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KYBERNETIKA — VOLUME 24 (1988), NUMBER 1

NORMAL COVARIANCES

JIR[ MICHALEK

The main goal of this paper is to characterize the class of normal covariances for random
processes. This notion generalizes a known weakly stationary case and can be a suitable mathe-
matical tool for describing real random processes which are not weakly stationary.

The notion of a normal covariance was introduced by the author in the paper
[1]. Characterization of normal covariances for random sequences is given in [2].
The class of normal covariances was discovered by studying of locally stationary
covariances which were introduced by Silverman in [3]. The name — normal co-
variances — is based on a close connection with the theory of normal operators
in Hilbert spaces.

Definition 1. Let R(-, -) be a covariance defined in the whole plane R,. The co-

variance R(-, +) is called normal if it can be written in the form
R(s, 1) = [[f2 6060 4dF(A, i), seR,, teR,
where F(+, +) is a two-dimensional distribution function with finite variation.

The class of normal covariances is sufficiently large because every continuous
weakly stationary covariance and every continuous symmetric covariance (for
details see [1]) are normal. Their product is a normal covariance too. Let {Z(s)},
seR,;, be a complex valued random process with everywhere vanishing expected

value and with a normal covariance. Then by use of the Karhunen theorem such
a process can be expressed in the form of a stochastic integral

Z(s) = [[r2 et et ddE(A, p)

understood in the quadratic mean sense where &(+, -} is a plane martingale satisfying

E{f(ip Hl) &2z, )} = F(min (11, 12)a min (.uu .“z))-

Theorem 1. Every normal covariance function is continuous at the whole plane.
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Proof. Let R(+, +) be a normal covariance, let (s, )€ R, be quite arbitrary.
Let hy, h, be real numbers. We must estimate the difference |R(s + i, t+ hy) —
— R(s,8)|. Let z = A + iu, then

IR(s + hy, t + hy) — R(s, )] = | [0 (&7 e *HF — ¢ %) ddF(A, )| =
= |[fX2 e (e — 1) ddF(4, p)| <
< g eCrnrertn i giutu=a) 1| qdF(2, ) = [[15e* " Of (A, u, by, hy) dAF(, p)
where
S by hy) = [ cos ((hy — hy) ) + 1€*™ ™) sin ((hy — hy) p) — 1]

and

lim f(4, u, by, b)) = 0 forevery (I, p)eR,.

T
Further f(4, hy, hy) < 2*™ "™ 1 [ When hy + h, = Oand A = Othen *™ ¥ <
< e?™, if 1 <0 then '™ ™** < 1 (it is possible to consider |h,| <, |h,] < ¢
because of by — 0, h, — 0). In case that #; + h, < 0 the situation is quite analogous.
For every Ae R, and every hy, h, with |h,] <&, [h,| < &

eAstt) gAlhitha) < max (]’ ez(s+z+2p.))
that is an integrable majorant function as we assume the existence of integral
J[2 et luts=0 ddF(4, p) for every (s, ). Using the Lebesgue dominated theorem
we immediately obtain that F(-, +) is continuous at (s, 7). O
Further properties of normal covariances are the following:
1. Forevery (s, 1) e R,
[R(s, )] < (JE2 ¥ dF,(A)2 (f12 e dF ()2 = RY*(s, 5) . RY*(1,1)
where Fy(+) is the first marginal of F(-, +), i.e.
Fy(3) = [I2dF(, p).
2. The function Ry(s) = R(s,s) = {12 e>* dF,(4) is a nonnegative definite kernel
with respect to sum, i.e.
Ry(ty + 1) = [I2 P4 dF,(2)
is a symmetric covariance in (7, 7,) € R,.
3. Similarly, the function Ry(f) = R(t, —f) = [T 2e?" dF,(u), where F,() is the
second marginal of F(-, ~), is a weakly stationary covariance.
4. Without loss of generality, we can put R(O, 0) = 1 that means the function F(-, +)
will be a probability distribution function in the plane.

The following theorem will characterize normal covariances as functions that are
in some sense nonnegative definite.
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Theorem 2. A covariance function R(-, ) defined at the whole plane is normal

if and only if

1) R(0,0) = 1

2) R(-, *) is continuous

3) there exists a function S(+, +) such that for every (s, ) e R, R(s, ) = S(s + 1,5 — ?)
and for every finite collection («;, «, ..., %,) of complex numbers and every
real numbers g, ..., u,, vy, ..., U,

ZZ“‘&J' S(u; + ujv,—0,)z 0.
g

Proof. First, we shall construct a suitable Hilbert space. Let L be the linear set
of all complex valued functions that are everywhere vanishing except a finite number
of points in the plane, i.e. f(+, *)e L if and only if there exist (u;, v;) € Ry, i = 1,2, ...
..., nsuch that f(u;, v;) % Oand f(+, *) = 0 otherwise. We can in L define an Hermite
bilinear form {f, g7, f, g € L by the relation

Sogy=Y Y flu,v)g(x, y) Su + x, 0 — ).

According to our assumption |f[|* = 0 and hence ||-]] is a seminorm in L. Let
h e R, and let us define a shift-operator T, in L in the following way

T f(u,0) = flu ~ h,v — h).

Let Ng = L, Nog = {f: |f|| = 0} and let us consider a factor space L/N,. Then the
bilinear form defined above is a scalar product and ||+ “ is a norm. Let I be a comple-
tion of L{N, with respect the norm to ||-|. Then H is our underlying Hilbert space.
As every T, maps N, into N,, there is a possibility to translate every opcrator T,
from Linto H. The definition domain 2(T;) of every T, will be the lincar set L/N,
in H, @(T,,) is thus everywhere dense in H. Let us consider for every operator T,
its adjoint operator T;" and let us prove that 9(7;") > L{N,. Let f, g € L|N,, then

WARIEDY fo(u — o= h)g(x, ¥)S(u + x,v — y) =
=3 3 flu,0)g(x, p) S(u + (x + h),v —(y — h)) =

=Y Yiuv)g(x —hy + By S(u+ x,0— y) = {f. Sig>

where S,g(x, y) = glx — h, y + h). As this equality holds for every fe L/N, that
is everywhere dense in H the element S,g equals T,;'g. We proved that 2(T}") =
= L/NO. It means the every operator T, can be closed, in other words, for every T,
there exists a closed operator T, in H, T, < T,. Now, we shall show that T,T;F =
=TT, on L[N,. When feL[N,, then T,T;f(u,v) = T,f(u — h,v + h) =
= f(u — 2h,v) = Tf(u ~h,v — h) = Ty T,f(u,v). This fact implies, further,
that for every pair f, g € L/N,

(TS, Tg> = (LIS, 9 = KLY, 9> = (T, Tig)
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because T, = T, on L/N,. At this moment we can construct a closed enlargement
T, of T;. An element f e H belongs to 2(T},) if there exists a sequence {f,}:%( < L/N,
such that f, — f and {T,f,}2, is convergent too. If f; = lim 7,f, then we put

o
f1 = T,f. There is no problem to prove that T} is in this way defined unambiguously.
Let {g,}s2; = L|N, be another sequence converging to f, but Tpg, — g, * f;.
Then for any g € L[N,

9./1 = 9> = g im T(f, = .)> = lim {g, T(f, = g.)> =

=1lim<T'g. f, — ¢.> =<T¥g, f = > =0.

Thanks to the fact that LIN, is densein H g, = f;. As |T,f]| = | T;'f| for every
feL{Ny, we can prove that 2(7T;) = @(T,). Further, T;" = (T})* and because
of closeness of T, T;* = T,. It remains to prove that T;T, = T,T, and after this
we can state that 7, is a normal operator in H. First, we must prove that 2(T,'T,) =
= NT,T)). Let fe 2(TyT), ie. T,fe H(T;) and simultaneously f € 2(T,). At the
same moment fe 9(T;) = P(T;') and we can consider T;f. Let g € LN, be quite
arbitrary then (Thg, T,'f> = {g. T*T'f> = <g, T,T;’f> that means that T;*fe 2(T}).
We have proved that 9(T;'T,) = 2(T,T,). Quite analogously we can prove the
opposite inclusion. We see that for every operator T, there exists a normal enlar-
gement T, T, = T, on LN, and {T,}, he R, forms a group on the linear set
L/N,. For every T, there exists a resolution of the identity in H {P}}, z € C such that

T, = [{£% zdP}.
Let (-, *) be the element in L/N, defined as (0, 0) = 1, 5(u, v) = 0 otherwise.
Let us caleulate ¢T,,8(-, +), T,,,8(+, *)>. Thus
<T,0( ) Td(s, ) =
C ¥ 3 T o ) S+ 50— ) =

o X,p

=Y Yo(u—hyv—h)d(x — hyy — hy)S(u+ x,0— y) =

wy X,y

=Y Y6(u,0) 8(x, ) S(hy + hys by = h3) = R(hy, ).

ww iy
By use of the polar coordinates every operator T}, can be expressed as
T, = [32 [tret e dEM(A, 1)
where {E'(+, +)} is another resolution of the identity in H. At this moment we put
h = 1/n and the group property T, (T;,) = T,,(T,,) = T;, .4, cnables that for every
integer je Z
1) = T‘/n .

i/ J.
Then we can write

Rjin, kjn) = 2 2502 909 dCBLS 5(-. ), 5(-, )y
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using properties of the resolution of identity in H. We can continue and express
R(j[n, kn) = [ro [rumelUtome ghfli=0m qepti 8, ), 6(-, )

Under the choice of suitable j, k such that jfn — s, kin — ¢ if n tends to + o0 the

continuity of R(-, +) gives that

(9 t) — hmJ{—.ﬁ ['+;I'[ [+ k) /n]x |B[(J ky/nl ddF(a/" iy

. m s s oy ;
if we denoted <E(/7 5,,3(*, +), a(-, N = Fldpngm- Let
R.(s, t) = fﬂr e gD ddF(a/n Bim) >

we sce that R,(+, +) is a normal covariance and we shall prove that R,(s, 1) = R(s, 1)
as n — + oo. First, we estimate

+ . Pk B — KY/ f
| .+m ] An n(,+!) elﬂ(x 1) ddF(a(’n iy — fjf ”J:,’: Ci[(}+/)/u] e:ﬂ[(] ky/m] ddF(;,":x.(l/n]' .—<:

S |22 [Limettiom (gie0 — GPUDIN) dAF | +
+k

+ [ (‘rﬁjj::n Jif(s—1) (Cn(HI) L) )/n]) ddF(a/u,[]/u)i <

< J‘f:gjt:;: e«[(ﬁ-k)/n] |exﬁ(rt—(rk)/n) - 11 ddF(a,r':x.pm 4

+ ‘ "+: j‘+n: ea[(j+k)/ll] (eu(s-#t*(j +k)jny _ 1) ddF(IO{;:, /}/"\l .
J —nk sBin)

We can choose j, k e Z that jjn — s, kfn - t when n — +ooand 0 £ s ~ j/n < 1/n,
0 <t — k/n < 1/n. Then, the first term can be estimated as

Jrg et b 1| ddF, gy S (J25 [25 €200 AR )2
o 008 -1/ 12
(JL2 TR — 12 ddF g pm)'™ =

= RVA((j+ ), (j+K)m) (J272(1 = cos (0,6)) dF3Gm)""*

where 0, =5 —t — jln + kln and F}lp,, = [13 dF /% smy. Thanks to the conti-
nuity of R(-, ), R((j + k)/n, (j + k)/n) > R(s + 1,5 + 1) as n— +co. Since
— 1/n < 0, < 1/n cos (0,nf) = cos (B) for every natural n and hence

JHm(1 = cos (0,8)) dF3(5 ., = {351 = cos (0.n8)) dFyG, <

~nm

< [EE(1 — cos (B)) dFG = 1 — Re (1),
where
@ua(e) = [FTeAFL = (12 [Eret ddF = R(uf2n, — uf2n).

It means we must prove that lim R,(1/2n, — 1 [2n) = 1. Every operator Ty, can be

expressed as Ty, = Ay Uy Where A, is a positive sclf-adjoint operator and Uyu
is unitary. In our case

! Y [m i 1/,
Ay = [22fIrerdEY",, U= [15 1€ dE],.

H) 2
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Then we can write that Uy,f(u,v) = f(u, v — 1/n) and U S, ) 8-, P =
= S(0, 1fn) = R(1/2n, —1/2n). On the other hand,

b+ ), 80, > = [2 2 [2e™ A<, (-, 7), 80, ) = [Ehe™ dF3 = 9y4(1).

As we suppose the continuity of R(, ) we obtain lim ¢;;,(1) = 1. The second
term nmee

JI5 et mom (et =G0 — 1) ddF i, pm

can be estimated in the following way:

H‘t: ea([(j+k)/n] (ea[s+r—(j+k)/n] _ 1) dFi{;‘,,.> g
S ([Lg eI ARE, )2 ([22 (@ — 1) dFigm)'"* =
i+ k j+ E\\'?, . . j+k 2
- (R(] n s n )) (JI3 (e = 1 dFifgm)?, 00 =s+1- I

The last inequality implies that
(elat/n _ 1)2 > (1 — gfen)2
for every o and hence

[25 (e = 12 A, < 25 (0 = 1) dFgy =
= JrE (e — 2620 4 1) dFYn, = 7 (et — 262 4 1) dF =
= R(2/n,2[n) — 2R(1/n, 1[n) + 1
and thanks to the continuity of R(+, +) we can state that

lim [£% (% — 1)> dF 12, = 0.

B La/my =
We have proved that
|R,(j[n, k[n) — R,(s,1)} >0 as n— oo where jn—s, kln—>t.
As R,(j[n, k[n) = R(j[n, k[n) and R(-, +) is continuous we obtained that
lim R,(s, t) = R(s,f) forevery (s,t)eR,.
.

Further, we shall prove that the sequence of the first marginals {F1{1,} % 1 is compact

in the sense that there exists a subsequence converging to a probability distribution
function. We know that for every j e Z

R,(j,J) = 8,(2i,0) = R(j, j) = [13 e dFify,

is not depending on n € N. Thus, for every j > 0

R(j,j) 2 [2a e dF G, + (1 = Fifiym)
that means

Filam 2 1 = R(j,jye™.
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When ¢ is chosen quite arbitrarily we can find a; = a,(¢) such that for every ne N
F{éﬁl/,,) >1—e.
Similarly, one can prove that there exists a suitable o, = ay(g) such that for every

neN
1/n
Fiaom < &

because R(j, /) = [*2e* dF{/s,, holds for negative jeZ too. This fact shows
that the sequence {F}/%}., is compact, i.e. there exists a subsequence {Fi{%s}7,
converging to Fy(+) at all points of continuity. Without loss of generality we can
assume that {F}{%)} is just convergent to F,(+).

In the case of the sequence {F3{1)};%; we shall consider the sequence of the corre-
sponding characteristic functions {@;,(.)}x=1 Where

Oun(t) = JInmet? dF 35 -
We know that
@1(2k[n) = [Irme? E P ARYE = R(kin, — k[n) = S,(0, 2k[n) .

We can choose k € Z in such a way that k[n — tasn — +ooand 0 < ¢ — kfn < 1/n
for every n e N. First, we shall prove that
@1uk[n) — @1() >0 as n—> +o0.
As @q,,(t) = [1rme ¥ dF}(j,, then
[01(kin) = @3B = [[1ne (e = 4Py aFy, | =
= | JImelmP (oW — 1) dFyg,,| < (20
= V2(JIR(1 = cos(t — k/n) B) dF3{5,,)"* <
< V2(J IR0 — cos (B) dF3()"* = J() (1 — Re gy, (1)> 50 as n—> o

as was shown sooner. The assumptions of the theorem yield immediately that the
function R(#/2, —#/2) = S(0, ¢} is a characteristic function, i.e.

5(0,1) = 22 et dF,(B).

et y2 Gy 2 =

As
@1(2k[n) = 5(0, 2k[n) = [I2 ¥ GF,(B) then @y,(21) - S(0, 2t) as n - 0 ;
we have proved that
Fiom = Fa(p)
at all points of continuity.
Now, we can estimate the measure of K = [, &;) X [, 8,) in the plane
JIx ddF, m -
As
ITc ddF i pmy = JTE2 Wiaoran)(®@) Yigo,00(B) adFlp o =

__ fa [+ 1/n ay (B 1/n
- fu; .f—aa ddF(a/n.ﬂ/n) - Lu; f—ow ddF(fl/n.l'/n) - I;; ;xw ddF(‘el/’:l,ﬂ/n)
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then
1/ 1/ 21/ -+ P l/n
.”K ddF(a/';-,/J/m 2 (Flé:hfn) - 1‘1(:(,/11)) - J—ao J‘—ooo ddr(z//n,ur..) -

"+ 1/ - 1/ F1/n - 1/n — mlin
@ [ ddF sy = (Fitamy = Fitiom) — (Fagom + 1 = Faggm) > 1 — 26

- —w ]
because Fi{l) — Fy(+) and F3{%; - F5(+) as n > oo and F4(+), F,(*) are probability
distribution functions. This inequality proves that the sequence {F(‘f;’,,’.‘,n)},‘:":l is
compact. Hence, there exists a subsequence {F(l,/}’,',‘“/,,k)}f;i that is convergent to
a probability distribution function F(', +). It remains to prove that

Ris.1) = [[ 12 26+0 elu6=0 qdF (4, ) .
We proved that
R(s, 1) = lim [*2 [*7760%0 060 ddR{f, .

At this moment we need possibility to change the order between integration and
convergence. This change is possible under uniform integration of [e*¢s*# e“‘(s“)] =
= "+ with respect to the sequence {F¢/fx ., 12 . We know that

R((s+0)f2, (s+1)[2) = 8(s + 1,0) = lim [*2 0 dFif2

is a continuous covariance function because the function S(-, 0) forms a nonnegative
definite kernel with respect to the sum. Every function of these properties can be
expressed as a bilateral Laplace transform

S(s + £,0) = [£2 €+ dG,(2)
where G4(+) is a probability distribution function because S(0,0) = 1. Sooner we
proved that F1{%,, = F,(+)as n - o0, and on the basis of the convergence of moments
we state that G,(-) = F,(+). We have proved

lim Jﬁ;«; [ea(s{ D] eiﬁ(s—r}I ddf’(lz‘//':.,c,ﬂ/nk) = _”fﬁ lea<s+r} ef/f(rr)[ ddF(a!ﬂ)
koo

ie. the function e***" is uniformly integrable with respect to the sequence
{F{U motiey. Further, the convergence F{/J% uo— F(+,+) as k— oo implies
the existence of [f*2 e*s* elfs~9 ddF(x, B). Together, we can change order

between integration and convergence and we can write
R(s, 1) = [[*% e5570 e7670 ddF(a, ).
On the contrary, let R(-, +) be normal. Let

S(u,v) = [§7 2™ e ddF(x, B) .
Then for arbitrary oy, «,, ..., 0, € C and arbitrary u;, U, ..., Uy, Uy, Uz, .00y U, €
€ Ry surely

¥ Yo @Sy + ug vy — v)z 0

J k
because

Y. Yo, et iBI=v) ] Y el 2 0. 0
Jjk J
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The class of normal covariances can be also described by use of the corresponding
reproducing kernel Hilbert space (RKHS).
Theorem 3. Let R(~, +) be a continuous covariance function defined in the whole
plane R,. R(', +)is normal if and only if
R(s + h, 1) = <(R(s,u); R(1, u + h))
holds for every real i, (-, *) is the scalar product in RKHS due to the covariance
function R(-, +).
Proof. Let R(-, +) be normal. Then
R(s, t) = [[T2ex0*0 =0 ddF (s, B), (5,0)€R,.
Let & be any real number, thus
R(s + h, 1) = [[12esGHhT0 6= 44 F(y, B) =
= [fI7e™ et etR g=h ddF(a, f) .

Similarly,
R((, u h) _ ”::emﬂwh) UGN LIdF(a, ﬁ) s

— J'Jj: cac(t+h) ex/}(zf h) & oifiu ddF((x, ﬁ)
and R(s,u) = [[12e» el e™ e ddFF(a, f) .
Now, by use of the “reproducing property” m(s) = (m(-); R(s, ) holding for every
m(*) e RKHS we obtain immediately

R(s + h, 1) = (R(s, u); R(1, u + h)) .
On the contrary, let for every h € Ry the covariance function R(-, +) satisfy

R(s + b, t) = (R(s,u); R(t,u + h)>
in the corresponding RKHS. Let us define the shift-operator T; in the RKHS by the
relation
TiR(s, ") = R(s + h, *).

The definition domain of every T, is formed by all linear combinations Z xiR(si, )
i=1
where «;, i = 1,..., n, are complex numbers. The construction of the RKHS gives
that the definition domain 2(T,) of T}, is everywhere dense linear subset in the RKHS.
Let T;* be the adjoint operator to T, in the RKHS. Let us prove that 2(T;) = 9(T).
Let m{*)e 2(T,). By definition of T; y(-) e RKHS belongs to %(T;) if and only
if for every x(+) € 9(T;)
<Tx() v = <x(-); Tay(+)> -

When x(+) = YaR(s;, +), m(-) = Y.B;R(t;, +), then Tpx(+) = YeR(s; + h, +) and

i i i

KTx(-); m(-)> = 3 ToBCR(s; + hyu); R(1j, u)) =

i

=Y YouBR(s: + b 1)) = ¥ YouBKR(s;, u); Rty u + h)y = <x(0); m*()>

i
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where m*(+) = Y'B;R(t;, (+) + h) = T;'m(+). In other words, the adjoint operator
T is representedjby the shift operator in the argument in the RKHS, i.e.
TYRG, ) = Rs. () + ).
It implies that T;' is everywhere densily defined and hence the operator T} possesses
a closed enlargement T in the RKHS. There is no problem to show that for every
my(+), my(*) € 2(T)
CTmy(+); Tima (1) = CTmy(+); Tifma(-)>

and since this moment we can follow the proof of Theorem 2. We shall prove that
every operator T;, in the RKHS is normal and by means of their spectral resolutions

one can show in the same way as was used in the proof of Theorem 2 that the co-
variance function R(-, +) is normal. O

Remark. In this part we shall cousider two covariances. The first one
Rl(s, t) — @fs T DD o =als= 12D o =ib(s*~12)/D , D =dac — b2 >0 ,

is normal, the other one

Ryfs, 1) = ey >0,
is not normal. The covariance R,(s, f) is normal because

Ry(s, 1) = [[T2exctn gibls=n) glaatbapch?) gy 4

In case when b = 0O we obtain a locally stationary covariance because then Rl(s, l) =
= 5¢{(s + /2] Sa(s — 1) where S,(u) = ®P* 5 0, S,(v) = e™™*” is a charac-
teristic function. Further, this case is interesting also because the correlation function

corresponding to R,(s, t) for b = 0

Ry(s, 1) —[(a+e)/D(s~1)2
St = s = ¢ '
s, ) Ri/z(s,s) RY(1, 1)

is depending on s — ¢ only.

On the other hand, the covariance R,(s, t) is locally stationary also because

2 y y
Ry(s, 1) = e~ PLE+DI2P gris~02
although the first term e~ 27(+0/21
of Ry(+, ") a = ¢ = /2/2 we have
RI(S, t) = g2 = e(s+t)1/2 e~ s—0%/2 )
and y = 1 for the case of R,(+, *), then
Rz(s, t) — e-—(sl+!z)= e-—[(s+t)/2]2 e—(s—t)2/2 .

is not covariance. When we put, in the case

The function e'*?2¥js a covariance but ¢~ *?/2Pjs not covariance. If we consider
the shift-operator T, in the RKHS due to the covariance ¢** then

Ryls + hyf) = €267 = &2 e2 = R (5 1) Ry(h, 7).
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This fact yields that for every m(+) e 2(T,)

T(m*) = m(-) Ry(h, +),
that shows (T,m(+); x(*)> is a continuous linear functional on %(7;) and hence
(1)  9(T;). On the other hand, a similar resolution in the case of Ry(-, -) is

not possible because

RZ(S + h, t) = e (M2 o=t = (24e2) o 2hs o=

b2 hy2
= Ry(s, t)R2(1; ,1—;7~>e’2hs.

Thus

’,,m() =R, (M ' M) ii} {XiRZ(Si’ ) e

2 2
when m(+) = ¥ @,R(s;, *) and the assumption m,(+) - 0 in @(T;) need not imply,
=1

in general, that (T,m,(+); x(+}> — 0. This fact causes that the adjoint operator
T is not well defined ((2(T;) » 2(T;)) and T}, cannot be normal in the RKHS.

(Received April 17, 1987.)
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