
Kybernetika

Radim Jiroušek
An alternative method for construction of optimal sequential questionnaires

Kybernetika, Vol. 17 (1981), No. 4, 287--297

Persistent URL: http://dml.cz/dmlcz/124355

Terms of use:
© Institute of Information Theory and Automation AS CR, 1981

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/124355
http://project.dml.cz


KYBERNETIKA —VOLUME 17 (1981), NUMBER 4 

AN ALTERNATIVE METHOD FOR CONSTRUCTION 
OF OPTIMAL SEQUENTIAL QUESTIONNAIRES 

RADIM JIROUSEK 

The paper presents an alternative procedure for construction of optimal sequential question­
naires. This procedure, based on often used Branch-and-Bound method, may be also used for 
implementation of suboptimal questionnaires when the problem under consideration is too large. 

The sequential questionnaire is a formalized expression of a sequential decision scheme in 
which each test should depend on the results of the previous tests. In the paper the knowledge 
of a decision function which is to be realized is assumed. 

INTRODUCTION 

It has been shown in [5] that a concept of sequential questionnaire can be esta­
blished in the frame of a classical model of statistical decision-making. Conditions 
under which the questionnaire realizing the given decision function exists are also 
given in [5]. From Theorem 3 of that paper follows that without a great loss of 
generality one may consider only finite questionnaires and a finite set of questions. 

A measurable sample, or observation, space (Y <W) (where Y is a set of possible 
observations and <3f is a c-algebra of subsests of the set Y) and a set of decisions Z 
will be considered. Further, let PY be an a posteriori probability distribution defined 
on (Y <W). 

Within this frame, a question is formalized as a partition of the space Y In order 
to simplify some expressions, all questions are supposed to have the same number 
of answers. 

Definition 1. Let a be an integer; a > 1. The question Q = {qk}l=l is a "^-measur­
able partition of Y (qk represent answers). A detector St is the finite set of questions 
-2 — {Qj}f=i> which is assumed to be fixed throughout this paper. 

A cr-algebra generated by the system of all answers 

®a= {{«5}»-i}au 
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will be denoted by the symbol <W£ (since 3 is supposed to be finite, <&'% is an algebra). 
For the purposes of this paper, only ^-measurable decision functions d : Y -> Z 
will be considered. 

Definition 2. The questionnaire is an ordered triplet A = (G, g, h) in which: 

— G is a connected oriented graph with the following properties: 

(i) There is one and only one node M0 in G (it is referred to as the root of the 

questionnaire A) in which no edge terminates. 
(ii) There are starts of exactly a edges in each nonterminal node. 
(iii) All nodes of G distinct from «0 are accessible from M0 by unique path. 

— g is such mapping from the set of all nonterminal nodes of G into the detector 
3 that its restriction to an arbitrary path from G is an injection into 3. 

— h is such mapping from the set of all edges into the system of all answers 38% that 
its restriction to the set of edges starting at u is a bijection into the set of 
answers to the question g(M). 

Vwill denote the set of all nodes of the questionnaire under consideration. Similarly, 
U, W will denote internal, terminal nodes respectively. 

The use of the questionnaire is quite clear. After the question g(u0) has been asked, 
then according to the answer obtained the appropriate son u is selected and the ques­
tion g(u) is asked. This procedure continues until a terminal node is reached. Our 
interest focuses on a questionnaire enabling unique decision after a terminal node 
has been reached (see Definition 4). 

Now, the set h(v) t= Y will be defined for every node v of the questionnaire A. 
The set h(v) will reflect the state of knowledge obtained in the node v. 

For the root M0 of the questionnaire the set h(u0) is defined as h(u0) = Y Consider 
an arbitrary node v 4= M0 of the questipnnaire A = (G, g, h). According to the 
assumption (iii) of the definition of the questionnaire there exists unique path from 
M0 to v. Denote the nodes of this path by 

Then h(v) is defined by 
"o = vo, »i> • • •>«.-= » . 

г-i 
h(v) = П h ( е д + 1 ) . 

k = 0 

The value n(v) = PY(h(v)) is called the probability of attaining the node v. 

The set of all questionnaires is partially ordered by the following relationship: 

Definition 3. Let M0, M0 be roots and V, V be sets of all nodes of questionnaires 
A = (G, g, h), A = G(, g, h) respectively. The questionnaire A is the beginning 
of the questionnaire A (A -< A) if there exists an injection v : V-+ Fwith the following 
properties: 



(i) v(u0) = u0, 

(ii) 8(v(")) = S(M) f° r aH internal nodes u of G, 
(iii) If (uv) is an edge of G then (v(w) v(v)) is an edge of G and h(v(u) v(vj) = h(uv). 

Remark. In this paper A0 will denote a questionnaire with only one node w0 (i.e. 
the root of A0 is simultaneously the terminal node). In this special case the set of 
internal nodes is empty, and it is easy to show that 

A 0 < A 

for any arbitrary questionnaire A. 
The following definition expresses relationship between the questionnaires and 

decision functions. 

Definition 4. The questionnaire A realizes the decision function d if the function d 
is constant on h(w) for all terminal nodes vv of the questionnaire A. 

The questionnaire A realizes almost everywhere (a.e.) the decision function d 
if there exists a decision function d' realized by the questionnaire A and PY{y e Y: 
: d(y) * d'(y)} = 0. 

OPTIMAL1TY CRITERION 

Let d be a ^-measurable decision function which is to be realized by a question­
naire. Denote Td the set of all questionnaires realizing a.e. the function d. The number 
of questionnaires of Td may be estimated by 

A f - l 

a) M-siK-tf-'r-
; = o 

(M is the number of questions). 
Among this large number of questionnaires one may wish to select a questionnaire 

which is optimal from some viewpoint. In this paper, we will take a generalized 
average length as the optimization criterion. 

Let us assume that a positive cost function c is defined on the detector 
c : 3. -• R+ , 

and denote 
cmm = min (c(Qj)). 

lij&M 

Definition 5. The generalized average length of the questionnaire A = (G, g, h) 
is defined by 

L(A) = ^n(u)c(g(u)). 
UEl/ 

The aim is to construct a questionnaire from Td with the lowest possible generalized 
average length. It is obvious that the trivial algorithm examining all possible question­
naires from Td cannot be used because of the inequality (1). 
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For the construction of the optimal questionnaire the Payne-Meisel algorithm ([3]) 
can be used. But this algorithm can be used only for small detectors. This algorithm 
is based on producing a sequence of all Regular Lattices which correspond, in the 
terminology used in this paper, to a system of special subsets of Y. The number 
of sets from this system is equal to 

I^)""" = (« + !)"• 
An alternative algorithm proposed in the presented paper is based on the widely 

used Branch-and-Bound method ([I] , [2]). For reasons of practical applicability 
it is slightly modified. 

Before describing the algorithm some useful properties should be presented. 

PROPERTIES OF THE QUESTIONNAIRES FROM Td 

Assume that A = (G, g, E) e Td and that A = (G, g, h) (not necessarily from Td) 
is the beginning of A, i.e. A -< A. The proposed algorithm takes advantage of the 
relationship between the generalized average length of the questionnaires A and A. 

Let w be a node of the questionnaire A. Define Hd(w) = 0 if n(w) = 0, otherwise 
define 

Hw) = -lP^\w)logPd(z\w), 
zeZ 

where 

Pd(z\w)=^-Py(h(w)0d-\z)), 
•7l(w) 

and 

d-\z) = {yeY:d(y) = z}. 

Theorem 1. If A -< A and A e Td, then 

(2) L(A) ;> 1(A) + fsSs. X>(w)H„(w). 
log a weW 

(if denotes the set of terminal nodes of A.) 
The proof of the theorem is given in [4] and for the average length of a question­

naire (equal to the generalized average length when c(Q) = l) in [5]. 

Theorem 2. A = (G, g, h) realizes a.e. the decision function d iff Hd(w) = 0 for 
all terminal nodes w. 

Proof. Suppose 
(VweW") (Hd(w) = 0) . 
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Then for each w e W 
- £ Pd(z | w) log R,(Z | w) = 0 

zsZ 

or 7i(w) = 0. 
But it is a well-known property of Shannon entropy that the previous sum is eaual 
to 0 iff one of the terms Pd(z | w) is equal to 1 and the others are equal to 0 (recall 
that £ Pd(z | w) = 1). Thus for some z0eZ 

PÁZO N = -7Ц- PҖ») n d-4-0)) = 1 
7l(w) 

and therefore 
PY(h(w) fl d~\z0)) = n(w) = PY(h(w)) . 

But from this follows that d(y) = z0 for y e h(w) a.e. and thus A e Td. 
On the other hand assume that for some terminal node w' Hd(w') > 0 and that 

A e Td. Since A «< A then, according to the preceding theorem, 

1(A) g: 1(A) + -S=!» X Tt(w) Hd(w) ^ 1(A) + i s * -.(„,')#,(*,') > L(A) 
log a wew log a 

which is a contradiction. D 

The last theorem may be used to test questionnaires as to whether or not it realizes 
a.e. function d as the values Hd(w) should be computed for all nodes when constructing 
the questionnaire according to the proposed algorithm. 

Let A = (G, g, h) be a questionnaire which is not from Td. Then there must exist 
a terminal node w in the A from which 

Hd(w) > 0 . 

We want to describe a new questionnaire which arises from A by assigning a question 
Q to the node w and by joining a new terminal nodes connected with w by edges. 
This new questionnaire will be denoted by A(w, Q). Now, a precise definition of this 
questionnaire is presented. 

Definition 6. Let A = (G, g, h) be a questionnaire with a terminal node w and let 
a question Q be assigned to no internal node of the path from the root to w. A(w, Q) = 
= (G', g', h') will denote such questionnaire for which: 
(i) A<A(w,Q), 

(ii) [V| + a = |V'|, 
(iii) v(w) is internal node of A(w, Q), 

(iv) g(v(w)) = Q , 

where |V| and |V ' | are the numbers of nodes of the questionnaires A and A(w, Q) 

respectively, and v is the mapping from the definition of the relationship A -< A(w, Q). 

Assume that A -< A = (G, g, h) e Td and that w is a terminal node of A such that 
Hd(w) > 0. Let v be the mapping from the definition of A -< A. Since Hd(w) = 
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= Hd(v(w)) > 0 (following from the assumption (iii) of Definition 3) the node v(w) 
must be (according to Theorem 2) an internal node of A. Denote Qj = g(v(w)). 
It would be space consuming to present an exact proof, nevertheless, it is obvious 
that 

A(w, Qj) < A . 

Thus we have obtained the following assertion. 

Theorem 3. Let A -< A e Td and w be a terminal node of A such that Hd(w) > 0. 
Then there must exist a question Qi e J such that A(w, Qj) -< A. 

BRANCH-AND-BOUND METHOD 

We are still supposing that Jd denotes the set of all questionnaires realizing a.e. 
the given decision function d and that the function d is ^-measurable for some 
fixed detector J2 = {2,}f=1. 

The fundamental idea of the Branch-and-Bound method is the following one: 
First define, in some way, the partition P^Jj) of the set Td. Then eliminate (if pos­
sible) from P1(J<)) all those subsets x <=. Td about which one may be sure that T does 
not contain an optimal questionnaire. Define a new system P2( Jd) of subsets of Td 

which is a compound of some partition of the remaining subsets from P^Jd). Elimin­
ation of subsets from P'(Jd) and generation of new systems p , + 1(Jd) continues till 
the system P"(Td) (for some n) contains one entry set {A} e P"(Jd) and A is optimal. 

An elimination of subsets from P'(Jd) is made possible by lower an upper bounding 
rules (c.f. [1] and [2]). 

A lower bounding rule is a function 

b : { T : ( 3 n ) ( T e P " ( J d ) ) } ^ R 

with the following properties: 

(LI ) A e x ^ L(A) ^ b(x), 

(L2) H(A}) = L(A). 

An upper bounding rule is a function 

B : {P''(T«)}r=o -> R 

with the following properties: 

( U l ) B(p"(Td)) >= L(AOPT), *) 

(U2) {A}eP"(Jd)=^B(P"(Jd))gI(A). 

*) 2T(AOPT) denotes the generalized average length of an optimal questionnaire. 
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It is obvious that such x e P'(T,j) for which 

b(x) > B(V(Td)) 

contains no optimal questionnaire and therefore may be eliminated from P'(T(). 

In order to be able to define the lower bounding rule in an advantageous manner, 
the systems $'(Td) of subsets of Td are defined to be of a special form; P'(Td) have 
to meet the following condition: 

(Vi) (Vx e (3'-(Td)) (3At) (t = {A : AT < A} n Td). 

Tn this case the lower bounding rule may be defined according to (2) 

6(T) = L ( A T ) + - ^ L y>(w)H d (w) . 
log a WEW. 

The upper bounding rule may be defined 

B(P'(Td))= mm b(x) if 7(p;(Td)) + 0 , 
^J(P'(rd)) 

V(Td)) = CXD if 0(Td) = 0 , 

where 
7(P''(Td)) = {T6P"(T):ATGTd}. 

The chosen special form of subsets T e P'(T,) has another advantage. All subsets T 
from P'(Tj) may be represented only by its characteristic questionnaire AT and the 
whole system P'(Td) may be represented by a state of stack containing a set of question­
naires {AT}rep,(rd). Moreover, when constructing a set x e P'(Td) such that ATeTd, 
then all the other questionnaires from x may be omitted because of 

At < A => L(AT) ^ L(A) . 

Before describing the algorithm step by step, it should be mentioned how the 
branching rule is implemented, i.e. how the partitions of some subset x are defined. 

Let T be a subset of Td with its characteristic questionnaire AT. Next, suppose 
that AT £ Td. If it is not the case, all the other questionnaires, except for AT, should 
be omitted, and thus, T would contain only one questionnaire AT. 

According to Theorem 2 there exists a terminal node w of AT such that Hd(w) > 0. 
Let 3! <=. 2 be a subset of those questions from the detector 3 which are assigned 
to no node on the path from the root to the node w. 3' is nonempty because of 
'Stj-measurability of d and Hd(w) > 0. Denote 

<Q) = {A e T : AT(w, Q) < A} . 

According to Theorem 3 to every questionnaire A e x there exists a question Q e 2! 
such that AT(w, Q) < A and, thus, (x(Q))QeS, is a partition of T. 

293 



ALGORITHM 

From the preceding discussion follows that the algorithm for the construction 
of the optimal questionnaire realizing a.e. the decision function d by the Branch-and-
Bound method may be expressed in the following seven steps. 

(A 1): Set B *- co ; 
Compute t(A0); 

Insert the pair (A0, b(A0)) into the stack; 

(A 2): If the stack is empty go to (A 7); 
Look up and remove the pair (As, b(As)) from the stack with the smallest 
value of !>(AS); 
Set A «- As; 

Set b(A) «- b(As); 

(A 3): If b(A) > B go to (A 2); 
If A $ Td go to (A 4);*) 
Set A *- A ; 

Set B «- b(A); 

Go to (A 2); 
(A 4): Look up the terminal node w of A such that Hd(w) > 0; 

Set J <- 0 ; 
(A 5): Setj*-J + 1; 

If j > M go to (A 2); 

(A 6): If the question Qj is assigned to a node of the path from the root to w go to 

(A 5); 
Construct A(w, Qj); 
Compute b(A(w, Qj)); 
Insert the pair (A(w, Q), b(A(w, Q^)) into the stack; 

Go to (A 5); 

(A 7): Stop. 
The questionnaire A is the optimal questionnaire realizing a.e. the decision 
function d. Its generalized average length is equal to B. 

ADDITIONAL REQUEST 

The previous algorithm has a great disadvantage. Unfortunately, it is possible 
to construct a case when the algorithm works as the trivial one. That simply means 
that all questionnaires from Td must be constructed before the algorithm finishes 
its work. 

*) For testing whether A e Td use Theorem 2. 
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It is very improbable that this case would occur in a practical application. But one 
must take into account that in some applications it might happen that a pretty large 
number of questionnaires will have to be constructed. But only a limited extent of 
the stack is available. For that reason we may want to alter the previous algorithm 
to obtain a new algorithm which would make use of only a limited extent of the stack. 

It is easy to show that there is no possibility to modify the algorithm in the required 
manner without any influence on the results. If we want to have these modifications 
performed, we must permit situation that the algorithm will sometime offer us no 
guarantees that the resulting questionnaire would be the optimal one. 

The requested modifications results in the following adaptable algorithm. 

ADAPTABLE ALGORITHM 

(AD 1): SetB <- ao; 
Set BT<- oo; 
Set N <- available extent of the stack; 
Set k<-\; 
Compute b(A0); 
Insert the pair (A0, b(A0)) on top of the (pushdown) stack; 

(AD 2): If the stack is empty go to (AD 13); 
If there are more than k . N empty cells in the stack go to (AD 3), otherwise 
go to (AD 4); 

(AD 3): Look up the pair (A', b(A')) with the lowest value b(A') in the stack and 
set it on top of the stack; 

(AD 4): Remove the top pair (As, b(As)) from the stack; 
Set A <- As; 
Set b(A) <- b(As); 

(AD 5): If b(A) ^ B go to (AD 2); 
If A (£7, go to (AD 6); 
Set A <- A; 
Set B <- b(A); 
Go to (AD 2); 

(AD 6): Look up the terminal node w of A such that Hd(w) > 0; 
S e t j < - 0 ; 

(AD 7): Setj = j + 1; 
If; > M go to (AD 2); 

(AD 8): If the question Qj is assigned to a node of the path from the root to w 
go to (AD 7); 
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Construct A(w, Qj): 

Compute b(A(w, Qj)); 
Set AD «- A(w, Qj); 
Set b(An) «- fo(A(w, Qj)); 

(AD 9): If b(AD) ^ B go to (AD 7); 
If there is empty cell in the stack go to (AD 12); 
Look up and remove from the stack the pair (As, b(As)) with the highest 

value of b(As),; 

(AD 10): If b(As) 5: B go to (AD 12); 
If A s e J , go to (AD 11); 
Set BT «- b(As); 
Go to (AD 12); 

(AD 11): Set A «- As; 
Set B «- b(As); 

(AD 12): Insert the pair (AD, b(AD)) on top of the stack; 
Go to (AD 7); 

(AD 13): Stop. 
The questionnaire A is a questionnaire realizing a.e. the decision function 
d. Its generalized average length is equal to B. If B ^ -BTthen A is optimal. 

NOTES ON ADAPTABLE ALGORITHM 

In addition to some initialization, the values of the two parameters k and N are 
defined in the step (AD 1) of the previous algorithm. The choice of these values may 
influence the behaviour of the algorithm. 

If the avaliable extent of the stack is sufficient for the given task, then choosing 
k = 0 one can cause the adaptable algorithm to function as the nonadaptable one. 
If the extent of the stack is uncertain as to its sufficiency and, in spite of this fact, 
one wants to construct the optimal questionnaire then it is convenient to choose 
k = 1. In this case the expectancy of obtaining the optimal questionnaire will grow 
but this strategy is rather time consuming. On the other hand, by assigning a small 
value to N(N ^ 2), it is possible to shorten the time required but, of course, simul­
taneously, to make lower the probability of achieving the optimal questionnaire. 

From the practical point of view there may be another reasonable requirement. 
Suppose we have available some amount of computing time and we want to construct 
a questionnaire realizing the given decision function. Naturally, we want to construct 
the optimal questionnaire but, if the specified time is insufficient, we want to obtain 
at least some suboptimal questionnaire. This may be very efficiently accomplished 
by taking advantage of the fact that the value of the constant k may be modified 
during the execution of the algorithm. 
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At the beginning of the algorithm (at the step (AD 1)) it is possible to set k <- 1 
(or some k' < 1 which is close to l) and during the execution of step (AD 5), when 
setting A <- A and B «- b(A), set also k <— 0 (or some nonnegative value close to 0). 
The algorithm modified in this way has a convenient property. Its primary concern 
is to construct any questionnaire from Td. Only after successful accomplishment 
of this mission it will start with looking for the optimal questionnaire. 

So, when the previous algorithm is being programmed, it is advisable to follow 
a strategy that controls the algorithm by assigning different values to constants k 
and At. 

CONCLUSIONS 

An alternative method for the construction of the optimal questionnaire for 
a given decision function has been described. In comparison with the Payne-Meisel 
algorithm both of them have their own advantages: 

The advantages of the Payne-Meisel algorithm: 

(1) The method yields the optimal questionnaire. 
(2) There is a simple way how to estimate the computing time. 

The disadvantage of the Payne-Meisel algorithm: 
(l) An exponential growth of time and space requirements with the number of ques­

tions. 
The advantages of the adaptable Branch-and-Bound method: 

(1) The method is sometimes usable also when Payne-Meisel algorithm is not 
usable for too high time requirement. 

(2) When only suboptimal questionnaire is satisfactory, the method is usable for very 
large problems. 

The disadvantage of the adaptable Branch-and-Bound method: 
(1) The computing time is difficult to estimate. 

(Received January 8, 1981.) 
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