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KYBERNETIKA — VOLUME 25 (1989), NUMBER 6

MEDIUM DISTANCES
OF PROBABILITY FUZZY-POINTS
AND AN APPLICATION TO LINEAR PROGRAMMING

TRAN QUOC CHIEN

In the paper the notions of probability-fuzzy points and medium distances in metric space
are defined. These concepts are then applied for solving degenerated linear programs.

1. PROBABILITY-FUZZY POINTS

It is well known that a fuzzy point a in a space X is defined by a characteristic.
function

far X = [0, 1] .

Here f,(x) presents the probability that x = a. If we accept the addition operation
of such possibilities then it may happen that the possibility of a is greater than 1
for some x € X. This fact somehow contradicts our normal ‘probabilistic’ thinking.
Therefore we propose now a new concept, namely probability-fuzzy points, which
eliminates the mentioned discrepancy.

In what follows we suppose that a g-algebra Z of subsets in the space X is given.
A probability-fuzzy point a in X is characterized by a probability measure u, on
(X, &) (it means, among others, p,(X) = 1). Now for all A€ Z we have

0=<pf4)=1

what expresses the probability that a € 4.
A deterministic point @ € X has its characteristic probability measure p, of special
form

1 if aeAd
rald) = {0 if a¢a
The space X is thus embedded into the space of all probability-fuzzy points, denoted

by X,.
Now we suppose that a o-finite Haar measure p is defined on (X, &), where X
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is equipped with a group operation ‘+’. If there exist density functions f, and f,
of the probability measures y, and g, with respect to u, we can easily define the sum
a + b by means of convolutions (see [2, 3]) Indeed, the density function correspond-
ing to the sum a + b is naturally defined as follows

fa+b(x) = _fxf;;(z) 'fb(x - Z) d/.L(z)
= [xfux = ¥) . fo(y) du(y)

,Lt,,ﬁ,(A) = ‘fAfa+b(x) d,u(x) .
In virtue of Fubini’s Theorem on iterated integrals (cf. [1]) we have

tua-{-b(X) = _[Xfa+b(x) d,u(x)

= [x(Jx ful2) - fo( =z + x) du(2)) du(x)

= [x([xfu2) - fo( =z + x) dp(x)) dp(z)

= [xfu2) - (fx (=2 + x) du(x)) du(z)

= ija(Z) du(z) = 1.
So u,4, is in fact a probability measure where all integrals are allowable because
the function f,,,(x) is integrable and %-measurable (sec [3], Statement 2.1).
It should be stressed that by means of probability-fuzzy points one eliminates the
trouble appearing with the ‘min’ operation in the definition of sums of fuzzy quanti-
ties as it is done in [2].

and

2. MEDIUM DISTANCES

Now we suppose that the space X is provided with a metric ¢(x, y) defined for
deterministic points in X. We shall extend the metric o(x, y) to the space X, of
probability-fuzzy points by means of the notion of medium distance proposed
as follows.

Let a and b be probability-fuzzy points with characteristic measures y, and p,
respectively. Let u, ® y, denote the product measure of p, and g, on the Cartesian
product (X, Z) x (X, &), where & contains all open subsets of X. Then the function
o(x, y) is integrable and the Lebesgue integral

IXXX Q(X, y) d.ua ®/’lb

will be called the medium distance of points a and b and denoted by d,(a, b).
It is easily seen that if @ and b are deterministic points then d,(a, b) coincides -
with g(a, b). The symmetry property

d,(a,b) = d,(b,a) Va,beX,

immediately follows from the definition. As for the triangle inequality it needs
a detailed proof. '
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Let a, b and c be arbitrary probability-fuzzy points. We have

dm(a; b) = _[xxx Q(xa y) dp, ® /-‘b(x’ y)
= fxxx Q(xa J’) dy, ® /‘lb(x) y) . jx dyc(z)
= [xxxxx 0(® y) dpu, ® py ® p(x, y, 2)
= _[XXXXX [Q(x, Z) + Q(Z, J’)] du, ® w ® ﬂc(X, ys Z)
= IXXXxX Q(x’ Z) du, ® 1, ® /‘c(x: Vs Z) +
+ fxxxxx ey, 2) dita ®  ® po(x, , 2)
= fxxx Q(X, z)du, ® Mc(x’ z). Ix dpy(y) +
+ Jxxx (v, 2) Ay ® pe(y, 2) - fx dpalx)
=d,(a, c) + d,(c, b).
Now, let a € X, and B = X. The medium distance from a to B is similarly defined
as

dula, B) = [ o(x, B) din(x)

o(x, B) = inf {g(x, b): b € B}

is the usual distance from x to the set B.

where

Remark. The medium distance does not fulfill the property
da,b) =0<a=15b .
and it prevents d,,,(a, b) to be a metric in the traditional sense. However, if we consider
probability-fuzzy points as random points varying with respect to time, then the fact
that the distance between a point and itself is positive is acceptable. Here it is in place

to remind the famous statement of Heracleitos: ‘One cannot enter twice into the
same river’.

3. EXAMPLE

Let X = R"and

S,={x=(x,....,x,)eR"x; < cViand ) x;=a}
i=1

where c is a fixed positive constant and a is a parameter satisfying
(3.1) l|a] < c.n.

Since S, are parallel affine spaces of dimension n — 1 there exists the same positive
atomless measure v, on the o-algebra of measurable sets, for all of them, similarly
asin R*71,

Further, we define p, as a probability-fuzzy point with uniform probability distribu-
tion on S, i.e. p, has the density function f, on S, such that

f(x) = 1)u(S,) VxeSs,.
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The characteristic measure p, of p, is then defined by
1a(S) = v(S A S,)(S,) VS < R".
Let us denote Ry, ={x=(x5,..,x)eR:x,20Vi=1,..., n}.

We shall consider the medium distance from p, to R”, and prove that, as a function
of parameter a, d,(p,, R% ) is decreasingly monotone.

Putting = (c c) cR"

n— umes

then the following lemmas are easily verifiable.

Lemma 3.1. For all a € [0, nc] we have

(3.2) S, = C=12,S—C
where
(3.3) 4a = (nc — a)[nc

Lemma 3.2. For all a € [0, nc] we have | ‘}
Y(Se) = ¥(S. — C) =
= 271 5(Se = ) = A1 o(S,) \
(see Fig. 1). \
NG ©
A

Fig. 1. ‘TSO

Statement 3.1. If nc = a > b = 0, then

dm(pm Rl) < dm(plv Rr—l{-) .
Proof. We have

dn(Pa RY) =

fs. L2 xT'2 dv(x) = Jovmc [ 3 (v + 071 () =

( ) wiRo 2 (So) (S) yi<e
(by Lemma 3.2 and substitution y = x — C)

,1" — (S ) fso—c [ZKZCME(A z; + )] A dv(z) =

(by substitution y = 1, . z)

(So) Js0- c[_ Zc ﬂ(l z; + )" ]2 dv(z).
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Analogically,

Ao ®) = ——[soc[ L oz + c)2]“2 dv(z) .
(So) z;<~—C /1,
Since a > bone has A, < 4, (see(3.3)). Then
—cf2, < —cfAy

and hence
(Aa-zi + ¢)® < (4y.2; + ¢)* for such z; that z; < —c[l,.

Consequently we obtain
dm(pa, Ri) < dm(l’b’ R'-IF)

and the proof is complete.

Now consider the case —n¢ £ a £ 0. Obviously

Lemma 3.3. For all a € [ —nc, 0] we have
(3.4) Sa+ C = Bi(So + C)

where
(3.5) B. = (nc + a)[nc.

Lemma 3.4. For all a € [ —nc, 0] we have
v(S,) = (S, + C) = B v(S, + C) = B ¥(S,)
(see Fig. 2). \

Sa/\

0
-c a\
-C \ Fig. 2.

-C

Y

Statement 3.2, If 0 = a > b = —nc, then .
dm(pzv R:—) < dm(pbs R:—} .
Proof. We have

B - (S) Jo [ 3 5172 () =
e bee L5 0= 971 ) -

(by Lemma 3.4 and substitution y = x + C)

498



o o\271/2 pn—t 2 —
ﬁn 1.0 (So) ISo+C Lz <Zc:/ﬂa(ﬁa =i C) ] ﬂa dv( )

(by substitution y = B, . z)

fsorc Z (Bazi = ¢)*]'* dv(z).

(SO) Zi <c a
Analogously
d(pp B) = -~ Tsprc[ T (Byzi— 7] db(2).
(So) zi<e/By
Since a > b one has 8, > B, (see 3.5). Then
c/ﬁa < c/Bb
and hence

(Ba.zi —¢)* < (B,.z; — ¢)* forsuchz;that z;, < c/B,.

Consequently, we obtain

dm(pa’ R'-‘l-) < dm(pb’ R';-) . .
and the proof is complete. : ‘ I O

4. AN APPLICATION TO LINEAR PROGRAMMING .

First, we briefly recall the simplex method for solving l{iﬁear prograhﬁé. Consider
the problem

(4.1) f=c.x—> max
s.t.

(4.2) o A.x=1b

(4.3) x=20

where ¢ =(cy,...,c,)eR", b =(b,...,b,)eR", A=(a;)ux, and x=
= (xp, ..., x,) eR"

Suppose that m < n and rank (4) = m. A vector x e R" is a feasible solution
if is fulfills (4.2) and (4.3); an optimal solution if it fulfils (4.1), (4.2) and (4.3); a basic
solution if it is a feasible solution and the columns a; of A corresponding to positive
components x; > 0 are linearly independent. A basis of a basic solution x is an
arbitrary system of m linearly independent columns of A including all those corre-
sponding to positive components of x. A basic solution is degenerated if it has less
than m positive components. Problems (4.1) —(4.3) is degenerated if it has degenerated
solutions.

Let us have a basic solutlon x = (X ..., X,) of problems (4.1)—(4.3) with the basis

A, = {a;: a; is the jth column of 4 and j € 5}
the basic variables
x, = {x;:jec}
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and the nonbasic variables
X, ={x;:jew={1,...,n}\ 0}
where o denotes the set of indexes of basic variables.

We have then the corresponding simplex tableau

Tableau 1.
—x,
xd
1 —Xj.
f Boo ﬂol
X 'ﬁio ﬁU .

where
(44) B=B)=4;" A,, B=Biw)=A4;'.b, 4= (Bo;) =¢+B=Co>s
Boo =¢;.B, ¢, ={cijeos} and ¢, ={c;jew}.
The simplex iteration procedure consists of the following steps.
Step 1. Testing of optimality: -
(4.5) 4 = (Bos)je0 2 0 k
If (4.5) holds then x is an optimal solution. Stop. Otherwise go to Step 2.
Step 2. Testing of boundedness:
(4.6) Jjew: Bo; <0 and B; <0 Vieo.

If (4.6) holds then c . x is not bounded from above. Stop. Otherwise go to
Step 3.

Step 3. Constructing of an improved solution:
Choose a fiy; < 0, usually the smallest one, and determine

4.9 0 = min {B;o/B:s: i€ o and B, > 0} .
Let /li’,o/ﬁ,s = 0. Perform the Jordan-Gauss elimination procedure:
“s) = 5, Bibe Vie@N o0
Bis  Vie(o'\{t})u {0}
B = BulBs  Vie(o'\{1})u {0}
«= 1B

Bi = =Bulfes  Vie(o'\{1}) v {0}

where

o =(e\{Hhu{s}, o = (on{sho{s}.
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We obtain a new simplex tableau, Tableau 2, and a new basic solution x’
with improved values

(4.9 Boo = Boo — 0. Bos .
Tableau 2.
X,

Xy

1 —X;.
S/ Boo Boj
%i ﬂ:iO ﬁl]

Go to Step 1.

If the problem (4.1)—(4.3) is degenerated, there may exist several basic variables
x, with B,o/B,s = 0 and one faces the question which of them to choose. In practice,
the variable with the smallest index is usually chosen. In order to avoid cycling one-
can use the lexicographical rule.

However these rules do not take into consideration the optimality criterion and
the iteration procedure for finding an optimum solution is in many cases unneces-
sarily prolonged.

Let us consider f;, j € »'. We know that

ﬂ(’)t = —ﬁOs/ﬁts >0.

Hence the optimality criterion (4.5) in this iteration reduces to

(4'10) 4, = (ﬁaj)jew'\{t} =20
which is equivalent to
(4.11) d(4, Ry™H =0

where d(+, +) denotes the normal distance in R* ™.

If we know the exact value of 4,, it is not a problem to verify condition (4.11).
However, if the information about 4, is not complete, 4, becomes a non-exactly
known vector and one naturally turns to ‘fuzzy theory’ for help. In what follows we
shall present one such possible help.

Suppose we know only the sum of all components 4,

(4.12) o= 3 Bo;

jeo™\{1}
and the data are random enough and do not exceed some limit ¢ > 0. Then we can
assume that 4, is uniformly distributed on the set

n—-m—1

Ss;, ={z=1(20, o0 Zyom=1): _Zl zi=06,and |z| < cVi=1,...n—m~—1}.
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Now 4, becomes a probability-fuzzy point in R" "™~ ! and one disposes of the medium
distance d,,(4,, R" ™" ') considered in the preceding section. Put

M = {kikeo and BB, = 6} .
Then the optimality condition (4.11) is equivalent to
(4.13) d(4,, R 1) = min {d(4,, Ry ™" Y. ke M} =0.
So it natural to choose ¢ € M that such
(4.14) d(4, Ry = 1;131 d(4;, R 71

However the 4, are not exactly known. Therefore we logically use the medium di-
stance and (4.14) becomes

(4.15) d (4, R = rkngl d(dp, R L
It follows from the results of Section 3 that (4.15) is equivalent to
(4.16) 0, = max {5,: ke M} .
By virtue of (4.8) and (4.12) we have
(4.17) | Se= 2 Bos—Bos( Y Bi)lBis-
; Jjeo\{s} JjeoN\{s} A

Since ). f,, is invariable and — Bo; > 0, condition (4.16) is equivalent to the

jeo\{s} -
following condition , .
(4.18) ( % BB =max( X B)/Bi
Jjew\{s} keM  jeo\{s}

which is called the Maximum-Sum Rule.

The following examples show the advantage of the Maximum-Sum Rule as com-
pared with the lexicographical rule.

Example 1. Consider the program

) f = —2x; — 3x; — 3x3 — 8x, — 4x5 > max
s.t.
2x, + x4 + Txs = 14
5x, + X3 +2x; = 4
Xy + o x, + 2x5 =
x; 20 vj

Applying the lexicographical rule we get an optimal solution after three simplex
tableaux, see Tableau 3, 4 and 5, and the comment attached to them.
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In the passage from Tableau 3 to Tableau 4 17—4 = % = 2 is the minimum in (4.7),
hence according to the lexicographical rule x, is excluded from the basis.

Tableau 3. Tableau 4.
1 — Xy — X5 1 — Xy — Xy
f — 140 —30 —62 f —16 —86/7 62/7
X4 14 2 -7 Xs 2 2/7 1/7
X3 4 5 2 X3 0 31/7 —2/7
Xy 8 1 2 Xy 4 3/7 —2/7
Tableau 5.
1 — X3 — Xy
f —16 86/31 250/31
X5 2
X2 0
Xy 4

However the Maximum-Sum Rule enables to obtain the optimal solution only

after two simplex tableaux as it is shown by Tableau 6 and 7 below. Here % > %,

Tableau 6. Tableau 7.
1 —X, — X5 1 — X, — X3
f —140 —30 —62 f —16 125 31
X4 14 2 7 Xy 0
X3 4 5 2 X5 2
X 8 1 2 Xy 4

hence 2 is the maximum in (4.18). So according to the Maximum-Sum Rule x; is
excluded from the basis.

Example 2. Let us consider the well known Beale’s example (see Gass [4],
Chapter 7)
- %xl — 150x, + -51-0x3 — 6x, — max

s.t.

1 1
X1 — 60x, — 35x3 + 9%, + x5 =

0
Ix; — 90x; — 45X3 + 3x4 + x4 =0
1

Il

vj

v
o
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/
/
/

This example is degenerated. If one choses among the variables realizing the
minimum in (4.7) the one with the smallest index, cycling will appear. In order to
avoid cycling we can use the lexicographical rule and obtain the optimal solution
after six simplex tableaux, see Gass [4], Chapter 7.

However, applying our Maximum-Sum Rule one gets the optimal solution much
faster, after three simplex tableaux, as it is shown by Tableau 8, 9 and 10 below.

Tableau 8. Tableau 9.

1 —x; —x3 —Xx3 —x4 1 —xg —Xx; —x3 — Xy
S 0 —3/4 150 —1/50 6 f 0 3/2 15 —1/20 21/2
xs 0 1/4 —60 —1/25 9 x< 0 —1/2 — 15 —3/100 15/2
X, O 1/2 —90 —1/50 3 x; 0 2 —180 —1/25 6
x; 1 0 0 1 0 x7 1 0 0 1 0

Tableau 10.
1 —Xg —X, —X7 —X4

F 120 3)2 15 1/20 21/2

x5 3/1000
x; 1/25
x3 1

In the passage from Tableau 8 to Tableau 9 we have (—60 — 55 + 9): 3 = —204-16;
(=90 — 55 + 3):3 = —174:04. So according to the Maximum-Sum Rule x4 is
excluded from the basis.

(Received January 25, 1988.)
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