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K Y B E R N E T I K A - VOLUME 26 (1990), NUMBER 5 

SOME ASYMPTOTIC RESULTS 
FOR ROBUST PROCEDURES FOR TESTING 
THE CONSTANCY OF REGRESSION MODELS 
OVER TIME 

MARIE HUSKOVA 

The aim of the present paper is to derive the asymptotic distribution of test statistics connected 
with a robust version of CUSUM (cumulative sums) procedure used for testing of the constancy 
of the regression relationship over time. The obtained results are, in fact, certain extensions of 
the Darling-Erdds theorem (cf. [4]). 

1. INTRODUCTION 

Let Xl,...,Xn be independent random variables, x,- distributed according to 
the distribution function (d.f.) F(x — c-0;), where ct = (cn, ... cip)', i = 1, ..., n, 
are known regression vectors, 0h i = 1, ..., n, are unknown parameters, E fulfils 
certain regularity conditions (and unknown otherwise). For testing problem: 

H0: 0 = ... = 0n = 90 (known or unknown) 

against 
Hj_: there exists 1 ̂  m < n such that 

0i = .-. =0m*0m+i = ... = 0n 

(called testing of the constancy of the regression relationship over time) there were 
developed many different test procedures (for further information see survey papers, 
e.g. [2], [3], [8], [9], [12]. The recursive procedures (CUSUM — cumulative sums 
and MOSUM — moving sums) were developed and deeply studied for E normal 
in [5]. They are based on the recursive residuals 

Xt-c'fit-lt i = p + 1, ...,n, (1.1) 

where 0;_ x is the least squares estimator of 0O based o n I 1 ( ..., Xi^1. The important 
feature of these residuals (for E normal) is that they are independent and normally 
distributed. 

For E fulfilling only some regularity conditions a robust version of recursive 
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procedures related to M-estimators were developed. They are called recursive 
M-procedures (CUSUM M-test and MOSUM M-test) and are based on the M-re-
cursive residuals 

Wt = i(/(Xt - c'flt-M)) , p+ 1 ^ i ^ n , (1.2) 

where ^ is a score function from [R1 into 1R1 (usually monotone), di_1(\p) is an M-
estimator of 0O (or an estimator related to it) generated by the function \jj based on 
X1,...,Xt^l. For if/(x) = x, xeU1, one obtains classical recursive procedures 
based on the recursive residuals (1.1). 

In the present paper we shall concentrate on the CUSUM M-tests which are based 
on the statistics 

{| £ Wj\a;\k0<k^n}, (1.3) 
J = P+\ 

where a\ is a consistent estimator of \i>2(x) dE(x). Typically, critical regions of the 
CUSUM M-tests are of the form: 

U { | £ Wj\a;* >w(a,k,n)}, (1.4) 
k = ko j = p+l 

where vv(a, k, n), k = k0, ..., n, are chosen in such a way that the asymptotic level 
is a (or <a) . This test can be described as follows: after the /cth (k0 ^ k < n) ob

it k 
servation one compute | V W7| a^1, if | ]T Wj\ <r&

-1 > w(a, k, n), one rejects the 
J=P+I J=P+I 

null hypothesis and stops with observations, in the opposite case one proceeds with 
n 

observations, for k = n, if | ]T W7| a^1 > w(a, n, n), one rejects the null hypothesis 
j=p+i 

H0, in the opposite case one accepts H0. 
The critical values w(a, k, n) are not uniquely determined (different arguments 

lead to different values w(a, k, n)). This is discussed in the papers [1], [7]. One should 
remark that the first CUSUM M-test was introduced and studied by Sen in [11]. 
He proposed to take vv(a, k, n) = n1/2 wx, where wa is determined by 

P(sup|W( t) | < vva) = 1 - a (1.5) 
te(0,\) 

with {W(t), t e (0, 1)} being the standardized Wiener process. 
Here we shall focus on the case when 

w(a,k,n) = kll2w(a,n). (1.6) 

More exactly, we shall study the asymptotic behavior of 
k 

Zn= max {k~xl2\ £ Wj\] (2 log log nf'2 a'1 -
p<k^n j = p+ 1 

- 2 log log n - (log log log n)j2 + (log 4TT)/2 , (1.7) 

where Wj is defined by (1.2) and a2 = ji/t2(x) dF(x), under the null hypothesis and 
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some alternatives. Theorem 2.1 below says that under the null hypothesis and 
contiguous alternatives 

P(Z„ < y) -> exp{ - 2 exp {->-}} as n -• oo , ^ e R 1 , (1.8) 

which implies that in (1.6) 

w(a, n) = a(\og n - log log (1 - a)~1/2) , (1.9) 

a(t, y) = (y + 2 log t + (log log t)j2 - (log 4TC)/2) (2 log t)"1/2 . (1.10) 

One should remark that the result (1.8) was first proved by Darling and Erdos 
in [4] for the case Wjja, j = p + 1, ..., n, being i.i.d. random variables with zero 
mean, unit variance and the finite third moment and later on extended to more 
general situations, however, they do not cover our ones. 

The rest of the paper is organized as follows. Section 2 contains the main assertions 
on asymptotic behavior of Zn (Theorem 2.1) under the null hypothesis and the 
alternative: 

Hln(dn): there exists 1 <. m < n such that 

0! = ... = Qm = Q0 +- Qm+l- ... = dn = 00 + 8n 

mjn —> X e (0,1) as n -> oo . (1.11) 

2. MAIN RESULTS 

In the present section we shall adapt the following assumptions. 

Assumption A. \J/ is nondecreasing, 0 < j|t/f(x)|3 dF(x) < + oo, there exist positive 
constants Dl5 D2 such that 

$(\l/(x - a) - \J/(x - b))2 dF(x) < D2\a - b\s 

for \a\ <. D,, \b\ <. Dj and some 2 > s > 1. 

Assumption B. The function X(a) = —fy(x — a) dF(x), a e U.1, fulfils: X(0) = 0,. 
there exists the first derivative X' such that X'(0) > 0 and 

\X'(a) - X'(b)\ < D3\a - b\r 

for \a\ <. D4, \b\ <. D4 and some D3 > 0, D4 > 0 and r > 0. 

Assumption C. The regression vectors c,- = (cn, ..., cip)', i = 1, ..., n, fulfil: 
[«f] 

n~l ]T c{c\ -> tC as n -> oo for t e (0, 1> 
i = 1 

n 

lim sup n"1 ^ c2
y < +oo , lim sup max {c2

}n~x log3 n} < + co , 
n —• oo 1 = 1 n - » o o 1 %i^n 

j = 1, ..., p, where C is a positive definite matrix and [a] denotes the integer part of a.. 
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Under mild conditions on E typical i^-functions fulfil Assumptions A and B, e.g., 
the Huber i/f-function, \j/(x) = x, x e U1, \j/ being a step function with a finite number 
of jumps. 

The main assertion of the present section is the following: 

Theorem 2.1. Let Assumptions A, B, C be satisfied and let 9k(\j/), be an estimator 
of 0O based on Xx, ...,Xk, p + 1 ̂  k <. n, such that 

max {||0fc(i/t) - 0OI} = Op(\) as n -> oo , (2.1) 
p<k<kn 

max {||A'(O)Cfe
1/2(0fc(,A) - 0O) - C;1'2 £ c^X, - c'fi0)\\ k

v} = 0,(1) 
fc„<fc<n i=p+l 

as n -> oo , (2.2) 

where | • || denotes the Euclidean norm for some y > 0 and some sequence {kn} 
such that k2

n = o (log log n) and /c„ -> co as n ->oo. Then under both the null hypo
thesis 

P(Z„ = j/) -> exp {-2 exp {-j;}} as n -> oo , y e Ul , (2.3) 

where Z„ is defined by (1.8), holds true. 

Moreover, under the alternative Hnl(<5„) (defined by (l . l l)) with 

ldn\\
r+1 = o((n log log n)~112) as n ^ oo (2.4) 

the following holds: 

P( max {k~"2\ £ <A(N; - c'fii^ty)) - \{k > m} . 
p<k </i i = p+ 1 

• £ c;Cr_1
1C /MM'(0)|}(21oglogn)1/2(7-1 -

i = m+ 1 

— 2 log log rc — (log log log n)j2 + (log 4TU)/2 _̂  j ) -> 

-> exp { — 2 exp {—y}} as n -> oo , j ; e IR1 , (2-5) 

where I{A} denotes the indicator of the set A. 

Remark 2.1. Reasonable candidates for estimators 0fc(i/t), p + 1 _̂  k _̂  n, are 
the usual M-estimators, the recursive M-estimators and the stochastic approxi
mation type estimators all generated by the function \J/. From the computational 
point of view the usual M-estimators are less appealing (because they are defined 
implicitly and after each observation one must apply an iterative procedure to get 
the estimator), while the recursive M-estimators are easy to compute, however, one 
needs a stronger version of Assumption C. The stochastic approximation type estima
tor possesses property (2.2) (according to Theorem 2.2 and Remark 2.3 in [7]) and 
relatively easy to compute. Then regarding assumption (2.1) one can use the follow
ing estimators: the estimators Ok(iJ/), p < k :_ kn, can be chosen arbitrary (close 
to 0O), {kn} has the property: k2 = o(log log n), kn -> oo as n -> co, as Okn(ij/) can 
be taken the usual M-estimator (generated by the function \j/) and for k„ _̂  k < n 
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one can use: 

k+í(Ф) = k(ф) + y~l "ÿc^ćҖXi - c\(d) k(ф)), kn<k<n, (2.6) 
i = l 

where 

Ck+l**Ícje't (2.7) 
i = l 

c{d) = ci \c\ < d 

= c ^ l c i l - 1 [|e-|| > d (2.8) 

yk = yt ak s y* ^ «k~
1 

= <*k yt < ak 

a ľ* > flГ1 (2-9) 

yt = (2rfe1/2)"1 J Wxt - c\{d)ekty) + t/r1/2) -
i = i 

-*(Xt-cld)eJ&\-tk-112)) (2.io) 

with t > 0 fixed, afe \ 0, d > 0 large. 

Remark 2.2. The second part of Theorem 2.1 says that the power of the test 
described in Section 1 with w(cc, k, n) defined by (1.9) for contiguous alternatives 
converge to a as n -> oo, which is quite unpleasant. 

However, if 

liminf ||<S„|| n 1 / 2 l o g l o g n > 0 (2.11) 

n-» oo 

1 k 

]T c ; -> c* 4= 0 as m — k -> oo (2-12) 
m — k i = m+l 

the asymptotic distribution of Z„ under H 0 and Hrtl(i5B) are different. 
Moreover, it can be easily seen that 

max j /c~ 1 / 2 | £ CjCf .^cA - mc*\5n log - 1 = o(l) as w->oo, (2.13) 
mgfcgn [ i = m+ 1 mj 

so that 

COT/C) -= /< ' " m r ' d , , I loe— Iff* k > m )n(k) = k-1/2mc*'5„ flog - J o - " 1 k> 

= 0 k < m (2.14) 

represents certain drift corresponding to the alternative Hnl(dn). 

Finally, we should remark that since (3.2), (3.5), (3.7) and (3.10) the maximum 
k 

of fc~1/2| YJ WJ\ ak
 x over p < k <. n can be attained with probability close to 1 and 

i = p + 1 

n large only for log n < k < nXo, for X0 e (0, 1). 
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Theorem 2.1 follows from Theorem 2.2 and Theorem 2.3 below which are of their 
own importance. Theorem 2.2 extends the Darling-Erdos result [4] to a linear 
combination of i.i.d. random variables. Theorem 2.3 concerns certain uniform 
asymptotic linearity results related to M-estimators. 

Theorem 2.2. Let Yl5 ..., Yn be i.i.d. random variables with zero mean, unit variance 
and the finite third absolute moment. Let Assumption C be satisfied. Then 

P( max {k~ 1 / 2 | £ (Yt - c'C^ £ CJYJ)\] < a(log n, y)) 
\<k<n i = l j = 1 

—> exp { — 2 exp { — y}} as n -> GO , yeU1, (2.15) 

where a(log n, y) is defined by (1.10). 

Theorem 2.3. Let Assumptions A, B, C be satisfied. Let 0*, p <. i <. n, be either 
nonrandom or Borel functions of Xlt ...,Xt satisfying: 

max {i1/2\\6*_l - 0O|| log - 1 n] ^ D5 for some D5 > 0 . (2.16) 
p<i<.n 

Then under the null hypothesis: 

1) for each k* > 0 there exists x* > 0 such that for all x > x* and n > k* 
k 

I 
í = l 

P(max {k~í/2\ £ Mži ~ «#?-i) ~ H*i - Cfio) + *(0) <.;(**_, - 00))\] 

> x) <; x~2k*-1/2(\og k*) D6 (2.17) 

for some D6 > 0. 

2) there exists D7 > 0 and x0 > 0 such that for all x > x0 and n > p 

P(max{k->/2\i(^(Xt - c'fiU) ~ H*i ~ CM + A'(0)c\(0*., - 0O))|} 
p<k<n i=\ 

^x) < x~2D7. (2.18) 

3. PROOFS OF THEOREMS 

Proof of Theorem 2.1. Let us start with the null hypothesis. Define {0*}fc as follows: 

o* = ek p<kSK 

= 0fe(<A) if !|Q1/2(0fc(V/) - 0O)1 _ D5, K < k _ n, 

= 61 of ||C1/2(0fcfr) - 0o)|| > £ 5 , K < k _ n , (3.1) 

where 0,̂  is an arbitrary point from {0; [|Cfc
1/2(0 — 0O)| <. D5} (D5 is a constant 

from Theorem 2.3). Then due to the assumptions (2.1) and (2.2) one observes that 

P(max{/c-1 /2 | £ ifr(Xt - <#,--(*))! _ (loglogn)"1) -
k„<k<n i = p+\ 
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- P(max{/c-1 /2 | i ilf(Xt - c'fit,)] _ (log log n)"1) -
kn<_k<n i = p + l 

-> 0 as n -> oo , (3.2) 

which means that it is suffices to prove (2.3) with 0,_ x(\j/) replaced by 0f_x. 

Applying Theorem 2.2 with Y{ = ^(Xt — c'fi0) and n replaced by n0 = log n 
one receives 

P(max{/c-1 /2 | 2 ( ^ - c'fi0) - c'tC7_\ J c ^ f t - c)0o))|} _ 
p < fc 5_ no i = p + l j = p + 1 

__ a(log n0, y)) -> exp{ — 2 exp {— y}} as n0 -> oo , y e 1R1 , (3.3) 

where a(m, y) is defined by (1.10). Clearly, 

4 ° g H°' y) -> 0 as n - > o o , y _ R1 , (3.4) 
a (log n, y) 

which in combination with Theorem 2.3.2) and (3.1) implies that for any £ > 0 
there exists n£ such that for all n — ne 

P( max {/c-1/2| J (A(X; - ^ i - i W | > a ( l o g M ) } < e - (3-5) 
p<kgno i = p + l 

Next, applying Theorem 2.3.1) with k* = n0 = log n, x = log~a n, 0 < a < r/4, 
one observes 

(log nf2 max {/c~1/2| £ (*(__. - c'fiti) - +{Xt - _i_0) + 
n o _ k _ " i = p + l 

+ A'(O)c;(0f_1 -0 O ) ) |} = op(l) as n ^ o o (3.6) 

which together with (3.1) and the assumption (2.2) ensures that 

(log*)' max {/c-1/2| £ ty(__( - c0*._) - *(__, - c';0o) + 
«o _ fc _ n i = p + 1 

+ c\C;\ Yc'j^Xj - c'.0o))|} = op(l) as n -> oo (3.7) 
y = p + i 

for some /? > 0. This relation together with Theorem 2.2 with Y; = i//(x,- — c|-0o), 
n0 — i — n, implies 

P( max {/c"1/2| £ «A(xi - cW_0|} __ a(log n, y)) 
"o_fc _ n i = 1 

-> exp { — 2 exp { —y}} as n -> oo , y e IR1 . (3.8) 

The assertion of Theorem 2.1 under H0 can be easily concluded from (3.2), (3.5) 
and (3.8). 

As for the alternative ( l . l l ) , one realises that (2.2), (3.5), (3.8) holds true even 
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in this case. Consequently, the asymptotic distribution of Z„ is the same as that of 

max {k~1/2\ £ ty(Xt - c'fi0) - c'id^ £ ' CjiftXj - c'j0o))\} . 
nogfc^n i = p+ 1 j = p+ 1 

. (2 log log n)1/2 - 2 log log n - (log log log n)\2 + (log 4TT)/2 . (3.9) 

Next, one should notice that by the Chow inequality for all 0 < Xx < X2 S 1 

max {k~1/2\ £ ty(Xt - c'fi0) - fy(Xt - cfi0) -
[n;.i]^fcg[nA2] i = p+l 

- c'iC7_\ £ c,(^(X, - c;B0) - Etfr(X, - c;B0)))|} = 0,(1) (3.10) 
J = p + 1 

as n -> oo, and, moreover, 

max { / T ^ £ Ety(X. - c0o) - c j C ^ £ ' c>(Z , - c'j0o))\} = 
[«Ai]gfc^[n/l2] i = p + l _/ = P + l 

= max {k~1/2\ £ (A(-c'iSnn-1/2) - c'C^ £ c ^ - c ^ n " 1 / 2 ) ) ! } 
[>!/. i]^/c 5; [1^2] l' = m + l j = m+l 

= max {fc->/2| £ (c; - dCfl1! I c/r}) <5„ «--t-A'(0)| (1 + o(l))} 
[/iAi]^fcg[ia2] ; = m + l J = m+1 

= O(l) as n -> 00 . (3.11) 

The last two relations imply that both under H0 and Hnl(<5„): 

max {k~1/2\ £ (x{f(Xi - c'fi) - c\Cjlx £ c>(X, - c'j0o))\} 
[nAi]gfcg[nA2] ; = p + l J = P + 1 

= 0,(1) , as n -> 00 , (3.12) 

which easily implies that the asymptotic distribution of Z„ is the same under both 
H0 and Hnl(dn). • 

Proof of Theorem 2.2. The proof can follow the same line as that of the Darling-
Erdos theorem which is based on a suitable application of the Berry-Esseen theorem 
and the law of iterated logarithm. 

Going carefully through the proof of Darling-Erdos theorem [4] we find that, 
in our case, it suffices to show: 

fc 
(i) var (Sk - Sv) = k - v + £ c'-<Cj}xCi, p < v < k < n , 

1 = V + 1 

where 

Sk = i(Yi-CiCr_\£cjYj), k = l; 
; = i j = i 

(ii) sup]P(Sfc < * V(var Sfc)) - <P(x)\ < Qxk~1/2 , k = l , xeU1 

X 

for some constant Qx > 0 (not depending on k), <P is the distribution function 
of N(0, 1) (the Berry-Esseen bound); 

399 



(hi) lim sup — '—^ < +00 a.s. 
k-^00 (kloglogk)1'2 

(the law of iterated logarithm). 
The property (i) follows by direct computations. 
Now, we turn to (iii), by Theorem 10.2.2 in Petrov [10], if for arbitrary e > 0 

1™ SUP ( £ 4 ) - 1 £ m 4 * 2 = s 2 £ 4/iQg iQg ( £ 4)} • 
ft -»00 i = 1 ft = fto s = 1 s = 1 

. c2,x2dE(x) < + 0 0 , j=l,...,/?, (3.13) 
and 

(x> k k k k 

I (Z 4 log log G 4))-> j i h v s 6
214/iog log ( v «*)}. 

fc=fcos=l q=l s = l 5 = 1 

. c2jx2 dF(x) < •+ 00 , 7 = 1, ..., p , (3.14) 

for some /c0, where I{A} denotes the indicator of a set A, E is the distribution function 
of Yt is fulfilled, then 

lim sup I £ ctjYt\ ( £ c2, log log ( £ cf,))-1/2 = 1 a.s. (3.15) 
ft -* 00 i = 1 i = 1 i = 1 

j = \,...,p. Validity of (3.13) and (3.14) is easily implied by the following three 
inequalities: 

jl{c2,x2
 = s2 £ c2,/log log ( £ c2,)} c]jx2 dF(x) = 

s = 1 q = 1 

= £-1|c„|3E|Y1|3(loglog(£c2,))1/2(£c2,)-1/2, (3.16) 
q = 1 s = 1 

^ £ |c o . | 3( loglog0 1 / 2 / - ] / 2^^ 1(£ 4 ) 3 / 4 ( £ (rMoglog/)2)1/4
 = 

i = fto i = fto i = fco 

^Q2k-i'\ (3.17) 
00 00 00 

1 r3/2|c„|3(l0gl0gr)-1/2 S f (Ioglog/C0)-
1/2 X |Cy|3 £ r5,2 = 

i = fto i = fco s = i 
GO 

< Q3(l0g log /C0)-1/2J; S-3/2 < + 0 0 (3.18) 
/ s = fto 

for some Q2 > 0, Q3 > 0, k0 > 0. Hence (3A5) is true. By Assumption C, the 
relation (3.15) can be rewritten as follows: 

limsup|XcyY",|(cfJfcloglogfe)-1/2 = 1. a.s. j = l,...,p, (3.19) 
ft-»oo i = 1 

k 

where 0 < c2 = lim AT1 £ c2., which immediately implies 
ft-» 00 / = i 

ft ř - 1 

lim sup | £ ^CГl1. £ c,Y,| (/c log log * ) - , / 2
 = 

fc -* 00 ř = 1 J—l 
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<_ Q 4 l imsup j ; | c l | | . Her.1!| (Hoglog i)1/2(k\og,logk)~1/2 __ 
fc—> co i = 1 

k 

< Q5limsup£ \\ct\\ r
1 / 2 / c " , / 2 < +00 . (3.20) 

fc - • CO 1 = 1 

Hence (iii) is proved. 

It remains to show (ii). Since Sk is the sum of independent random variables one 
has the Berry-Esseen bound 

sup|P(S, < ( v a r S / ( ) 1 / 2 ) - 0 ( x ) | < 

< : Q 6 f ; E | Y . | M l - c ; I C/J^ , ! 3 (var 5 , ) - 3 / 2 , fe^l, x e R 1 (3.21) 
i = l j = i + l 

for some Q6 > 0. Thus to obtain (iii) it remains (due to (ii)) to show that 

I | l - c : I CT_\cj\3 __ Q,k (3.22) 
i = l j=i+l 

for some Q7 > 0. Clearly, the left hand side of (3.22) is smaller or equaled to 

k + 3 £ I \c\Cjl_Cj\ + 3 i HI2 ( i \\C7_\CJWY + 
i = 1 j = i + 1 i = 1 j = i + I 

+ I N | 3 ( I ICT-VJ)3 . (3.23) 
i = 1 j = i + 1 

Applying some elementary inequalities and Assumption C one receives 

I INI3( I llc;-',^!)3 = e i IN3 E 1 1 II<7X1 • 
i = l j ' = i + l i = l i<Ji<J2<J3^k 

k 

\\r~lr II \\r"lr II + \ y 11/* II3 y v ilr^V II2 l lr~V II + 
[|C72 CJ2|| [|CJ3 CJ3ll + ^ L \\Ci\\ L L H I S , CJ, | | HCJ2 Cj2\\ + 

1 = 1 i<jl<J2<.k 

k k 

+ i ic~ ,e II i i c _ , c \\2) + y lie ii3 y i ic_ 1e ii3 < 
+ HSi S'III IIS'2 c72ll ) ^ L \\ci\\ L IIV/ CJ\\ = 

i = 1 j - i + 1 

^ ( M i l l I N3flj7!KII + 
1 < « < J 1 <J2<J3<.k V = l 

2 

Z \—' \—' ii ii^ T—r . i n i i / . i l l n .— i n ii\ 

I I INI 3UJV \\cJOthiW +J21
 \\CJ2\\) + 

l<:i<Ji<J2<1k v = l 

+ 1 1 N 3 F W ) <=&,*• (3.24) 
1 < i<j<:k 

The other terms in (3.23) can be treated in the same way. They are also bounded 
from above by k multiplied by a constant (not depending on k). Hence the inequality 
(3.22) is true. The assertion (ii) is proved. ___ 

Proof of Theorem 2.3. To be brief we prove only (2.17) for (2.18) can be proved 
in the same way. 

401 



Since 

{ E (f(xt - cfiti) - H*i - Cfio) + x(c'i(eti - e0)), P +1 ^ k ̂  «} 
; = 1 + p 

is a martingale one has by the Chow inequality: 

P(max{/<-1 / 2 | i (HXt-cfiU) - H^i-cfio) + X(e\(eU ' *o)))|} ^ 
fc*^fcg« / = p + i 

^ j ^ - ^ s V ^ f f e + i n E E(,A(X;-c;Ci)-^i-e;Bo)))2 + 
k=fc* i = p + l 

+ n-1 i E(i>(^ - e;Ci) - *(*« - ^0))2} ^ 
.=p+1 

^ 6 i o ^ 2 Z r 2 E \\ci\\
rrr/2logri + n-1 E N | r ' / 2 log'/ 5S 

fc = fc* i = p + l i = p+\ 

S Q u ^ ^ - ^ l o g W c * . (3.25) 

Next, by Assumption B 

\Me'(eU - e0)) - cpU - e0)x'(o)\ ̂  #'<••"-*» pi'M - r(o)| dj 

^ DafiulkirMO - l)"1/2log(/ - 1)X+1 (3.26) 

which implies 

max {/c-1/2| E (KWU - e0)) - A'(o)c;((Ci - Ml ) --
fc*Sfcg« i = p + l 

g Q13 max {/T1/2 E Nl'+1((* ~ 1)~1 / 2M'' - \))r+l} S 
fc*gfcgn i=p+l 

^ Q14k*-rI2(logk)r+1 . (3.27) 

Taking into account the assumptions, the needed assertion follows from (3.27) and 
(3.25). • 

(Received September 26, 1989.) 

R E F E R E N C E S  

[1] J. Antoch and M. Huskova: Some M-tests for detection of a change in linear models. In: 
Proceedings of the Fourth Prague Symposium on Asymptotic Statistics (P. Mandl, M. Hus
kova, eds.), Charles University, Prague 1989, pp. 123—136. 

[2] R. L. Brown, J. Durbin and J. M. Evans: Techniques for testing the constancy of regression 
relationships over time (with discussion). J. Roy. Statist. Soc. Ser. B 37 (1975), 149—182. 

[3] M. Csorgo and L. Horvath: Nonparametric methods for changepoint problems. Hand
book of Statistics, vol. 7 (P. R. Krishnaiah and C. R. Rao, eds.). North Holland, Amsterdam 
1988, pp. 4 0 3 - 4 2 5 . 

[4] D. A. Darling and P. Erdos: A limit theorem for the maximum of normalized sums of in
dependent random^ variables. Duke Math. J. 23 (1956), 143—155. 

402 



[5] P. Hackl: Testing the Constancy of Regression Models over Time. Vandenhoeck and Rup-
recht, Gottingen 1980. 

[6] M. Huskova: Stochastic approximation type estimators in linear models. Submitted, 1989. 
[7] M. Huskova: Recursive M-tests for change point problem. In: Structural Change: Analysis 

and Forecasting (A. H. Westlund, ed.), School of Economics, Stockholm 1989. 
[8] M. Huskova and P. K. Sen: Nonparametric tests for shift and change in regression at an 

unknown time point. In: The Future of the World Economy: Economic Growth and Structu
ral Changes (P. Hackl, ed.), Springer-Verlag, Berlin—Heidelberg—New York 1989, pp. 
7 3 - 8 7 . 

[9] P. R. Krishnaiah and B. Q. Miao: Review estimates about change point. Handbook of 
Statistics, vol. 7 (P. R. Krishnaiah and C R. Rao, eds.). North Holland, Amsterdam 1988, 
pp. 3 9 0 - 4 0 2 . 

[10] V. V.Petrov: Sums of Independent Random Variables. Springer-Verlag, Berlin—Heidelberg 
— New York 1975. 

[11] P. K. Sen: Recursive M-tests for the constancy of multivariate regression relationships 
overt ime. Sequential Anal. 5(1984), 191 — 211. 

[12] S. Zacks: Survey of classical and Bayesian approaches to the change point problem: fixed 
sample and sequential procedures of testing and estimation. In: Recent Advances in Statis
tics. Papers in Honour of Herman Chernoff's Sixtieth Birthday, Acad. Press, New York, 
1983, pp. 2 4 5 - 2 6 9 . 

Doc. RNDr. Marie Huskova, CSc, katedra pravdepodobnosti a matematicke statistiky matema-
ticko-fyzikdlni fakulty Univerzity Karlovy (Department of Statistics, Faculty of Mathematics 
and Physics — Charles University), Sokolovskd 83, 186 00 Praha 8. Czechoslovakia. 

403 


		webmaster@dml.cz
	2012-06-05T21:29:55+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




