Kybernetika

Milan Mare$

Stability of coalition structures and imputations in coalition-games

Kybernetika, Vol. 10 (1974), No. 6, (461)--490

Persistent URL: http://dml.cz/dmlcz/124322

Terms of use:

© Institute of Information Theory and Automation AS CR, 1974

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
O digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz


http://dml.cz/dmlcz/124322
http://project.dml.cz

KYBERNETIKA — VOLUME /0 (1974), NUMBER 6

Stability of Coalition Structures
and Imputations in Coalition-Games

MiLAN MARES

In the presented paper a model of bargaining in coalition-games is suggested. The main goal
of the work is to present a simple and easy to survey method, which could be algorithmized in
a sufficient degree.

INTRODUCTION

At the present time, there exist a few models of the bargaining in coalition-games
with side-payments. Most of them are devoted to the problem of final distribution
of the common pay-off. Such models usually investigate properties of the core (e.g.
[4], [5], and many others), or introduce certain vectors of final profits, having some
equilibrium properties (e.g. [2]).

More interesting from the point of view of this paper, are such models, which
describe not only the final pay-offs, given in some units of transferable utility, but
also the final “state of the bargaining”, i.e. the final coalitions, together with the
inner distributions of their profit. The most famous of them is the Aumann’s and
Maschler’s paper [1], which gives a very illustrative model of bargaining. Author
of the presented paper suggested a modification of this method in [3]. The Aumann’s
and Maschler’s method can cause certain difficulties, namely when we want to find
out the existence of some contraobjections to any objection against given con-
figuration.

The main idea if the presented paper is that the procedure of finding of the resulting
configuration may be simplified, if we find firstly the coalition structures, which may
appear in the result of bargaining, and then we construct the imputations, which
correspond to this coalition structures. '

The aim of this paper is to describe such a procedure, which would be simple
enough, which could be algorithmized, and which would not contradict the common
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intuitive idea about the rational result of bargaining in a conflict situation, or the
classical concepts of the core.

The suggested method is described in sections 3, 4, 5, 8 and 9 of this paper. The
other parts are devoted to introductory notions (parts 1 and 2), to some special
situations, which may occur in the coalition-game and which enable us to simplify
the procedure (sections 6, 7 and 10), and to certain correspondence between the
described method and a classical concept of the game theory, namely the core (sec-
tion 11).

1. COALITION-GAME

First of all we specify two notions, known from the elementary set theory.

If 4 is some non-empty and finite set then the family .# of non-empty subsets
of A is called a partition of A, iff

UM=4,
Meutt
and for any K, Le # is K n L= 0.

If # and A are two partitions of the same set A, then .# is called a subpartition
of & iff for any M € # there exists N € A" such that M < N.

The coalition-game is a conflict situation, in which its participants, players, are
allowed to collaborate in admissible coalitions, and for any coalition its guaranteed
final common pay-off is known. This pay-off can be arbitrarily distributed among
members of the coalition.

Let I be a finite and non-empty set.

Let K be a non-empty class of the partitions of the set I, such that for any class
M < K and for any family 2 of subsets of I, where

A < U4, and A is a partition of I,
MM

also " e K.
Let, finally, v be a superadditive set function, defined on the family of subsets of I

U
HeK v
ie.
(11) oK) + o(L) oK UL), K.LKuLeU#, KnL=90.
HeK
Then the triple
I'=(IK, v)

is called a coalition-game.



Elements of the set I are called players, partitions of I, belonging to the class K
are coalition structures, the subsets of I, belonging to the family
U s
HeK
are called coalitions, and the set function v is the characteristic function of the
game I'.

2. IMPUTATIONS AND CONFIGURATIONS

Let I' = (I, K, v) be a coalition-game. It was already said in the previous section
that the common profit »(K) of any coalition K can be arbitrarily distributed among
its members. The concept of imputation represents such possible distribution of pay-
off.

Let n be the number of players in the set I. We define for any coalition structure
A € K the subset X(o) of n-dimensional Euclidian space,

(2.1) X(A) = {%x = (x)ier: L x; = o(K) forany Kex}.
ieK

Any n-dimensional vector x € X(¢") is called an imputation in A" It is obvious
that X(#) is (n — k)-dimensional subspace of the n-dimensional Euclidian space,
where n is number of elements in I, and k is number of coalitions in .

If o € K and x € X(4') then the pair (o, x) is called a configuration in the given
coalition-game I.

3. RATIONALITY AND EFFECTIVITY

The concept of rationality is a basic one in the coalition-games theory. It is well-
-known from the literature, e.g. from [1], and it must not be omitted, whenever the
configurations in colition-game are investigated. For our purposes, when the
coalition structures and the imputations are considered separately, the rationality
may be restricted to the effectivity from below, defined in this section. The effectivity
from above, defined also in this section, enables us, in the final steps of our bargaining
investigation, to eliminate some results of bargaining, in which the cooperation
among players is not as strong as possible.

Definition 1. The configuration (¢, x) is said to be rational, iff for all coalition
structures # € K such that ¢ is a subpartition of &, the inequality

(3.1) o(J) é.‘; x;

is true for all J € £.
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Definition 2. Let ¢ € K be a coalition structure. Then we say that

A is effective from below, iff there exists an imputation x e X(4") such that
(o, x) is- rational;

A is effective from above, iff for any & effective from below and such that
is a subpartition of ., the equation

(32 2 o(K) = 3 o)

Kext' Le¥
1s true;
A is effective, iff it is effective from below and effective from above.
The classes of configurations being effective from below, effective from above, and
effective, will be benoted by symbols

. K KT and K,
respectively.

Remark 3.1. It is obvious that K& = K n K*".

Remark 3.2. Let 4" € K. It is an immediate consequence of the previous Definitions
that " e K., iff there exists x € X(#), x = (x,),.;, such that for any ¢ € K, where #
is a subpartition of &, and for all J € # the following inequality holds

Sox =z (J).

ieJ

Lemma 3.1. There exists at least one effective coalition structure in any coalition-
game; i.e. K& + 0.

Proof. The class K, is always non-empty, because it contains at least the coalition
structures from K, for which no their subpartition in K exists. On the other hand,
the finite, non-empty class K, contains at least one coalition structure &, such that
for any # € K,;, & is not a subpartition of #". Consequently,

FeKyn K= K.

The following statements of this section describe some relations between a coali-
tion structure and its subpartition, namely, if they both are effective. The obtained
results will be applied in the 6th section, and, partially, also in the 10th section
of this work, where they enable us to simplify the construction of the bargaining
solution in some coalition-games.

Lemma 3.2, Let # e K, % € K, A is a subpartition of .Z, and let
(33 S oK) = ¥ olL).
ke Le#

Then o € K, and X() = X(%).



Proof. Because # is a subpartition of %, the relations (3.3) and (1.1) imply that 465

olLy= Y oK), forall Le%.

)
Ket K<L

It means that X(1') < X(&). Let & ¢ K,;. Then, by Remark 3.2, for any x € X(4")
there exists .# € K and J € ¢ such that ¢ is a subpartition of " (and of &), and

Y oxp < o(J).
il

Consequently, also (&, x) is not rational for any x € X(#) < X(&). On the other
hand, (3.3) and (2.1) imply that for any y € X(&) — X(#) there exists K € %", such
that
oK) >3y
ieK

Because . is a subpartition of %, also no configuration (%, y), where y € X(.#) —
- X(2) is rational. It means that % ¢ K., implies . ¢ K,;. what contradicts the
assumptions of Lemma.

Lemma 3.3. Let # € K*', # e K, and let # be a subpartition of #". Then %" € K*.

Proofl. If # ¢ K then there exists .# e K,; such that # is a subpartition of .#
and

(3.4) SoiM)>Y oK)z Y o(J),
Jeg

Me. it Kex

where the last inequality follows from (1.1) and from the assumption that ¢ is
a subpartition of #". As £ is also a subpartition of .#, the relation (3.4) implies
that # ¢ K, what contradicts the assumptions of Lemma.

Corollary Let # € K*, ¥ e K,;, # € K, and let # be a subpartition of .# and 4
be a subpartition of .#’. Then
FeKE, Hekd, @eKd,

ef »

as follows from Lemmas 3.2 and 3.3.

Lemma 3.4. Let £ € K¢, ¥ e K¢ and let . be a subpartition of . Then

(3.5) oL)="3 oK), forall Le?,
(3.6) X(%) > X(#).

and if for some imputation xeX(,?) the configuration (3‘, x) is rational, then
x e X() and (A, x) is rational.



466

Proof. The equation (3.5) is an immediate consequence of (3.2) and (1.1) and of
the assumption that " is a subpartition of £. Let x € X(¢'). Then, by (3.5) and (2.1),
also x € X(&). Let, on the other hand, x € X(%), and (Z. x) be rational. Then, by
Definition 1,

Z x; 2 v(K)
ieK
for all K e i, as A is a subpartition of %. This inequality, and the equality
(3.5) imply, that
> x;=vK) forall Keuxt,
ieK
and, .consequently, x e X(A'). If (A", x) is not rational, then there exists ¢ € K,
such that # is a subpartition of #" and

(3,7) o(J) < X x; forsome Je 4.
isi

But, (3.7) contradicts the assumption of rationality of (Z, x), because # is also
a subpartition of %. It means that (4", x) is rational.

4. SAFE COALITION STRUCTURES

This section of the presented paper includes some auxiliary relations on the class
K of all admissible coalition structures. Our aim in this section is to define, under
which assumptions a given coalition structure can be endangered by some group
of other coalition structures, and when it has a possibility to stave off this endanger-
ment.

Definition 3. Let 27 e K, and let M = K_; be a class of coalition structures. Then
we say that A" is safety against M and we write & o M iff there exists x € X(.¢")
such that (", x) is rational configuration, and

Y x;zoM) forall Mel.#.

ieM MeM

If % is not safety against some class M < K., then we write 4 non o M,

Remark 4.1.

1. if e K, M < K, then exactly one of the relations # ¢ M and 4 nonc M
is true;

2. if A’ e K — K¢ then there exists #" e K¢f such that " non 6 {#'};

3. if ¥ eK, Mc N < K, then 4 o N implics 4" ¢ M;



4. if (j,, ..., j,) is an arbitrary permutation of indices (1, ..., n), if # €K and
{A . ... H,} < K, then
H o {Ay, ..., &} if and only if
Ho{H .. A
S.if# eK, M < Ky, # €M, then
A o Mifandonlyif £ o (M { #}), and
A o Mifandonlyif & o (M {£}).

Lemma 4.1. Let %" € K, and let O < K, be the empty class of coalition structures.
Then # o O if and only if # e K.

Proof. By Definition 3. # ¢ O if and only if there exists x € X(¢') such that
(A, x) is rational. This is equivalent with the effectivity from below of #".

Now, when the auxiliary relation was introduced, we can investigate the gradual
mutations of coalition structures, during the bargaining process.

5. STABILITY OF COALITION STRUCTURES

In this part a method is given, which enables us to define the bargaining solu-
tion on the class of coalition structures. It enables us to find out the resulting struc-
tures. The following Definition 4 describes, which coalition structures can break
a formed coalitions.

Generally, the coalition structures, which appear during the bargaining process,
can be broken and substituted by some other ones. Some of them are able to reappear,
sooner or later, after any such removal. This ability may be understood as certain
kind of dynamic stability. The strongest possible state of the bargaining is such, in
which the formed coalition structure can not be substituted by any other coalition
structure. Both cases of stability, the strong one and the dynamic one, are investigated
in this section, and, for some special cases of coalition structures, also in following
two parts of this paper.

Definition 4. A mapping 4 from K into the family of subclasses of the class K.
such that for any # e K

(5.1)  A(H) = { M e K for some M < K " 6 M and X nono (MU [})}

is called a domination structure in the game I'.

Remark 5.1. The previous Definition implies immediately that for any # € K
is A(#") = K. and for any " € K — K is A(A") = 0.

Lemma 5.1. Let .#" € K. Then 4(#") = 0 if and only if 2" o K.
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Proof. It is an immediate consequence of Definition 4 that 4(#") = 0 il and
only if # o M for all M < K. It means that the implication A(f) =0=Hc K,
is true. On the other hand, if # o K, then, by Remark 4.1 (statement 3), also
A o M for any M < K, and A(4) = 0.

Corollary. Let # € K. Then 4(#") = @ if and only if there exists x & X(#") such
that
Y x;z oK) forall Ke U £.
iek ZeKet
After this introduction of the domination structure and its elementary properties,
we are going to investigate the stability of coalition structures. In the following
Definition we introduce the general concept of stability, which has dynamic character.

Definition 5. Let #" € K. We say that " is stable, iff for any set {4\, ..., #,) < K
such that
Ay eMAY, H,edMA,_), r=2..,n,

there exists a set { &, ..., £,,} < K, such that
LA, LeML )., s=2,...m, HeAZL,).
The symbol § denotes the class of all stable coalition structures in the given game.
Remark 5.2. It is an immediate consequence of the previous Definition and of

Remark 5.1 that
Sc K,
AA)=0=>AecS, forany #eK.

The just defined stability of coalition structures can be interpreted as the “dynamic
stability”’, mentioned in the introductory paragraphs of this section. It is obvious
that the “strong stability””, mentioned also in the introductory paragraphs, was
already defined. This kind of stability is represented by the coalition structures, for
which the value of domination structure is empty. By Remark 5.2, the “strong
stability”” is a special case of the “dynamic stability”. Their further properties are
described by the following statements.

Lemma 5.2. Let &, ¥ ¢ K, # €S, and £ € A(X). Then £ € S.
Proof. If # ¢S then there exists a set {47y, ..., #,} = K such that
(5.2) A e ML), H,edH ), r=2,...n,
and there is no set {Ji/,,ﬂ, v K} = Kip such that

(5.3) H,oeMA,_y), r=n+1,....m LedlH,).



It means that there exists a set { &, ", ..., #,} such that & € (") and (5.2) is true,
and there is no {A#', 1, ..., A} such that (5.3) would be true and %" € A(A,,).
Hence, .4 ¢ §, what contradicts the assumptions of Lemma.

Lemma 5.3. Let /. X e K, # € A(¥), A(o4) = 0. Then £ ¢ S.

Proof. As 4(.#") = 0, there does not exist any set { £y, ..., &} in K, 4y e A(o),
H e dA,_)), r=2 .0 LeAX,).

Lemma 5.4. Let #, # € K., and let

(5.4) PECENOL

Then o € A( 7).

Proof. For any x € X(#) there exists K € #" such that

U(K) > Z X;.

icK

Consequently, # nonc ,‘/} and by Lemma 4.1, # ¢ O, where O is empty class
of coalition structures. It means that # e A(#).

Corollary. If 7. # €K, 4(4) =0, and (5.4) is true, then 7 ¢S, as follows
from Lemmas 5.3 and 5.4.

Lemma 5.5. Let %" € K, A(#") = 9. Then

S uK) =max{Y o(J): £ ey} =max{) o(J): FekK}.
Ked' Jey fey

Proof. By the previous Lemma 5.4, 4(#7) = 0 implies that for all 7 e K., the
relation (5.4) is true. It is an immediate consequence of Definition 2 that

max{ Y o(J): FeKE =max{Y vo(J): FeK,}.
Jcg Jex

Corollary. If 4(.#) = 0 for some .# € K then for any # €S is
Y oK) =max{y o(J): FeK,},
Kex Jey

as follows from Lemmas 5.3, 5.4 and 5.5.

Theorem 5.1. There exists at least one effective and stable coalition structure in any
coalition-game; i.e.

Sr\KS#O.

469
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Proof. Let us introduce a binary relation & on the class K in the following way:
For any 4", A" € K we write
A S A

iff there exists a set { A", ..., #,} < K such that
HyedA), Hoed(H,-), r=2....n HedX,)

and there is no set {&,. ..., &,} = K such that
LieMH), LedL, )., s=2,...m, A edZL,).

Such relation & is a partial ordering on the finite set K, and it is antisymetrical, anti-
reflexive, and transitive. Consequently, there exists at least one maximal element
in K, according to the partial- ordering 8, and any coalition structure is maximal
according to §, if and only if it is stable, i.e.

S = {# e K: .4 is maximal element in K according to 8} < K,

Let us choose " e §. If .# is effective, then the desired stable and effective coalition
structure is found. If .# € K., — K°f then there exists, by Lemma 5.4 and by Defini-
tion 2, at least one

N eKEn AH).

By Lemma 5.1, also A" € §, and in this case, A7 is the desired coalition structure.

Theorem 5.2. If there exists at least one coalition structure # € K with empty
value of domination structure 4, then the domination structure is empty for all,
and exactly all, stable coalition structures; in symbols, if 4(#7) = 0 for some X € K,
then

S={eK: AM)=0}.

Proof. Let A(#) = 0. Then, by Lemma 5.1, #" o K. It means that there exists
x € X(A") such that

(5.5) Yox;zo(J) forall Je{M: Me.#, #eKy}.

ied
If . € S then, by Lemmas 5.4 and 5.5,

Y o(M) = 3 oK) = ¥ x;,

Medl Kext® iel

as A ¢ A(.#), by Lemma 5.3. Moreover, (5.5) implies that

Yx; 2 o(M) forall Me.#, M €S,
ih



so that
Y x;=oM) forall Me.l, #€eS.

ieM
Consequently, x € X(.#), and, because of (5.5), 4(.#) = 0 for all .# € S, by Lemma
5.3 and its Corollary. On the other hand, if 4(#) = 0 for some & €K then £ S
(c.f. Remark 5.2).

The just proved Theorem 5.2 provokes a question, whether the class § is different
from K, (or Kgf), when A(2¢") + @ for all 2" e K. If it were so, then it would have
no sense to define § as a special notion, and we could operate with the classes K,
and {# eK:A4(X) = Q)} only. The following Example shows that S is generally
different from K, even from K&,

Example. Let I'= (/, K, ») be a coalition-game. Let = {1, 2, 3,4}, K containes all a priori
possible partitions of the set /, and v be the following one:

v{ip) = w{ij}) =0 forall ijel, i+j

w({i,j, k) = vy =1 forall ij kel i=+j4k

We denote the coalition structures

Ay = {{]} {2] {31‘6 {4}} Ag = {{3]~ {] 2) \4“
Ay = {1} {23} {4}} Ho ={{3}, {1.2,4}}
USURET A= {4 {1 2.3]
{0 35 {24 Hip = {12}, {3.4)]
75 = {1} {234} //11*“] 3 {2, 4}}

1
5
RUBINE e (e
ORI Tis ={{1 23, 4}
I 1
L s

Then it can be simply verified, that
K= K- {‘[15} ’

KSE = {5, H g, g, Ay F

o
1or H s A iz Hige Higg

AA5) = A g Ky )
A(A ) = {f& Ao Hy 1} ’

AA ) = (g g F10)

A ) = {5, K5, Ao},

AH ) = AH 3) = AH ) = {5, X, H 10, H )
Consequently, 4(X) + @ for all " € K, and

S= (A, Mg, 10 X1} F+ Ky K =S

471
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It is possible to introduce some further properties of the class S, namely some
relations between § and K — S.

Theorem 5.3. Let S be the class of stable coalition structures, let K = S, and let

x=min{Y o(K): # €S}, B=max{) o(K): ¥ eK;—S}.
Kex® Kext N
Then
=
Proof. Lemma 5.4 implies that for #" € § and & € K¢, for which

Y o(L) > 3 oK),

Ley Kext”

efr

also # € S. It means that

£ =) oK)

Kext”

for all 4 & § and, consequently, o = f.

Theorem 5.4. Let .4 be such a partition of the set I, that for any # e K, J is
a subpartition of . If .# is admissible coalition structure, .# € K, then

AF) =0 IS KT,

and if " e K is such that

D o(J) =3 v(K)

Jer Ko
then % is stable if an only if A(#") = 0, and A(#") = 9 if and only if # €S.
Proof. If # € K" then for all %" e K., is

(5.6) Z v(J) = Z v(K) s
Jes Kex
and for any x € X(f) is

Yx;=0vK) forall Ke{M:Me.d. #eK,}.
ek
It means that .# o K., and by Lemma 5.1, 4(.#) = 0. On the other hand, let J is not
effective from above. Then, by Remark 5.1, there exists .# € K¢f such that ./# e A(.#).
If £ eK,and M = K then the relation % ¢ M implies & o (M U {#}), as for any
x € X(&) such that (Z, x) is rational*
Zx,. 2 o(J) forall Jes,
ieJ
when # is a subpartition of #. Consequently, .# ¢ A(%) for any & € K. This
implies that # ¢S, if # ¢ K" The implication 4(#) = 0= # €S follows from
Definition 5, or from Remark 5.2, immediately. We have already proved that



FeS=IeK" = A(F) = 0= 7S, what finishes the proof of the first statement
of Theorem. Now, let # €K and let (5.6) be true. Then X(#) = X(#). If F € §
then 4(#) = 0, and # o K., by Lemma 5.1. It means that the x € X(.#), which fulfil
the requirements of Definition 3 for the relation # o K, belong also to the set
X(), and they are sufficient even for the validity conditions of the relation A o K.
Because o o K, implies that 4() = 0, we have proved

(5.7) FeS=ANA)=0=>A¢€S.

On the other hand, if .# ¢ S then, by the first statement of this Theorem, . ¢ Kf;
there exists & € K ¢ such that

Yo(L)> 3 o)) =¥ oK),

Lew Jes Jex
and, by Lemma 5.4, & € A(X'), A(A') + . But, it is possible to prove, analogously
to the method, used in the first part of this proof, that for any .4 € K, A" ¢ A(A4),
so that " ¢ S. Consequently,

(5.8) I ES=> M)+ 0= A ¢S,

The implications (5.7) and (5.8) imply the validity of the latter statement of the
proved Theorem.

In this section, we have introduced the class S, which contains all stable coalition
structures, and which has properties, described in the previous statements.

When we consider all possible transitions from one coalition structure to another
one, during the bargaining process, we sec that they can be distributed into two
groups.

One of them includes such situations, in which some coalitions in the original
coalition structure were broken. These situations have, generally, rahter antago-
nistic character — they can come true against the interestes and wishes of some
groups of players. They represent the real conflict in the bargaining process.

The other group of transitions includes the situations, in which only some groups
of small coalitions were unified into larger coalitions. Formally, some coalition
structure from K, — K& was substituted by another one from K¢f. These transitions
may be realized without lost of profit for any player, and with growth of profit for
at least some of them. We may expect that they will be realized as soon as possible,
and that the coalition structures, in which such transitions are possible, will not
occur among the results of rational bargaining.

It enables us to introduce the Bargaining Solution on the class of all coalition
structures.

The Bargaining Solution on the class of all coalition structures is the class of
all stable and effective coalition structures in the given coalition-game. i.e. the class

(5.9) SAKE.

473
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We have proved in this section that the Bargaining Solution on the class of all
coalition structures is always non-empty and that it is equal to the class

{AHeK:AX) =10},

if and only if that class is non-empty.

Moreover, this Bargaining Solution on the class of all coalition structures is
satisfactory also from the point of view of demands, which may be iniuitevely putted
on the properties of expected result of bargaining in coalition-games.

6. EFFECTIVE SUBPARTITIONS

This section is devoted to a special relation between coalition structures, namely
to the relation between a coalition structure and its subpartition, if they both are
effective.

In the whole following section we suppose that

(6.1) A eKE, ZLeKE, and A isa subpartition of £ .

This situation was already mentioned in Lemma 3.4, and the relation between
a coalition structure and its subpartition, without the effectivity assumption, was
investigated also in Lemmas 3.2 and 3.3 If such a pair of coalition structures appears
in some coalition-game, the procedure of finding out the Bargaining Solution on the
class of all coalition structures can be simplified, namely if some of them belongs
to the Solution.

Lemma 6.1. Let (6.1) be fulfilled for some #', Z €K, and let M = K, .# € K.
Then

Ms(Mul{x))=dcMu{x,2}),
Lo M=AcM,
Ho(Mu{Z) <A oM, and
Lo(Mu{x))eLcM.

Proof. Let # €K and # o (Mu {o'}). Then, by Lemma 4.1, .# € K¢, and
there exists x € X(.#) such that (., x) is rational, and '

(6.2) S Yx; = (J) forall Jex v(UF).
ieJ JeM

Hence,

(6.3) Y x; = oK) forall Kex .
ieK



By Lemma 3.4 and by (6.3), 475

Yx;z Y ofK)=oL) forall Le%Z.
ieL Ket' KL

Consequently, (6.2) is true also for all

Jex vz u(Ug),
JeM

and #/ o (MU {x,Z}).
The second statement, & ¢ M = # o M, is an immediate consequence of Defi-
nition 3, assumption (6.]), and of the second part of Lemma 3.4.
Let # o M. Then there exists x € X(.), for which the requirements of Definition 3
are fulfilled. By Lemma 3.4, also

Yx;= Y oK)=0L) forany LeZ,

ieL KeX . KeL

and x is also the imputation, for which the conditions of the relation 2" o (M U {Z})
are secured. The implication

HoM= A c(Mu{ZL})

is proved and the opposite implication follows from Remark 4.1 (part 3). Let & o M,
and let y € X(.#) be the imputation, for which the requirements of Definition 3 for
the relation % ¢ M are fulfilled. Because of the rationality of (&, y) and of the
validity of (6.1),

Yy;z oK) forall Kex,

ieK

it means that
EGMﬁ_‘ZG(MU{‘Y})ﬁf/GM,

where the latter implication follows from Remark 4.1.

Corollary. The last two statements of the previous Lemma imply that for any "
and & satisfying (6.1) is

HEAL) and L ¢AH).
Lemma 6.2. Let &7, & € K fulfil (6.1), let M < K, and let
NZL) = {FeKy: 7 isasubpartition of £} .
Then Lo (&), and LoM= Lo(J(L)vM) <A o(J(Z)vM).
Proof. According to Remark 3.2, % € K., ifl there exitsts x € X(%) such that

Yx;zo(J) forall fe)(£), Jeg.
ier
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Consequently, % € K, implies £ ¢ J(£). Let & ¢ M. Then there exists x € X(£),
such that (%, x) is rational, and

(6.4) Y x;zo(M) forall Me.i, #eM.

ieM
1t is equivalent with the statement that (6.4) is true for all M e M U J(Z), and that
(6.5) ZPo(Muj(2)).
If (6.5) is true then, by Lemma 61 also
(6.6) H o (MUJL).

The relation (6.6) means that there exists x € X(#") such that (£, x) is rational, and
(6.4) is true for all M € M U J(). Then, according to Lemma 3.4, is x € X(&) and
(2, x) is also rational. It means that % ¢ M. Summing up the proved implications,
we obtain

FoM=Lo(MUJ(L)=> A c(MUJL)= LM,

and the statement of Lemma is proved.

Corollary. Let (6.1) be true for some ", LeK, let M < K, and let (&) =
= {FeK;: # is a subpartition of £}. If # 6 M and & non o M then there
exists a class | < J(Z), J + 0, such that # nonc (M n J).

Lemma 6.3. If for #", & € K (6.1) is true then 4{#") > A(Z).
Proof. Let .# € A(#). It means that there exists M < K, and
(6.7) Z£oM and Znono(Mu{#}).

By Lemma 6.1, also # oM. If # nono(Mu {.#]}) then #ed(x). if
A o(Mu{#}) and (6.7) is true then, by Lemma 6.2 and its Corollary, there
exists J <= K, J # 9, such that

(6.8) A nonc(Mu Ju {#}).

1t is possiblc to choose J in such a way that | = J(Z). Then
Hs(Mu)),

and (6.8) is true. It means that .# € A('), and A(L) < A(X).

Lemma 6.4. Let (6.1) be true for some 4", £ € K, and let .# € K. Then £ € A(4)
implies " € A(4).



Proof. Let & € A(.#), and let M < K¢ be such that 4/ ¢ M and 4 nonc (MU
v {Z}). Then # nono (M {'}), because

Ho(Mu{d)=>do(Mul{x}ulg)=4dc(MuiP}),
according to Lemma 6.1 and Remark 4.1. Conscquently, 4" € 4(A4).

Theorem 6.1. Let 4, % e K be effective coalition structures, and let 4 be
a subpartition of .Z. Then .#" is stable if . is stable, and the value of domination
structure for 4 is empty if and only if the value of domination structare for £ is
empty; in symbols,

PeS=HeS§,

AL)=0=4a(x)=9.

Proof. Before proving the statement of Theorem, we prove the following auxiliary
property of non-rational configurations.

Let xe X(%#), and let (&, x) be non-rational. Then there exists .# ¢ K and
M e 4 such that .# is a subpartition of % and

g}xi < o(M).

By Definition 1, we can choose # € K and J € # such that ¢ is a subpartition

of &, and

Yox; < o(J).

ied
If ¥ was chosen in such a way that # € K_, then the problem is solved. Let # e K —
~ K. Then we can construct #* e K such that J e #*, #* is a subpartition of ¢,
and for any A" € K, where J € A7, A" is not a subpartition of #* If #* ¢ K, then
we choose y € X(,#*) such that y; > x; for all ieJ. As #*¢ K, (#% y) is not
rational, and we can repeat the described procrdure. It means that there exists
47 e K. and N e A" such that A" is a subpartition of #* and

oN) > 3y

ieN
where N must be a subset of J. If A" was chosen in such a way that 4" € K, then
the problem is solved. If # e K — K, we repeat the described procedure as long
as we necessarily reach, after finite number of steps, a coalition structure 4 € K
and a coalition M € / such that M < N < J, . is a subpartition of 4 (and
of 7, too),
o(M) >3y > Y %,

ieM ieM

and ./ is effective from below, .# € K.
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The auxiliary statement is proved, and we may start the proof of the Theorem.
Let & &S and let A(Z) + . Then there exists a set {#y, ..., #,} < K, such that

Mo ML), MoeAM, ), r=2..n.

By Lemma 6.3, also .#, € A(). Because £ € S, there exists a Set { M sy, ... M}
< K, such that

Moedd,y), r=n+1..,p, JeA(Jl,,).

By Lemma 6.4 also 2" € A(.#,,). Let us consider an arbitrary set {471, ... #'u} © Koy
such that

(6.9) NieMH), NedN—y), s=2,...,m.
Then there may be constructed a set
L= {8, My, Mysrs .oy My Ky N (o N}

Because £ € S, the existence of the set L implies that there exists a set {1, .-
ou N} = Ko, such that

MM ), s=m+1,...q, LeAH,).

By Lemma 6.4, also J{GA(JV‘]). Because of the general validity of the previous
consideration for all sets {47y, ..., #",} = K with the property (6.9), the coalition
structure ¢ is stable. This proved the first statement of the Theorem, for £ €S,
A(2) + 0.

Let A(Z) = 0. Then £ o K¢, by Lemma 5.3, and " o K., as follows from Lemma
6.1. Hence, also 4(#") = 0, # € S.

Let A(#) = 0. Then o o K. It means that there exists x € X(#") such that
(o, x) is rational, and

(6.10) Yx;zoJ) forall Je{M:Med, h K}
ied

By Lemma 3.4, x € X(&), and (6.10) is going on. It means that the relation £ o K¢
is true, if (%, x) is rational. Let us suppose that (£, x) is non-rational. Then, by the
auxiliary statement, proved in the first part of this proof, there exists .4 € K¢ and
M e # such that

Yox; < o(M).

ieM
It is in contradiction with (6.10). Hence (%, x) is rational, and % o K. Consequently,
by Lemma 5.3, A(Z) = 0.

Besides the just proved Theorem 6.1, we may use another methods for the verifica-

tion, whether X~ and %, satisfying (6.1) are stable or not. The following Remarks
represent two equivalent formulations of one such method.



Remark 6.1. Let ', % € K satisfy (6.1). If there exists .# € S such that & e 4(.#),
then also # €S and # eS§. If there exists & € K — § such that A& e 4(Z) then
also £ ¢S and A4 ¢ S, as follows from Lemma 5.2.

Remark 6.2. Let (6.1) be true for some 4, & € K. Let
o=min{) o(M):.#eS},
Mew

B=max{Y o(M): .#ecK,— S},

Me#t
u=y oK)= vL) (cf. Lemma 3.4).
Kext" Le%
Then, by Theorem 5.3, p > « implies # €S and # €S, and p < f§ implies £ ¢ §
and A ¢ S.

7. STRICTLY BOUNDED COOPERATION

The bargaining model, and especially the Bargaining Solution on the class of all
coalition structures, are very simple for a special kind of coalition-games.

Let I' = (I, K, ») be a coalition-game. We say that I' is a game with strictly
bounded cooperation, iff for any pair of coalition structures 4, ¥ € K, A4 is a sub-
partition of & or £ is a subpartition of %"

For such games Theorem 5.4 can be always applied, and, moreover, the following
simple results can be obtained.

Lemma 7.1. Let " € K¢ be such that for any ¢ e K, is # a subpartition of .
Then 4(X) = 0.
Proof. It follows from Definition 2 that # e KL, The condition # € K ; means,

by Remark 3.2, that there exists x € X() such that for any # €K where # is
a subpartition of ', and for any J e ¢, is

v(]) < %xi .

It means, by assumptions, that # o K, and, by Lemma 5.3, A(Ji”) =0.

Theorem 7.1. In any game with strictly bounded cooperation always exists a co-
alition structure with empty value of its domination structure 4. Moreover, in such
games, any coalition structure is effective from below, and it is effective from above
if and only if it is stable. In symbols, K. = K, {#" e K: 4(¢") = 0} + 0,

(7)) S=Kf={x :xgyv(K) glév(J), forall geK} = {H eK:A(A)=0}.
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Proof. Let Ay, A5, ..., A, be all coalition structures in K, K = {f,, oo Kby
ordered in such a way that forany r = 1, ..., m — 1 the coalition structures ¢, , ...
..., A, are subpartitions of &, and there is no %" € K which would be a subpartition
of A, It is an immediate consequence of (1.1) that &, € K for all r = 1, ..., m.
We define the sets

XS-’) = X()ifr) >
XO ={xeX():Y x;, 2 oK) forall Kel) A},
iek p=r
for all » = 1,...,m, s=r + 1,..., m. The condition {1.1) implies that X = @
for all  and s. Consequently, by Remark 3.2, 4, e K forr =1,..., m,and K; = K.
1t follows from Definition 2 that ", e K¢. It implies that 4", o K¢, as X # 0.
According to Lemma 5.3, 4(#,) = 0. It implies, by Theorem 5.2, that § = {# e K :
1 4(H) = 0} If for some A" € K
¥ oK) < ¥ o(K).
KeX KeX'y
then . ¢ K&, and 4(#) # 0, as follows from Remark 5.1. By Lemma 5.2 also
A ¢ S. 1t means that (7.1) is proved.

8. STABILITY OF CONFIGURATIONS

The Sth section of this paper was devoted to the description of the Bargaining
Solution on the class of all coalition structures, which was defined in the last para-
graphs of that section. The Bargaining Solution on the class of all coalition structures
depends, by means of Definition 3, on the sets of imputations, corresponding to
coalition structures. In this section we introduce some notions and statements,
necessary for the description of general Bargaining Solution, including also the
imputations, respectively the configurations. The concept of the general Bargaining
Solution is specified and discussed in the next section and some its special properties
are investigated also in the remaining sections of the presented work.

It is obvious that even for the coalition structures, belonging to the Bargaining
Solution on the class of all coalition structures, i.e. to the class

SNK,
some of their imputations are more suitable to act as a final result of bargaining, and
some of their imputations are less suitable, or quite unconvenient to this purpose.

Definition 6. We say that the configuration (A", x), " € K, x € X(X), is stable, iff
HeKinS,

(4, x) is rational,



Y x; < o(M) forsome Me{J:Je 7, FekKy}

ieM

then there exists .# € A(A") such that M e .4

Theorem 8.1. If .4 is a stable and effective coalition structure, i.c.
A eSnKE,

then there exists an imputation x € X() such that the configuration (A7, x) is
stable.

Proof. Let # be an arbitrary, fixed coalition structure from S, where S +
by Theorem 5.1. Let us denote for any M < K the set of imputations

Y(#) = {xe X(A&): (A, X) is rational, and ¥ x; = o(K)

ieK
JorallKe{M: :Me.i, #<cM}}.

It is an immediate consequence of Definition 3 that

Y(H) £ 0= A M,
and that
Yi( ) %0

for at least one M < K, (e.g. for empty class), because # € § = K¢ (c.f. Remark
5.2). Let us choose some # € K ; and M < K, such that

Yl H) £ 0.
Then

Ymoi{H) < Y.
If

Yimopn(#) = 0

then # € A(), and # €S, by Lemma 5.4.

There are two possibilities for the coalition structure .#". Either
YM(,‘YK') + @ evenfor M=K,
or there exists L < K,; such that
Y(#)y=0.
In the former case A4(#") = @, by Lemma 5.1, and (%", x) is obviously stable for any

xe YK;((’%/) N
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In the latter case we can choose at least one (but. generally, not only one) class
M < K, for which
Ym(H) =0,

and
Yamogn(#) =0 forany feK,— M.

It means that for any FeK; — M is /eA(f). and, consequently, for any
xeYu(A)+0

the configuration (J{, x) fulfills the last two conditions of Definition 3. Because
of the general validity of the previous consideration for all # € S, it is also true for
all coalition structures being stable and effective. Consequently, for any

A eSnKE

there exists x € X(#) such that the configuration (¢, x) is stable.
We shall introduce a new symbol. For any %" € K we denote the set of imputations

(8.1) XHH) = {xeX(A): (A, x) is stable} .
Remark 8.1. Tt is an immediate consequence of Definition 6 and the previous
Theorem 8.1 that for any #" € K

X¥H)+ 0« A eSnK,

and consequently,

(8.2) Uxs() =1,USX*(9{)= U XH)= U X%x).

HeKerot He§SnKfep

Remark 8.2. Definitions 1 and 6 imply that for any # € § n K<

(8.3) X)) = {xeX(AH):Y x; = oK) forall KeU(H)},
ek

where

(8.4) WAH)={K:KeLeKi=LeK;— AH)}.0

U {J:Je g for some # €K, £ isasubpartition of A} .

Lemma 8.1. The set X*(¢") is convex for any # e K.

Proof. Let 2 € K, let k be the number of elements (coalitions) in A, and let n
be the number of all players on the set I. Then X(") is an (n — k)-dimensional



subspace of the n-dimensional Euclidian space (c.f. Section 2). If " ¢ § n K then
X*(A) is empty. If # € § () K¢, then

XHH) = {xeX(A): Y x; = o(K) for all K e A(A')} .
ieK
where (") is given by (8.4). It means that X*(") is a subset of the Euclidian sub-
space X(A'), restricted by finite many linear inequalities. Consequently, it is a convex
subset of X(X).

Lemma 8.2. If the coalition structure &, = {{i}},, containing exactly all one-
element coalitions, is admissible in the considered game I' = (I, K, v), i.e. if # 7y e K,
then for any " € K the set X*(¢') is a compact convex subset of an Euclidian space.

ef?
the set X*(of) is given by (8.3) and (8.4). For all iel the coalition {i} € (A"
(cf. (8.4)). Hence, X*(#') is a bounded subset of (n — k)-dimensional subspace
X(#) of the n-diraensional Euclidian space, (where n is the number of players in I
and k is the number of coalitions in ), restricted by finite many linear inequalities,
among which are also the inequalities

Proof. For any # ¢ S n K¢, the set X*(#') is empty, and for any # € § n K¢f

x; 2 o({i}) forail iel.

Moreover, the form of inequalities implies that the set X*(#") is closed (as the in-
equalities are not strict). Consequently, X*(#") isa compact and covex subset of X(#").

Lemma 8.2. Let #7, & € K be such that 4(4) = A(Z) = 0. Then

X*(A) = X¥H(2).
Proof. By Lemma 5.5,

> oK) = ¥ o(L).

Ket i
Lemma 5.1 implies that #" o K¢ and % o K,;. Let x € X*('). Then

(8.5) ;x,- zo(J) forall JelM:Med, . #eKy}.

It means that also

2 Xi

ieL

v

o(L) forall Les,

and, consequently,

(8.6) 3 x

ieL

o(L) forall LeZ,

since

SoK)=Yx =% TxzY (i),

Kex iel Le# ieL
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The equality (8.6) implies that x € X(#), and, as (8.5) is true, also x e X¥(2).
Hence, x € X*(#") implies x € X*(%). The same procedure proves that x € X*{.%)
implies x € X*(X).

Theorem 8.2. If there exists at least one coalition structure #° with empty value
of domination structure, A(th) = 0, then

(8.7) UX¥l)= U XHt) = N XHi) = XHA)

AeK MeSnKege! HeS
for all " € K, and the set (8.7) is a convex set.
If for all # e K is A(#") + @ then the set

U x(x)

HeK

is a union of finite many convex sets.

Proof. Let &, # e Kand let 4(#") = A(%) = 0. Then, by Lemma 8.3, X*(#') =
= X*(£). Let us denote

B={#:HeKAx)=0}.
According to Theorem 5.2 and Remark 5.1,
(8.8) B=SnK!=S<B+0.
Consequently,

(89) U X*(#t) = U XHA) = N X¥(t) = XH(A)

AeB J#eB
forall A eS=B.

The relations (8.8) and (8.9) prove the relation (8.7). Lemma 8.1 implies that the sey
(8.9) is a convex set. If B = § then the sct

U X*(A)

KeK

is a union of finite many sets X*(), which are convex, by Lemma 8.1.

Corollary. Let the coalition structure 4, = {{i}},.;, belongs to the class K, ang
let n be the number of players in the set I. Then Theorem 8.2 and Lemma 8.2 imply,
that

U X*(x)

HeK



is a union of finite many convex compact sets in n-dimensional Euclidian space; if,
moreover, there exists %" € K with 4(#") = 0 then the set

U X*() = ) X¥()

Hek HeS

Is a convex compact set in n-dimensional Euclidian space.

Remark 8.3. If {.#" : 4 e K. A(#) = 0} + 0 then the set

UXHH) = N XHA)
HeK AeS
is a subset of (n — Z)-dimensional subspace of n-dimensional Euclidian space,
where n is the number of players in I, and 1 is the number of coalitions in the set
{L:Le %, ZeK 4(£) =0}, as follows from (8.6) forall £ €S, Le &.

We have specified the properties of imputations, which may occur among possible
results of bargaining, and we are able to formulate the complete and general Bargaining
Solution.

9. THE BARGAINING SOLUTION

The concept of the Bargaining Solution on the class of all coalition structures
was already introduced in the 5th Section of this paper. Now, we are going to for-
mulate the general Bargaining Solution of the coalition-game, i.e. the Bargaining
Solution on the set of all admissible configurations.

We say that the configuration (7, x), # e K, x € X(A), belongs to the Bargaining
Solution of the coalition-game

I = (l. K, n)

if and only if (9{, x) is stable in the sense of Definition 6.

1t is obvious that the Bargaining Solution, defined in this way, corresponds with
the intuitive idea of an expected bargaining result. The configuration (4", x) belongs
to the Bargaining Solution, if the coalition structure .4 belongs to the Bargaining
Solution on the class of all coalition structures K, if (¢, x) is rational, and if it can
not be broken by any coalition structure (with its imputations) which does not
belong to the value of the domination structure 4 for 2. According to Lemma 5.2,
the last condition means that the configuration (", x), belonging to the Bargaining
Solution, can not be broken by any coalition structure, which is not stable in the
sense of Definition 5.
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10. SOME SPECIAL CASES

The following section contains some special formulations of the general results,
obtained in the 8th Section, which correspond with the special situations in coalition-
-games with strictly bounded cooperation and in games with effective subpartitions
of effective coalition structures.

The coalition-games, in which effective subpartitions of effective coalition struc-
tures exist, were investigated in Section 6. The following Theorem describes the
properties of sets X*(.¢) and X*(') (c.f. (8.1)), if #” and & fulfil the condition (6.1).

Theorem 10.1. Let .7, ,(Z’EK::: be effective coalition structures, such that #" is
a subpartition of Z. Then any imputation x forms a stable configuration with ",
if it forms a stable configuration with .#; in symbols

XH&) c X*(x).
Proof. Theorem 6.1 implies that
ZFeSnKi=>AHeSnKE.
Conscquently, if X*(&) # ¢ then X*(x') + 0, and

XHA) = {xeX(A):Y x; =z (M) forall MeU(X)},
ieM
XHL) = {(xeX(Z): Y x; = o(M) forall MeL),
ieM

where
UA)={J:JefeKi= FeK;— A(X)} v
v {J:Je g for some # € K, £ is asubpartition of A},
MWL) ={J:JefeKi=> geK,— AZL)} U
w{J:Je f forsome g €K, ¢ isasubpartition of £},

(cf. Remark 8.2).
Because £ is a subpartition of &£,

{J:Je 7 for some # K, ¢ isa subpartition of A} <
e {J:Je g for some F €K, ¢ isa subpartition of ¥},

and
{J:JegeK = geK;— AA)} =

clJiJeSek, = FeK,— A2)},



because Lemma 6.3 implies that

Ky — A(ZL) o K — A(KX).
It means that
AAE) = ALY,
and, consequently,
X*(#) < XK.

Also the coalition-games with strictly bounded cooperation were already in-
vestigated, namely in the 7th section of this paper. The stable configurations in
coalition-games with strictly bounded cooperation fulfil the statement of the follow-
ing Theorem.

Theorem 10.2. Let the considered coalition-game I' = (I, K, v) be a game with
strictly bounded cooperation, and let . € K be the coalition structure, for which any
A € K is a subpartition of .#. Then the imputation x forms a stable configuration
with some coalition structure ¢ € K, if and only if x forms a rational configuration
with .#; in symbols

UXHH) = X*¥(M) = {xe X(M) : (M, x) is rational} .
Hek

Proof. Let us denote B = {# € K: A(#") = 0}. Then, by Theorem 7.1,
DEB=S=Ki={A:3vK)zY vo(J)forall FeK}.
Kex' JeF
It means, that .# € B, and, by Theorem 8.2,

U X*(AH) = X¥() .

X*(M) = {(xeX(M):Y x; z o(K) for all K eU(.#)}
ieK
where

Ay =U
HeK
(c.f. Remark 8.2).

It means, by Remark 3.2, that

XH*(.4) =\ xeX(M): (M, x) is rational} .

11. BARGAINING SOLUTION AND CORE

The concept of Core is well-known and often used in the coalition-games theory.
It is interesting for us to verify, if, and how, corresponds our model of bargaining
with that important notion.
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If I' = (I, K, v) is a coalition-game then the Core of the game I is the following
set of imputations

C = {x = (x);: xe X(K) for some ¥ eK, ¥ x;2 oK) for all Ke(Y X} .
ieK HeK
The correspondence between the Core and the Bargaining Solution exists and
it is very strong.

Theorem 11.1. Let I' = (I, K, v) be a coalition-game, let C be the Core of I', and
let us denote by B the class of all coalition structures with empty value of domination
structure 4, B = {o# € K: A(') = 0}. Then the Core is non-empty, if and only
if there exists at least one coalition structure with empty value of domination struc-
ture, and, moreover, any imputation x belongs to the core, if and only if it forms
a stable configuration with some coalition structure from B; in symbols

C=0 iff B=90,
C=NX"A)#0 iff B#0.
HeB

Proof. Let C = 0. Then for any
xel X(x)
Ak
there exists a coalition K € {M : M € .#, ./ € K}, such that
oK) > Y x;.
© ek
It means that there exists a real vector y = (¥,);.x such that

Yyi=0K), ¥y >x; forall ieK.

ieK
In this situation, either Ke{M :Me .4, #eKs}or Ke{M:Me.# for some
MeK} — {M:Me A for some # € K}, and then for any such y = (3;),x there
exists a coalition J € {M : M € .# for some .# € K}, such that J = K

oJ)>Y yi> Y x.

ied ieJ
Consequently, if C = @ then for any
xe U X(X)
HeK

there exists Le {M : M e . for some . € K}, such that
‘ o(L) > 5 x;.
iel
By Lemma 5.1 (and its Corollary), there exists no # € K such that 4(#") = 0.
It means that B = 0.



Let C =+ 0. Then there exists
xel X(A)
HeK
such that
Yx;z oK) forall KeUZ¥ > U £.
iekK ZLeK LeKer
Lemma 5.1 implies that there exists .#" e K such that 4(#") = 0, and, consequently,
B+ 0.
If x e C, then, by the previous step of this proof, there exists # e K such that
(7, x) is stable, so that #" €S = B and x € X*(). According to Theorem 8.2,
x e X*Z) for all £ e L; it means that

C e NXHA).
HeB

If x ¢ C then there exists K € {M : M € .# for some .4 € K}, such that

(11.1) oK) > Y x;.
iek
In the previous part of this proof, we have shown that (11.1) is true also for at least
one Le{M :Me 4 for some 4 € K.}, and by Lemma 5.1 (and its Corollary),
if # eB and xeX() then x ¢ X*(#). It means that C > X*(#"). Theorem 8.2
implies that
CoNXXx).

HeB

CONCLUSIVE COMMENTS

The method, described in this work, enables us to find out the stable coalition
structures and corresponding configurations in the following way.

First of all we construct the sets X(#") for any coalition structure % e K (c.f.
(ZAI)), and then we find all coalition structures, being effective from below, effective
from above, and effective.

Then we find out for any & € K,¢ and for any class M < K — {#}, whether

A oM or A noncM.

After that, we construct the mapping 4, i.e. the sets A()f) for all 4" € K¢, and we
find the classes

S and S~ K,

using Definitions and Theorems, introduced in the 5th Section, respectively also the
Theorems, introduced in the 6th or 7th Section.
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Finally, we find out the set of coalitions (") and the set of imputations X*(#")
(c.f. (8.3) and (8.4)) for any

HeKEnS.
Resuits, obtained by the proposed method include the concept of Core, as their
special case. Moreover, it is not difficult to verify that for 3-persons coalition-games
the results, obtained by this method, correspond with the results, introduced in [3].

The correspondence between our results, i.e. our Bargaining Solution, and the
intuitive idea of the rational bargaining result, was discussed in the Section 9.

(Received November 18, 1972.)
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