = 1 and d; < 1, respectively, ac denotes a polynomial for 
which ( a c ) _ 1 is a causal sequence. For two polynomials (a, b) is the greatest common 
divisor of a, b , b\a means that a = be and 6 ~ a denotes a = be with deg c = 0. The se
quence E*(d) = F(d~l) and (F) = <f>o for a sequence F = .. .-\-(j)-\d~l-\-(j)o-\-<f)id-\-.... 

Following this Introduction the standard open-loop LQ control solution is de
scribed briefly in Section 2. The alternative possibility starting with the so-called 
"implied" equation is explained in Section 3. The part dealing with LQ optimality 
of the implied equation minimum solution follows in the fourth section. In Section 5 
the respective conditions, which make this simpler solution possible, are compared 
with the similar ones beeing derived in [4] for the closed-loop control structure. One 
illustrative example is given at the end. 

2. USUAL SOLUTION OF LQ O P E N - L O O P DISCRETE-TIME CONTROL 

Considering the structure in Figure 1 with 

P = - , a, b coprime, a causal, b = d@bc, /? > 0 , (3) 
a 

and r 
W = Wr-V -Y0 = j - ; h,f coprime, h = hc, (4) 

the LQ optimal control and the corresponding error sequences are 

TT af>y A I? (b> f) X <K\ 
U = -— and E = -— , (5) 

has has 

where , 
ah = 7~T\ a n d ha = T~T\ (6) 

(a,h) ( a , " j 
and s = s+ follows from 

ss* = (f)aa* + ^66* . (7) 
The polynomials x and y in (5) along with z solve the couple of the equations 
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dps*y + hz = dpKxl>f (8) 

and 
dps+x — bfhaz = dpa*(j)ahfb (9) 

with the minimum deg z < p , where 

h f 

p = max(deg a, deg b), b} = ——- and fb = —— . (10) 
ibJ) (bJ) 

The optimal solution exists if and only if ha = h+ and is unique. 
The only equation (8) gives the optimal solution y, z with deg z < p, if deg (dps+, h) 

= 0. The remaining x then follows from (9). 

3. ALTERNATIVE SOLUTION OF LQ OPEN-LOOP DISCRETE-TIME 
CONTROL 

The further, third equation implies from (8) and (9). Multiplying (8) by 6 and (9) 
by (a, h) (b, f) and adding them mutually yields 

dps+ [(a, h) (b, f)x + by] = dps*sf 

and hence 

(a,h)x + bfy = sfb . (11) 

Using this, so-called "implied" open-loop equation (11), the alternative way to solve 

LQ control can be presented and proved. 

Claim 1. LQ discrete-time, open-loop control, defined by the relations (1) to (7) 
and (10), is solved by 

y = yp + (a,h)t and x = xp — bft, (12) 

where xp, yp is any arbitrary particular solution of equation (11) and / belongs to 
the minimum deg z solution t, z, deg z < p, of the polynomial equation 

dpsj + haz = r, (13) 

where introducing 
q = tpb(b, /)*xp* - 4>aah*yp+ (14) 

yields 
dpq* 

s 

The optimal solution exists if and only if ha = /i+ and is unique. 

P r o o f . Substituting (12) into equations (8) and (9) yields 

dps*yp + dps*(a,h)t + hz = dpb*il)f (15) 
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and 
dps*xp - dpsjft - bfhaz = dpa^ahfb . (16) 

If (15) multiplied by xp and (16) by yp are mutually subtracted, we obtain 

[(a, h) xp + bfPp] (dpsj + haz) = dpfb[ipb*(b, f) xp - <j>a*ahyp} . 

Since (11) is true for any xp and yp then using (13) and (14) 

s(dpsj + haz) = dpq* or sr = dpq* , (17) 

D 

4. OPTIMAL LQ OPEN-LOOP CONTROL SOLUTION 
VIA THE IMPLIED EQUATION ONLY 

Using the relations derived above the sufficient conditions can be found under which 
the minimum solution of the implied equation (11) is LQ optimal. The following 
claim gives the result. 

Claim 2. LQ discrete-time,open-loop control problem, described by the relations 
(1) to (7) and (10), is solved uniquely by the minimum degy solution x, y, degy < 
deg(a,h), of the equation (11), if simultaneously 

degha = 0 (18) 

and 
deg (a,/*) + /?> d e g / . (19) 

P roof. If xp, yp is the minimum degy solution of (11), then t = 0 in (12) as 
well as (13) and hence haz = r. Since generally ha does not divide r, z ~ r must be 
supposed. Therefore (18) and 

deg z = deg r < p (20) 

are the necessary general conditions for xp, yp as the minimum degy solution of (11) 
can be LQ optimal at all. 

The following relations introduced in [4] are valid: 

deg(dps*) = deg(dpa*) = p and deg (dpb±) = p - (3 ; 

deg s = deg a ; (21) 

deg s = deg a (22) 

deg s < deg a ; (23) 

deg s = deg bc. (24) 

lf deg a > deg bc then 

if deg a = deg bc then either 

or 

if deg a < deg bc then 
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The minimum degy solution xp, yp of (11) has the following properties: 

degyP < deg(a,h) (25) 

and 
deg xp < deg bf (26) 

if 
deg(a,h) + degbf > degs + degfb (27) 

or 
degxp < degs + deg fb - deg(a,h)+ 1 (28) 

if 
deg(a,h) + degbf < degs + deg fb. (29) 

Using the presented relations along with (14) and (17) we can write 

deg r = deg (dpqif) — degs 

< max[p - 0 + deg (b, f) + deg xp , p + deg ah + deg yp] - deg s 

= p - deg s + maxfdeg (6, / ) - / ? + deg xp , deg a/, + deg yp] . (30) 

If (27) is true the relation (30) obtains the form 

deg r < p — deg s + max(deg a, deg 6C). 

Hence one can see that (20) will be valid if (21) or (22) or (24) holds. Assuming 
(^3) we can write 

(a,h)bfdpq+ = (a, h)bf[dpb*ip(b, f) JC., - dpa^ahyp] 

= dpbmipb(a, h) xp — dps*sbfyp + dpb*ipbbfyp 

= dpb*xpbsfb — dps*sbfyp = sbf(dpb^f - dps^yp) 

and hence 

deg r = deg (dpb*ipf -dps*yp) - deg(a,h) 

< max[/9 — /3 + deg / , p + deg (a, h) — 1] — deg (a;h) 

= p + m a x [ d e g / - / ? - d e g ( a , / j ) , - l ] . 

Therefore the condition (19) must be valid to secure (20) in this case. It is satisfied 
in the previous case too. 

In the second case, when (29) holds, we obtain from (30) 

deg r < p - deg s + max[deg (b, f)-(3 + deg s + deg fb - deg (a, h) + I, 

deg ah + deg (a,h)] = p + m a x [ d e g / - deg (a, h) - j3 + 1, deg a - d e g s ] . 

Hence provided (19) is true, (20) is satisfied in the cases (21) or (22). Considering 
(23) and (24) then (20) cannot be ensured since the contradictory relation deg (a, h)+ 
j3 < deg / follows from (29). Moreover in the case (23) the requirement (20) can be 
broken by deg a — deg s > 0 too. 

Thus the conditions (18) with (19) are found to be the sufficient ones for LQ 
optimaiity of the minimum deg y solution of (11). • 
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The condition (19) 

— is always valid if either (21) or (22) or (24) along with (27) hold 

— can be true if (23) with (27) or (21) or (22) with (29) are valid 

— can never be true if (23) or (24) along with (29) hold. 

5. COMPARISONS 

The conditions (18) and (19) are very similar to the ones which have been derived 
in [4] for the minimum solution of the respective implied equation in feedback LQ 
optimal control. 

Let us introduce the basic results concerning this closed-loop LQ problem treated 
in [4]. The structure under consideration is shown in Figure 2. 

-SŁn-^ c 
U 

V + Yo 

O ү 

Fig. 2. 

The relations (1) to (4) as well as (6) and (7) are valid in the same way (the 

only (3 = 0 must be excluded from (3)), p stands in (10) and a feedback controller 

is supposed to be described by 

C = — , n ,m coprime , n = n . 
n 

Then LQ optimal controller is determined as 

n = np — bt and m = mp + at, 

where np, mp is any particular solution of the equation 

an + bm = sp (31) 

with p following from pp* = a^a/.*//* , and t belongs to the minimum deg z solution 

z, t, deg z < p , of the equation 

dps+t + haz = I 

with 

si = dp(tpb+np — <()a*mp). 

The feedback LQ optimal solution exists if and only if ha = h+ and p = p+ (p° ~ 1). 

Provided 

deg ha = 0 



Alternative Polynomial Equation Approach to LQ Discrete-Time Open-Loop Control 237 

and 
dega + / 9 > d e g p (32) 

the only equation (31) may be solved for minimum deg m , deg m < deg a. 
Comparing now the conditions for the simplified solution of the closed-loop and 

open-loop LQ control, we can see that the first condition (18) is identical in both 
the cases. Provided it is valid and the feedback problem solvability is guaranteed, 
then 

deg (a, h) = deg/i and deg a = deg h + deg ah . (33) 

Using (33) we can find 

deg a = ~ = deg a = , / = = d"Tc , v > 0 , 

and hence 
d e g / = = z> + d e g / = c but deg / = ~ = deg / = c , 

and the second open-loop condition (19) obtains the form 

deg/i + / ? > d e g / + + / = c + z/. (34) 

In a similar way the closed-loop condition (32) can be rewritten as 

deg/* + / ? > d e g / + + d e g / = c . (35) 

Comparing (34) and (35) they are found to be identical if v = 0. Provided 
v > 0 such a case can occur when LQ optimal feedback controller may be found 
through the implied equation while the open-loop control may not. For example, if 
P = d/(l - d) and W = d(l + 0 .5d) / ( l - d), then (35) is satisfied while (34) is not. 

Finally wo shall return to the general case of LQ control when the conditions 
(18) and (19) or (32) play no role. The question can arise, when the LQ optimal 
feedback controller can simply be designed as the ratio C = U/E where U and E 
are LQ optim?' open-loop signals standing in (5). 

Using these relations 
m _ ahy 
n (b,f)x 

and substituting it into the corresponding LQ optimal closed-loop equation (31) 
yields 

a(b,f)x + bahy = sf+f=~a+ah
=~. (36) 

Hence 
ah(b, f)[(a, h)x + bfy] = ah(b, f) sfb = sfah , (37) 

where the open-loop implied equation (11) has been applied. 
Comparing right sides of (36) and (37) closed-loop and open-loop LQ optimal 

signals are found to be identical if and only if ah = a+ and / = / + . Then m = a+y 
and n = (b, f)+x and the closed-loop coupled equations used in the standard design 
[2,4] 

dps*m + ahaz = dpbmxpp 

and 
dp s+n — bhaz = dpa*<f>p 

obtain the open-loop form (8) and (9). 
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6. EXAMPLE 

Let us solve the LQ open-loop control problem for 

-, * d Tir f l + 0.5d , , - , 
P = - = - , W={= J and V = 4 = 1 • 

a 1 — d h 1 — d 

We have 

fca = a/i = 1, bj=d, / 6 = / = l + 0.5d, (a,/i) = l - d , 

/ ? = 1 , p = l and s= 1.618 - 0 . 6 1 8 d . 
Since deg ha = 0 and deg (a, /i) + /? = 2 > 1 = deg / , the conditions (18) and (19) 

are satisfied and the simple solution according to Claim 2 can be applied. 
Then the equation (11) 

(1 - d)x + dy = (1.618 - 0.618d) (1 + 0.5d) 

has the minimum degy solution x = 1.618+0.309d and y = 1.5, which is just optimal 
one. 

The resulting optimal signals according to (5) are 

_ 1.5 1.618+ 0.309d 

~ 1.618-0.618d a n ~ 1.618 - 0.618d ' 

Using the way of Claim 1 we write the general solution of (11) 

x= 1.618 + 0 .309d-dZ and y = 1.5 + (1 - d)t, 

q = -1 .191 + 3 . 1 1 8 d and r = 1.927. 

The equation (13) 
( - 0 . 6 1 8 + lMSd)t + z = 1.927 

is solved for minimum deg z < p by t = 0 , z = r = 1.927. 
Since a^ = o | = 1 as well as / = / + = 1 + 0.5d, the closed-loop LQ optimal 

controller can be determined as the ratio U/E of the open-loop optimal signals and 

1.5 
C = 

1.618+ 0.309d' 
(Received March 21, 1995.) 
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