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K Y B E R N E T I K A - V O L U M E 25 (1989), NUMBER 6 

MEDIUM DISTANCES 
OF PROBABILITY FUZZY-POINTS 
AND AN APPLICATION TO LINEAR PROGRAMMING 

TRAN QUOC CHIEN 

In the paper the notions of probability-fuzzy points and medium distances in metric space 
are defined. These concepts are then applied for solving degenerated linear programs. 

1. PROBABILITY-FUZZY POINTS 

It is well known that a fuzzy point a in a space X is defined by a characteristic 
function 

/.:.*•-> [ < U ] . 

HereL(x) presents the probability that x = a. if we accept the addition operation 
of such possibilities then it may happen that the possibility of a is greater than 1 
for some xe X. This fact somehow contradicts our normal 'probabilistic' thinking. 
Therefore we propose now a new concept, namely probability-fuzzy points, which 
eliminates the mentioned discrepancy. 

In what follows we suppose that a cr-algebra 9C of subsets in the space X is given. 
A probability-fuzzy point a in X is characterized by a probability measure \ia on 
(X, 9C) (it means, among others, fxa(X) = l). Now for all A e 9C we have 

0 = fia(A) fS 1 

what expresses the probability that a e A. 
A deterministic point a e X has its characteristic probability measure /ia of special 

form 
', .N [1 if a G A 

"'{A) =\0 if at A 

The space X is thus embedded into the space of all probability-fuzzy points, denoted 

b y * , . 

Now we suppose that a cr-finite Haar measure \i is defined on (X, 9C), where X 
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is equipped with a group operation ' + '. If there exist density functions fa and fb 

of the probability measures \ia and \ib with respect to \L, we can easily define the sum 
a + b by means of convolutions (see [2, 3]). Indeed, the density function correspond­
ing to the sum a + b is naturally defined as follows 

fa + b(x) = ixfa(z) .fb(x - Z) d[i(z) 

= ixfa(x - y).fb(y)dfi(y) 
and 

Va + b(A) ~ iAfa + b(x) dfl(x) . 

In virtue of Fubini's Theorem on iterated integrals (cf. [1]) we have 

Ha+b(X) = ixfa + b(x) dfi(x) 

= ix(ixfa(z) • fb(-z + x) &fx(z)) dn(x) 

= ix(ixfa(z) • fb(~z + x) dn(x)) dn(z) 
= ixfa(z) . (ixfb(-Z + X) dfi(x)) dM(z) 
- ixfa(z) dn(z) - 1 . 

So na+b is in fact a probability measure where all integrals are allowable because 
the function fa+b(x) is integrable and ^"-measurable (see [3], Statement 2.1). 
It should be stressed that by means of probability-fuzzy points one eliminates the 
trouble appearing with the 'min' operation in the definition of sums of fuzzy quanti­
ties as it is done in [2]. 

2. MEDIUM DISTANCES 

Now we suppose that the space X is provided with a metric Q(X, y) defined for 
deterministic points in X. We shall extend the metric Q(X, y) to the space Xp of 
probability-fuzzy points by means of the notion of medium distance proposed 
as follows. 

Let a and b be probability-fuzzy points with characteristic measures \ia and jib 

respectively. Let jia ® }ib denote the product measure of fia and pib on the Cartesian 
product (X, dt) x (X, 3C), where $£ contains all open subsets of X. Then the function 
Q(X, y) is integrable and the Lebesgue integral 

ixxxQ(x,y)dna® fib 

will be called the medium distance of points a and b and denoted by dm(a, b). 
It is easily seen that if a and b are deterministic points then dm(a, b) coincides 

with Q(a, b). The symmetry property 

dm(a, b) - dm(b, a) Va,beXp 

immediately follows from the definition. As for the triangle inequality it needs 
a detailed proof. 
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Let a, b and c be arbitrary probability-fuzzy points. We have 

dm(a, b) = $XXXQ(X, y) d/*a ® fib(x, y) 

= $x*x Q(x, y) d[ia ® nb(x, y) . Jx d^c(z) 

= Sxxxxx Q{x, y) dfia ® fib ® /ic(x, j , z) 

^ Jxxxxx [e(*>-0 + e(*» Y)] d/*a ® l*b ® t-c(*> >', z) 
= Jxxxxx (̂JC, Z) d/*a ® ft ® 0c(x, J, Z) + 

+ Jxxxxx <?(y. z) d//a ® ft ® iic(x, y, z) 

= h*x Q{X, -*) dft ® ft(x, z ) . j x dfib(y) + 

+ Ixxx Q(y> -0 fyb ® i«e(.V, -) • jx <-•"«(*) 

= -?«(«» c) + rfm(c, b) . 

Now, let a eXp and B c X. The medium distance from a to B is similarly defined 
as 

dm(a, B) = j x Q(X, B) dft(x) , 
where 

Q(X,B) = inf{Q(x,b): b e B} 

is the usual distance from x to the set B. 

Remark. The medium distance does not fulfill the property 

dm(a, b) = 0 o a = b 

and it prevents dm(a, b) to be a metric in the traditional sense. However, if we consider 
probability-fuzzy points as random points varying with respect to time, then the fact 
that the distance between a point and itself is positive is acceptable. Here it is in place 
to remind the famous statement of Heracleitos: 'One cannot enter twice into the 
same river'. 

3. EXAMPLE 

Let X = R" and 
n 

Sa = {x = (*]_, ..., x„) e W: xt ^ c Vi and £ xt = a} 
i = l 

where c is a fixed positive constant and a is a parameter satisfying 

(3.1) \a\ _s c . n . 

Since Sa are parallel affine spaces of dimension re — 1 there exists the same positive 
atomless measure v, on the c-algebra of measurable sets, for all of them, similarly 
as in R""1. 

Further, we define pa as a probability-fuzzy point with uniform probability distribu­
tion on Sa, i.e. pa has the density function fa on Sa such that 

fa(x) = llv(Sa) V x e S a . 
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The characteristic measure /.ia of pa is then defined by 

Va(S) = v(S n Sa)lv(Sa) VSc 
Let us denote 

Г+ = {x = (XÍ,...,X„)GU":XІ = 0 Vi = !,...,«} 

We shall consider the medium distance from pa to W+ and prove that, as a function 
of parameter a, dm(pa, R+) is decreasingly monotone. 

Putting , 
C = (c, ...,c)eUn 

n —times 

then the following lemmas are easily verifiable. 

Lemma 3.1. For all a e [0, nc] we have 

(3-2) sa-c = xa(s0-c), 
where 

(3-3) K = (nc — a)jnc . 

Lemma 3.2. For all a e [0, nc] we have 

<Sa) = v(Sa - C) = 

= K~1v(S0-C) = X"a-
lv(S0) 

(see Fig. 1). 

C 
, 

C 

0 Ч a\ 

-sa 

Fig. 1. 'S0 

Statement 3.1. If nc = a > b = 0, then 

dm(pa, K) < dm(pb, U\) . 
Proof. We have 

UP., K) = - ± - k [ I x?]"2dv(x) = - J — k - c [ I (y, + cfY'2My) 
V{ba) Xi<0 Aa V\S0) y i < - c 

(by Lemma 3.2 and substitution y = x — C) 

--—^L-d I (^z, + ^]"2^r1dv(z) = 
X a V\^o) zi<-c/Xa 

(by substitution 3; = Aa. z) 

- ^ j k - c C Z (i. z, + cf]^ dv(z). 
V ^ o j Z j <-c/A a 
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Analogically, 
1 

dm(Pb, K) - 7^7 L-c [ 1 & *i + <0T2 dv(z) . 
V(S0J z;<-c//lb 

Since a > b one has Aa < Afc (see (3.3)). Then 

-c/Aa < - c / ^ 
and hence 

(Xa. zt + c)2 < (Xb. zt + c)2 for such zt that z£ < -c\Xa 

Consequently we obtain 

dm(Pa, R"+) < -*„.(->* -T+) 
and the proof is complete. 

Now consider the case — nc <. a <. 0. Obviously 

Lemma 3.3. For all a e [ — nc, 0] we have 

(3-4) Sa + C = pa(S0 + C) 

where 
(3.5) /ja = (nc + a)\nc . 

Lemma 3.4. For all a e [ — nc, 0] we have 

v(Sa) = v(Sa + C) = pi'l v(S0 + C) = / T 1 v(S0) 

(see Fig. 2). 

V 

. 

V 
0 

-C a \ 

-C -C -c 

D 

Fig. 2. 

Statement 3.2. If 0 ^ a > /3 ^ - n c , then 

dm(pa, K) < dm(pb, K) 
Proof. We have 

dm(pa, K) 7^k[Z^T 2dvW-
v(Sa) Xi<o 

5--iVT«.tc[Z0'.-«')T/,«K-)-
Pa V(3 0 / l y ,< C 

(by Lemma 3.4 and substitution y = x + C) 
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= J j T T T ^ L + c [ I (Pa -. - c)2Y'2 R'1 dv(z) = 
Pa VW0) Zi<c/f}a 

(by substitution y = fia..z) 

= - 7 ^ k + c [ E (A, z, - c)2]'/> dv(z) . 
V(S0 j z;<c//?a 

Analogously 

dm(pb,U\) = 1
i~[So + c[ I fez;-c)2]1/2dv(z). 

Since a > 6 one has /?a > /i6 (see 3.5). Then 

<#„ < e/A 
and hence 

(fl,. z, - c)2 < (/i6. zf - c)2 for such z(- that z-t < c//Ja. 

Consequently, we obtain 

dm(Pa, K) < dm(Ph, K) 
and the proof is complete. D 

4. AN APPLICATION TO LINEAR PROGRAMMING 

First, we briefly recall the simplex method for solving linear programs. Consider 
the problem 
(4.1) / = c . x -> max 

s.t. 
(4.2) A.x = b 

(4.3) x ^ 0 

where c = (cu ..., cn) e U", b = (bx, ..., bm)' e W", A = (au)mX„ and x = 
= (x1,...,xn)

feU". 
Suppose that m < n and rank (A) = m. A vector x e W is a feasible solution 

if is fulfills (4.2) and (4.3); an optimal solution if it fulfils (4.1), (4.2) and (4.3); a basic 
solution if it is a feasible solution and the columns cij of A corresponding to positive 
components Xj > 0 are linearly independent. A basis of a basic solution x is an 
arbitrary system of m linearly independent columns of A including all those corre­
sponding to positive components of x. A basic solution is degenerated if it has less 
than m positive components. Problems (4.1) —(4.3) is degenerated if it has degenerated 
solutions. 

Let us have a basic solution x = (x l5 ..., xn) of problems (4.1) —(4.3) with the basis 

Aa = [ay. Oj is thejth column of A and j e a] 

the basic variables 
xa = {xjijeer} 
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and the nonbasic variables 
xo = {xyjeco = {1,..., n}\a} 

where a denotes the set of indexes of basic variables. 

We have then the corresponding simplex tableau 

Tableau 1. 

~x<x> 
xa 

1 . - X j . . . 

f ß*0 • ßoj---

xi ßiO • ßij---

where 

(4.4) B = {f}iJ) = A;1.Am, p = {pi0) = A;1.b, A=%}) = ca.B-cmy 

/300 = ca . i3 , ca = {cy j G a} and ca = {cy jeo} . 

The simplex iteration procedure consists of the following steps. 

Step 1. Testing of optimality: 
(4.5) A = (/J0;),-eco = 0 

If (4.5) holds then x is an optimal solution. Stop. Otherwise go to Step 2. 

Step 2. Testing of boundedness: 

(4.6) 3j G co: Poj < 0 and fitJ = 0 Vie i r . 

If (4.6) holds then c . x is not bounded from above. Stop. Otherwise go to 
Step 3. 

Step 3. Constructing of an improved solution: 

Choose a /i0s < 0, usually the smallest one, and determine 

(4.7) 6 = min {j8i0//iis: i e a and pis > 0} . 

Let fitolPts = 0. Perform the Jordan-Gauss elimination procedure: 

/ 4 8 x B' =8 - M ? V ; G ( < T ' \ { S } ) U { 0 } 

K'} ' ' fits V, .G(a ' \{ t})u{0} 

P'sj= PtjlPu Y /G(a / \ { t} )u{0} 

P« = 1//3* 
Pit = -PiJPts ViG(<7'\{t})u{0} 

where 
o' = {a\{t})Kj{s}, co' = ( c o \ { s } ) u { t } . 
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We obtain a new simplex tableau, Tableau 2, and a new basic solution x' 
with improved values 

(4.9) ftp = f$Oo-0. p 0 s . 

Tableau 2. 

*V 
ЛV 1 . ..-Xj... 

/ Bóo . . ß'0j... 

л» ßiO . . ßij... 

Go to Step 1. 

If the problem (4.1)—(4.3) is degenerated, there may exist several basic variables 
xt with Pt0lPts = 9 and one faces the question which of them to choose. In practice, 
the variable with the smallest index is usually chosen. In order to avoid cycling one 
can use the lexicographical rule. 

However these rules do not take into consideration the optimality criterion and 
the iteration procedure for finding an optimum solution is in many cases unneces­
sarily prolonged. 

Let us consider f}'oji j eco'. We know that 

Pot- -PoJP»>0. 

Hence the optimality criterion (4.5) in this iteration reduces to 

(4-10) At = ( / ^ W M , } = 0 

which is equivalent to 

(4.11) d(At, Un~m-1) = 0 

where d(', •) denotes the normal distance in Un~m~l. 
If we know the exact value of At, it is not a problem to verify condition (4.11). 

However, if the information about At is not complete, At becomes a non-exactly 
known vector and one naturally turns to 'fuzzy theory' for help. In what follows we 
shall present one such possible help. 

Suppose we know only the sum of all components At 

(4-12) dt = I P'0J 
jeco'\{t] 

and the data are random enough and do not exceed some limit c > 0. Then we can 
assume that At is uniformly distributed on the set 

n — m— 1 

SSt = {z = (zu ..., z„_m_!): £ z . = dt and |z£| = c Vi = 1, ..., n - m - 1} . 
; = i 
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Now J , becomes a probability-fuzzy point in U" m x and one disposes of the medium 
distance dm(At, R" - m _ 1) considered in the preceding section. Put 

M = {k:kea and pk0jpks = 6} . 

Then the optimality condition (4.11) is equivalent to 

(4.13) d(At, U"---1) = min {d(Ak, U^-1): k e M} = 0 . 

So it natural to choose t e M that such 

(4.14) d(At, U"-"1'1) = min d(Ak, U",'"1-1) . 
keM 

However the Ak are not exactly known. Therefore we logically use the medium di­
stance and (4.14) becomes 

(4-15) dm(At, D*;--1) = min dm(Ak, U"^'1). 
keM 

It follows from the results of Section 3 that (4.15) is equivalent to 

(4.16) 8t = max {Sk: k e M} . 

By virtue of (4.8) and (4.12) we have 

(4-17) dk- I Poj-Pas( Z PvM*.-
jem\{s} j<?.co\{s} •*' 

Since £ fi0j is invariable and - p0s > 0, condition (4.16) is equivalent to the 
jeco\{s} 

following condition 

(4-18) ( I PtJ)lPu-m»x( E fa)/!!* 
jea>\{s} keM jem\{s} 

which is called the Maximum-Sum Rule. 

The following examples show the advantage of the Maximum-Sum Rule as com­
pared with the lexicographical rule. 

Example 1. Consider the program 

/ = — 2xx — 3x2 — 3x3 — 8x4 — 4x5 —> max 

s.t. 

2x2 + x4 + 7x5 = 14 

5x2 + x3 + 2x5 = 4 

xx + x2 + 2x5 = 8 

xj = 0 V; 

Applying the lexicographical rule we get an optimal solution after three simplex 
tableaux, see Tableau 3, 4 and 5, and the comment attached to them. 
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In the passage from Tableau 3 to Tableau 4 — = \ = 2 is the minimum in (4.7), 
hence according to the lexicographical rule x 4 is excluded from the basis. 

Tableau 3. Tableau 4. 

1 ~ x 2 ~ x 5 1 - * 2 - л r 4 

/ 140 - 3 0 - 6 2 / 

x5 

* 3 
xx 

16 

2 

0 

4 

- 86/7 

2/7 

31/7 

3/7 

62/7 

XĄ 

* 3 
xx 

14 
4 
8 

2 
5 
1 

7 
2 
2 

/ 

x5 

* 3 
xx 

16 

2 
0 
4 

- 86/7 

2/7 
31/7 

3/7 

1/7 
- 2 / 7 
- 2 / 7 

Tableau 5. 

1 ~x3 —XĄ, 

/ - 1 6 86/31 250/31 [ 

*5 
x2 
xì 

2 

0 

4 

However the Maximum-Sum Rule enables to obtain the optimal solution only 
after two simplex tableaux as it is shown by Tableau 6 and 7 below. Here f > f, 

Tableau 6. 

1 - * 2 - * 5 

/ - 1 4 0 - 3 0 - 6 2 

* 4 14 2 7 

* 3 4 5 2 
Xy 8 1 2 

Tableau 7. 

1 - * 2 ~ * 3 

/ - 1 6 125 31 

hence § is the maximum in (4.18). So according to the Maximum-Sum Rule x3 is 
excluded from the basis. 

Example 2. Let us consider the well known Beale's example (see Gass [4], 
Chapter 7) 

4Xj — 150x2 + Y0X3 — 6x4 -> max 
s.t. 

|xj_ — 60x2 — 23X3 + 9x4 + x5 = 0 

\xx - 90x2 - 5̂ X3 + 3x4 + x6 = 0 

x3 + x7 = 1 

xj ^ 0 Vj 
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This example is degenerated. If one choses among the variables realizing the 

minimum in (4.7) the one with the smallest index, cycling will appear. In order to 

avoid cycling we can use the lexicographical rule and obtain the optimal solution 

after six simplex tableaux, see Gass [4], Chapter 7. 

However, applying our Maximum-Sum Rule one gets the optimal solution much 

faster, after three simplex tableaux, as it is shown by Tableau 8, 9 and 10 below. 

Tableau 8. 

1 -xx ~*2 -*з -*4 

f 0 -3/4 150 -1/50 6 

Tableau 9. 

1 —x6 -*2 ~*3 - Д f
4 

f 0 3/2 15 -1/20 21/2 

0 1/4 - 6 0 -1/25 
0 1/2 - 9 0 -1/50 
1 0 0 1 

9 x- 0 -1/2 - 15 -3/100 15/2 

3 xt 0 2 -180 — 1/25 6 

0 x
7
 1 0 0 1 0 

Tableau 10. 

1 ~*б -*2 -x7 ~*4 

/ 1/20 3/2 15 1/20 21/2 

3/1000 
1/25 

In the passage from Tableau 8 to Tableau 9 we have ( — 60 — 25 + 9): 4 = —204-16; 

(—90 — jo + 3): | = —174-04. So according to the Maximum-Sum Rule x6 is 

excluded from the basis. 

(Received January 25, 1988.) 

R E F E R E N C E S 

[1] A. N. Kolmogorov and S. V. Fomin: Elements of Function Theory and Functional Analysis. 
Nauka, Moscow 1972. In Russian. 

[2] M. Mares: How to handle fuzzy-quantities. Kybernetika 13 (1977), 1, 23 — 40. 
[3] M. Mares: Fuzzy-quantities with real and integer values. Kybernetika 13 (1911), 1, 41—56. 
[4] S. I. Gass: Linear Programming — Methods and Applications. McGraw-Hill, New York 

1969. 

RNDr. Tran Quoc Chien, CSc, Department of Mathematics, Poly technical School of Da-nang. 
Da-nang. Vietnam. 

504 


		webmaster@dml.cz
	2012-06-05T20:38:51+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




