
Kybernetika

Moisés Bonilla Estrada; Michel Malabre
External reachability (reachability with pole assignment by p. d. feedback) for implicit
descriptions

Kybernetika, Vol. 29 (1993), No. 5, 499--510

Persistent URL: http://dml.cz/dmlcz/124535

Terms of use:
© Institute of Information Theory and Automation AS CR, 1993

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/124535
http://project.dml.cz


K Y B E R N E T I K A — V O L U M E 29 ( 1 9 9 3 ) , N U M B E R 5, P A G E S 4 9 9 - 5 1 0 

EXTERNAL REACHABILITY (REACHABILITY 
WITH POLE ASSIGNMENT BY P. D. FEEDBACK) 
FOR IMPLICIT DESCRIPTIONS 

MOISES E . BONILLA AND MlCHEL MALABRE 

Even for flat implicit linear systems (i. e. having more state components than state 
equations), reachability is a well defined concept in terms of the set of state trajectories: it 
characterizes the property that from any initial state can start a smooth state trajectory 
which reaches any final state. What can happen, however, for this general class of systems, 
is that a system with no control input can be completely reachable. We introduce here the 
notion of "external reachability" which expresses the fact that trajectories can actually be 
controlled through the input (by proportional and derivative state feedback). Geometric 
necessary and sufficient conditions are given for external reachability. A new design method 
is proposed for pole assignment which uses this concept and relies upon right inversion 
techniques. 

1. INTRODUCTION 

We shall deal with linear, time-invariant, implicit (E, A, B)-systems, £ : U —+ y, 
described by: 

Ex(t) = Ax(t) + Bu(t); t>0, ( l . l .a) 

where x(t) £ X, x(t) 6 X, u(t) £ U, and E, A, and B are linear maps defined as 
follows: 

E:X-* X; A:X->X; B : U -> X, ( l . l .b) 

where the respective dimensions of the state space (X) and of the state equation 
space (X_) are not necessarily equal. 

One of the most important structural concepts in System Theory, which has 
been widely studied for years, is that of reachability, which characterizes all the 
states which can be controlled. For classical (I, A, B) systems, Wonham [29] has 
characterized the reachable space of £ from a geometric point of view, as "the set of 
states x £ X, say 7£o, which are reachable in a finite time from the origin through 
trajectories of £ generated by piecewise continuous controls t *-* u(t) £ U, defined 
for t > 0". It is well known that 1Z0 = ImB + AImB + • • •An-1lmB, with ImB 
denoting the Image of B and n being the dimension of the state space X. Moreover, 
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in this classical case, reachability has been connected with pole placement abilities 
(through the action of state feedback F, i.e. for the spectrum of (XI — A — BF)). 

In the case of (E,A,B) systems, with E and A square and (XE — A) regular 
((XE — A) invertible), reachability has been studied from various points of view, 
with tools like for instance: transfer functions [28], distributions [12], geometry 
[25]... 

In the case of (E, A, B) systems, with E and A square but (XE — A) not neces
sarily regular, Ozgaldiran [26] extended his previous geometric characterization of 
reachability, given in [25], by means of the supremal reachability subspace, say TZX, 
obtained as follows: 

where 
Kx = VxnS% . (1.2) 

V*v = Sup{T C X such that AT cET + ImB} (1.3.a) 

S*x = I n f { T c A"such t h a t T = E-1(J4T + I m 5 ) } . (1.3.b) 

This way of computing TVX is a nice generalization of the afore-mentioned 7£o 
reachable space for classical (/, A, B)-systems ([29]). It would then appear quite 
natural to extend such a characterization to general (E,A, S)-systems, for which E 
and A are not necessarily square, and thus to consider TVX as the good candidate 
for the reachable subspace in this more general situation. The truthfulness of this 
conjecture has been established by Frankowska [13], with arguments derived from 
Differential Inclusions Technics. 

This quite general setting of non square descriptions (E and A not necessarily 
square) also induces some interesting pathology, namely the fact that an (E, A, B)-
system may be reachable though having no input at all! Indeed, let us consider the 
following illustrative example: 

Example 1. Consider the following system 

[I0}x(t) = [0l]x(t) + [0]u(t). (1.4) 

It is quite easy to check that (see for instance [20], or [23]): 

V*X = X and S*x = X, (1.5) 

a n d t h u S : Tl*x=X. • (1.6) 

This example is thus completely reachable, although having no inputs! 
This comes from the precise definition of reachability [13]: (E, A, B) is reachable 

if and only if any state can be reached in a finite time from the origin following 
at least one smooth state trajectory generated by the system. This trajectory may 
or may not be generated by the forcing input u(t). Indeed, for our example, any 
state say xT =: [xi x2] of (1.4) can be reached in a finite tune 9 with the help 
of the following state trajectory: xT =: [/Q / ( r ) d r / (# ) ] , when f(9) = x2 and 
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f0 / ( r ) dr = x\, with 0 < 9 < oo. In fact, system (1.4) is driven by its own degree 
of freedom (see for instance [14], [2] and [7]), i. e. is reachable in a purely autonomous 
way. 

The specificity of this example comes from the fact that all the reachability chains 
which form TVX (here, there exist only one) start in Ker E (the Kernel of E) and 
not in E~x\mB / Ker E (here B = 0). In the terminology initially proposed in [27], 
these chains are called non-proper chains, in opposition with the proper ones, which 
are directly generated by some input (these proper chains are the only existing ones 
for classical (I, A, £)-systems). 

As a direct consequence, purely autonomous systems, though reachable, have the 
drawback that placement of the dynamics or tracking of an external reference is 
obviously impossible. The goal of this paper is to give a further geometric interpre
tation of Frankowska's result [13], in order to give necessary and sufficient conditions 
for placing at will the dynamics of the system by feedback compensation. On the 
other hand, we will show how a right inverse of a reachable system can be used in 
order to track a given trajectory and to assign the corresponding poles by means 
of Proportional and Derivative state feedback. Indeed, as left invertibility plays an 
important role in observability problems (see [8]), right invertibility is a nice notion 
adapted to reachability problems. 

2. EXTERNAL REACHABILITY 

Let us consider (E,A, S)-realizations described in (1.1) with the additional classical 
assumption: Ker B = {0}, and let us define the following set of smooth trajectories: 

C = : {/(*) € X such that N[E f(t) -Af(t)] = 0; t > o} (2.1) 

where 
N : X_ —* X_/lmB is the canonical projection. (2.2) 

Then we have: 

Fact 1 . A trajectory x(t) ~ X is a solution of (1.1) only if: 

x(t)eC (2.3) 

Indeed, every trajectory x(t) £ X solution of (1.1) is also solution of the restricted 
system introduced by Jaffe and Karcanias [16]: 

NEx(t) = NAx(t), t>0. (2.4) 

Furthermore, (2.4) expresses the restriction of the initial system (1.1), which is 
inherent to its internal structure, and which cannot be altered, whatever be the 
chosen input u(t). Let us then adopt the following: 
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Definition 1. A state x\ 6 X is reachable from xo G X if and only if there exists 
some finite time, say 6, 0 < 9 < oo, and at least one f(t) (E C, solution of (1.1), 
which satisfy /(0) = x0 and f(0) — x\. 

Definition 2. The system (1.1) is called reachable if and only if any xi G X is 
reachable. 

Definition 3. The system (1.1) is called externally reachable if and only if: 
i) it is reachable 

ii) the spectrum [X(E — B FD) — (A + B Fp)] can be fixed at will, by means of a 
suitable P - D feedback, (Fp, FD). 

It has to be noted that Definition 2 is in accordance with the classical one. Defi
nition 3 is a mean to exclude purely autonomous systems. 

The following Theorem gives a geometric characterization for external reachabil
ity: 

Theorem 1. An (E, A, B)-system is externally reachable if and only if: 

K*x = X, (2.5) 

I m Б 

EVX Ш m ß 
— j > d i m ( V £ n K e r i ; ) . (2.6) 

2 .1 . Necessary conditions for ex ternal reachability 

In order to prove the necessity of (2.5)-(2.6), we will use Frankowska's result [13] 
and the state uniqueness property after P - D feedback given by Lebret [19], which is 
similar to the state uniqueness property after P feedback established by Banaszuk, 
Kociecki and Przyluski [1], in the discrete time case. Remember first the following: 

Resul t 1 . ([13]) An (E, A, J3)-system is reachable if and only if 

K*x = X. (2.7) 

Resul t 2. ([19]) There exists a Proportional and Derivative state feedback law, 
u(t) = FD x(t) + Fpx(t) + Gv(t), such that the state of ( IT) compensated with this 
control law, has the uniqueness property for v(t), if and only if: 

d i m { ^ m m E } ^ d i m ( ^ n K e r g ) - (2-8) 

The state uniqueness property basically characterizes the fact that state trajectories 
are uniquely fixed by the initial conditions and the external input. Though this is 
guaranteed for any (I, A, 5)-system, Example 1 shows that this is not always the 
case for general (E,A,B) ones (see also [7] for examples with 5 ^ 0 but with some 
degrees of freedom). 
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Necessity of conditions (2.5)-(2.6) in Theorem 1 directly comes from Results 1 
and 2. Indeed, if the state trajectory cannot be uniquely characterized by its initial 
condition and its external input, it is a fortiori impossible to fix the spectrum of the 
dynamics (see for instance [3]). 

2 .2 . Sufficient conditions for external reachability 

The sufficiency of condition (2.5)-(2.6) for Theorem 1 will be established through 
the following rewriting of (1.1): 

Ez(t) = Az(t) + Bu(t), 
t > 0. (2.9) 

x(t) = lz(t), 

Indeed, we will show that (2.5)-(2.6) allow for the design of a right inverse of 
(2.9). More precisely, driving (1.1) with the right inverse of (2.9) and choosing as a 
reference a signal x(t) such that x(9) = x\, any fixed xi G X will be reached in the 
finite time 9. 

It is clear that x(t) G X is a solution of (2.9) for all u(t) G U only if x(t) G C (see 
(2.1)). As a direct consequence of Fact 1 and Theorem 1 of [6], we have: 

Fact 2. The system (2.9) is solvable (i.e. possesses at least one state solution for 
any possible input) if and only if: 

ImflC {<?(<) G X 13 f(t) G C and g(t) = E f(t) - A f(t); t > o} . (2.10) 

To conclude the proof, we shall need the following Lemmas (proved in Appendix A): 

L e m m a 1. If: 
V*X=X (2.11) 

then, for every state x G X, there exists at least one state trajectory, f(t) G X, such 
that f(6) = x, with 9 finite. 

It is worth pointing out at this level that condition (2.11) corresponds, in Frankows-
ka's terminology [13], to strict systems (since Vx = X if and only if 1mA C 
ImE + lmB). 

L e m m a 2. If the following conditions are satisfied: 

Sx = X (2.12) 

d i m { 4 m n i m B } - d i m ( V " n K e r E ) ' (2-13) 

then there exist: 
FP: X-^U and FD : X -+U, (2.14) 
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such that the following system has no finite dynamics: 

(E-B FD) x(t) = (A + B FP) x(t) + B r(t). (2.15) 

We are then in position to prove sufficiency of conditions (2.5)-(2.6). 

Proof of the sufficiency part of Theorem 1: Starting from (2.5)-(2.6), and 
thanks to Lemma 2, we can use a first feedback law (2.15) in order to obtain a 
compensated system with only algebraic and derivative blocks. On the other hand, 
if (2.9) is right invertible, then, one of its possible right inverses is the following: 

[? !]*>-[ÍSH+[-.]*<"• 
< > 0 , < 2 1 6 ) 

( u(t) = [ 0 .1 ] t(t) 

(see Fact 1 of [6] and also [15]). 

Testing right invertibility of (2.9) is the same thing as testing left invertibility of 
(2.16), which will be done hereafter. 

It is easy to check that (2.16) is solvable (see Theorem 1 of [6]), and therefore, 
there exists at least one linear transformation: \J/(-) : U —* X, solution of (2.16) (see 
Corollary 1 of [6]), i.e.: 

J" E^x(x(t)) = A^i(x(t)) + Brj>2(x(t)), 

I 0 = fa(x(t)) - x(t) t>0, (2.17) 

{ u(t) = UHt)) 

with: * T ( . ) -= [^0^01 ; 

Left invertibility of (2.16) is equivalent to (see Lemma 1 of [6]): 

u(t) = 0=> x(t) = 0; t > 0, (2.18) 

or, equivalently, to the following assertion: the only solution of 

Ex(t) = Ax(t); t>0 (2.19.a) 
is: 

x(t) = 0; t>0 (2.19.b) 

This is trivially satisfied since (2.9) (after the first feedback compensation (2.15)) 
is only formed with algebraic and derivative blocks, and so, there is no transient 
response. This means that any state xi G X can be reached by means of system 
(2.16), with the reference, x(t), being any trajectory f(t) G C, such that f(9) = xi 
(see Lemma 1). 

Finally, thanks to right invertibility of (2.9), it is sufficient to choose: 

x(t) = B0 r(t) + x(t) - [E0 x(t) - A0 x(t)] (2.20) 
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in order to freely assign the spectrum (see Figure 1). Indeed, from Figure 1, we can 
assert that: 

E0x(t) = A0x(t) + Bor(t), (2.21) 

with the compulsory restriction (recall (2.20), and with x(t) = x(t)): 

KeTN(XE-A)cKeTN0(XE0-A0), (2.22) 

where N0 : X —* X / lmB0 is the canonical projection. • 

u(t) = [0IH(t) 

Ez(t>=Az(t)+Bu(t) 

x(t) = Iz(t) 

x(t) 

-(E^dt-A^ 

Fig. 1. 

The sufficiency proof suggests a procedure for freely assigning the dynamics, say 
changing (E, A, B) into (E0,A0, B0), as follows: 

Procedure for the synthesis: 

i) Use a first feedback compensation (like (2.15)) to obtain a system with no 
integrator, 

ii) Synthesize the proposed right inverse (2.16), 

iii) In order to achieve (2.22), choose N0E0 and NOAQ such that: 

N(XE -A) = No(XE0 - A0), 

iv) Choose a Bo having at least as many independent columns as the number 
of blocks £,(,-), for the pencil N(XE — A) (see the proof of Lemma 2 in Ap
pendix A), and complete the matrices E0 and Ao already partially chosen, in 
order to have the desired dynamics. This procedure is illustrated in Section 4. 

3. CONCLUDING REMARKS 

i) We have introduced a reachability concept which enables Us to freely modify 
the system dynamics (external reachability). 

ii) We have shown how right inverses can be used to insure some trajectory track
ing (for a trajectory satisfying (2.3), of course) and also how to assign the poles, 
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iii) The geometric condition (2.6), which guarantees the dynamic assignment, can 
also be expressed in an algebraic way. Indeed, if we apply Lewis's Structure 
Algorithm [21], [9], to (E, A, B, 0), we obtain that condition (2.6) is equivalent 
to (see [24]): 

rank(5) - r ank (o n + i ) > rank(£„+i), 

where Dn+\ and En+\ are the limiting matrices extracted from Lewis' Algo
rithm (see also [8]). 

iv) It has to be noted that our proposed right inverse (2.16) is, usually, not minimal 
(see for instance [17],[18] and [10]), but it can easily be minimized (see for 
instance the procedure in [9]). 

iv) In the case when there exists some degree of freedom, condition (2.6) is never 
satisfied. In that case, it is better to obtain output dynamics assignment, as 
introduced in Bonilla, Lebret and Malabre [5]. 

vi) Implicit systems allow for the description of either proper or derivative systems. 
This ability to handle with pure derivators is, of course, fundamental in our 
use of inverse systems, which belong to the same class of models as the systems 
themselves. We are now working on the manner a non proper system may be 
approximated (in a stable way) by a sequence of proper ones (see for instance 
[4] and [11]). 

4. ILLUSTRATIVE E X A M P L E 

Let us consider the following system: 

[I i ] ^ ) = [ S S]*W+[i]-(0; **-°- C4-1) 
We would like to design a control law so that the system behaves as a first order 
system. A solution is given by the procedure sketched at the end of Section 2: 

i) Apply first the following P - D state feedback law: 

u(t) = [ - 1 0 ] _ ( 0 + [ 0 1 ] i + »(<)• (4.2) 

The compensated system behaves like a pure derivator: 

[ i ! ] - » - [ - " , J]*«>+[;]•<* <>«. .(*-) 
ii) The right inverse system obtained by the rewriting (2.16) and after having applied 
the minimization algorithm of [10], is: 

ííO+Ц Jl-кo. 
L J t>0, ^ 
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Fig. 2. 

In Figure 2, we show the combination of (4.4), (4.2) and (4.1). From Figure 2, 
we directly see that: 

xi(t) = xi(t) and x2(t) = x2(t), t> 0, 

whatever be the initial conditions on x(t)\ 

iii) Choosing: 

.V0JS?o = [ 1 0 ] ; iV0.40 = [0 1 ] ; and N0B0 = [0], 

we satisfy (2.22), since: 

£ = | !Bl \eX such that ii(<) - x2(t) = 0; < > 0 i 

iv) Complete (fi'o, A0, B0) in order to only have one pole at —1: 

* - [ $ » ] ; - . - [? ! ]< * - [ A ] -

Г(t) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

2 -« 

^ t Liч^л u ( t ) i 

d/dt 

_.£-*---1 -*-L 
i 

^ ^ v r ø T i 7 x2(t) 

-ì 
V x(t) 

-ì 

Pig . 3. 
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In Figure 3, we show the final implementation. From that, we easily see that: 

ii(t) + xi(t) = r(t) 

ii(t) + i-2(0 = HV 
(4.9) 

APPENDIX A 

A . l . Proof of Lemma 1 
In view of (2.11), we have 

I m , 4 c I m £ + Im.B, (A.l) 

and thus, we can decompose the state equation space, X_, and the state space, X, as 
follows: 

X = Xi®E~x\mB, (A.2) 

X_ = \m.B®EX_®Xa. (A.3) 

In suitable bases respecting these decompositions, (1.1) becomes: 

u(t) (A.4) 
0 0 J [ 0 . 

where * is not precised. 
From (A.4), we can easily assert that the allowed trajectory set satisfies: 

C = I Xl \eX such that ii(t) = Aix_(t) + A2x2(t); t > 0 1 . (A.5) 

This means that we always will be able to draw a trajectory fT(t) = [fi(t) f2(t)] G 
C passing through any state xT = [ xj x2 ] 6 X, in a finite time 6; such a trajectory 
must satisfy f(9) = x, with f\(0) = Ai$i +^42*2- D 

0 E2 ' * * ' l 
I 0 x(t) = A, A2 x(t) + 0 
0 0 0 0 0 

A .2 . Proof of Lemma 2 
In order to prove this Lemma, we will express (1.1) in the Proportional and 

Derivative Canonical Form of [22], which is quickly recalled in Appendix B. 

From (Bl), we can easily assert that, if there exist as many inputs as blocks of 
the type £e(t), we will be able, after having applied some ad-hoc feedback, to obtain 
a compensated system with only infinite elementary divisors. Indeed, assumption 
(2.12) imply that only blocks of the type jf/n(i)

 a Qd £«(») a r e present. Now, since 
blocks Ln{i) are already infinite elementary divisors, it is then sufficient, with the 
help of a proportional state feedback, to place a " 1 " below each block Le(,). This is 
possible since condition (2.13) insures that there are as many independent inputs as 
blocks Le{i)-
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A P P E N D I X B 

T h e P ropor t iona l and Derivative Canonica l Form of [22] may be describes as follows 
(s denot ing the Laplace variable) : 

sE«-A« J*.)-- [;]«(.), (B.I) 
where s ER — AK is t h e Kronecker Canonica l Form of the restr icted pencil (recall 
[16]) N(sE - A), wi th N : X_ —> 1 / I m B the canonical project ion. 

Blocks of the type L n ( . ) and Le^ respectively correspond to the so-called "infinite 
e lementary divisors" and "column min ima l indices". 

(Received February 11, 1993.) 
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