Kybernetika

Petr Budinský

On the equivalence of two methods for interpolation

Kybernetika, Vol. 25 (1989), No. 6, 461--466
Persistent URL: http://dml.cz/dmlcz/124669

Terms of use:

© Institute of Information Theory and Automation AS CR, 1989
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

ON THE EQUIVALENCE OF TWO METHODS FOR INTERPOLATION

PETR BUDINSKÝ

Two methods for interpolation in stationary discrete processes are presented in the paper. First, the method proposed by Brubacher and Wilson, second Jaglom's method. There is given a proof in the paper that both methods give the same results.

1. INTRODUCTION AND PRELIMINARIES

Let $\left\{Y_{t}\right\}$ be a white noise with $\mathrm{E} Y_{t}=0, \mathrm{E} Y_{t}^{2}=\sigma^{2}, t=\ldots,-1,0,1, \ldots, \mathrm{E} Y_{s} Y_{t}=0$, $s \neq t$. Let π_{j} be real numbers satisfying the condition $\sum_{j=0}^{\infty}\left|\pi_{j}\right|<\infty$ and assume that there exists a linear stationary discrete process $\left\{X_{t}\right\}$ given by

$$
\begin{equation*}
Y_{t}=\sum_{j=0}^{\infty} \pi_{j} X_{t-j} . \tag{1.1}
\end{equation*}
$$

Assume throughout the paper that the variables $X_{s+t_{i}}, i=0,1, \ldots, n\left(t_{0}=0\right)$ are missing. Very important problem is to find the best linear interpolation of $X_{s+t_{i}}$, $i=0,1, \ldots, n$. Brubacher and Wilson proposed in [2] to minimize the sum of squares of Y_{t} with respect to the unknown variables $X_{s+t_{i}}$. The method given by Jaglom (see [3] and [4]) is based on the projection in the Hilbert space. It will be proved in the paper that both methods give the same results.

It is well known that the spectral density $f(\lambda)$ of $\left\{X_{t}\right\}$ given by (1.1) has the form

$$
\begin{equation*}
f(\lambda)=\left(\sigma^{2} / 2 \pi\right)\left|\sum_{j=0}^{\infty} \pi_{j} \mathrm{e}^{-\mathrm{i} j \lambda}\right|^{-2} . \tag{1.2}
\end{equation*}
$$

Introduce numbers p_{k} by

$$
p_{k}= \begin{cases}\sum_{j=0}^{\infty} \pi_{j} \pi_{j+k}, & k=0,1,2, \ldots \tag{1.3}\\ p_{-k}, & k=-1,-2, \ldots\end{cases}
$$

Introduce an $(n+1) \times(n+1)$ symmetric matrix

$$
\boldsymbol{P}=\left\|p_{t_{i}-t_{j}}\right\|_{i, j=0,1, \ldots, n} .
$$

Let \boldsymbol{P} be regular.

2. BRUBACHER-WILSON'S METHOD

Brubacher and Wilson propose in [2] to minimize

$$
Z_{m}=\sum_{t=-m}^{m} Y_{t}^{2}=\sum_{t=-m}^{m}\left(\sum_{j=0}^{\infty} \pi_{j} X_{t-j}\right)^{2}
$$

with respect to the unknown variables $X_{s+t_{i}}, i=0,1, \ldots, n$. Using

$$
\frac{\partial Z_{m}}{\partial X_{s+t_{i}}}=2 \sum_{t=s+t_{i}}^{m} \pi_{t-s-t_{i}}\left(\sum_{j=0}^{\infty} \pi_{j} X_{t-j}\right)=0
$$

we have for $m \rightarrow \infty$

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty} p_{k} X_{s+t_{i}+k}=0, \quad i=0,1, \ldots, n \tag{2.1}
\end{equation*}
$$

Let $\tilde{X}_{s+t_{i}}$ be a solution of the linear equations (2.1).
Denote $V_{i}=-\sum_{\substack{l=-\infty \\ l \neq t_{0}, t_{1}, \ldots, t_{n}}}^{\infty} p_{l-t_{i}} X_{s+l}$. Then (2.1) can be written in the form

$$
\sum_{j=0}^{n} p_{t_{j}-t_{i}} \tilde{X}_{s+t_{j}}=V_{i}, \quad i=0,1, \ldots, n
$$

Remark 1. For $t_{i}=i, i=0,1, \ldots, n$ we obtain

$$
\begin{equation*}
\sum_{j=0}^{n} p_{j-i} X_{s+j}=-\sum_{j \notin[0, n]} p_{j-i} X_{s+j} \tag{2.3}
\end{equation*}
$$

which for $n=0$ can be simplified to

$$
\tilde{X}_{s}=-\left(1 / p_{0}\right) \sum_{j \neq 0} p_{j} X_{s+j}
$$

3. JAGLOM'S METHOD

Let H be the Hilbert space generated by the variables $\left\{X_{t}\right\}_{t=-\infty}^{\infty}$. Let $K=$ $=\left\{s+t_{0}, s+t_{1}, \ldots, s+t_{n}\right\}, 0=t_{0}<t_{1}<\ldots<t_{n}$ and let H_{K} be the subspace of H generated by the variables $X_{k}, k \notin K$. The best linear interpolation $\hat{X}_{s+t_{j}}$ of $X_{s+t_{j}}$ based on $X_{k}, k \notin K$, is defined as the projection of $X_{s+t_{j}}$ onto H_{K}. Let the projection be given by

$$
\hat{X}_{s+t_{j}}=\sum_{\substack{k=-\infty \\ k \neq t_{0}-t_{j}, \ldots, t_{n}-t_{j}}}^{\infty} a_{k} X_{s+t_{j}+k}
$$

Define
and

$$
\begin{equation*}
\Phi_{j}(\lambda)=\sum_{\substack{k=-\infty \\ k \neq t_{0}-t_{j}, \ldots, t_{n}-t_{j}}}^{\infty} a_{k} \mathrm{e}^{\mathrm{i} k \lambda}, \quad-\pi \leqq \lambda \leqq \pi \tag{3.1}
\end{equation*}
$$

The function $\Phi_{j}(\lambda)$ is called the spectral characteristic for interpolation. Since $f(\lambda)$ has the form (1.2) we can introduce the functions

$$
\begin{gathered}
f^{*}\left(\mathrm{e}^{\mathrm{i} \lambda}\right)=f(\lambda), \quad \Phi_{j}^{*}\left(\mathrm{e}^{\mathrm{i} \lambda}\right)=\Phi_{j}(\lambda) \\
\Psi_{j}^{*}\left(\mathrm{e}^{\mathrm{i} \lambda}\right)=\Psi_{j}(\lambda)
\end{gathered}
$$

Let $U=\{z ;|z|<1\}, \vec{U}=\{z ;|z| \leqq 1\}$.
Theorem 1. Let $\Phi_{j}^{*}(z)=\Omega_{j, 0}^{*}(z)+\Omega_{j, 1}^{*}(z)+\ldots+\Omega_{j, n+1}^{*}(z), j=0,1, \ldots, n$, be functions of the complex variable satisfying the following conditions:
a) $\Omega_{j, 0}^{*}(z)$ and $\Omega_{j, n+1}^{*}(z)$ are analytic functions on U^{c} and \bar{U}, respectively, and

$$
\Omega_{j, i}^{*}(z)=\sum_{k=t_{i-1}-t_{j}+1}^{t_{i}-t_{j}-1} a_{k} z^{k}, \quad i=1,2, \ldots, n
$$

b) $\lim _{z \rightarrow \infty} z^{t_{j}} \Omega_{j, 0}^{*}(z)=\lim _{z \rightarrow 0} z^{t_{j}-t_{n}} \Omega_{j, n+1}^{*}(z)=0$;
c) function $\Psi_{j}^{*}(z)$ can be expressed in the form

$$
\begin{equation*}
\Psi_{j}^{*}(z)=\sum_{k=0}^{n} c_{k} z^{t_{k}-t_{j}}, \quad c_{k} \in \mathbb{R} \tag{3.2}
\end{equation*}
$$

Then the function $\Phi_{j}(\lambda)=\Phi_{j}^{*}\left(\mathrm{e}^{\mathrm{i} \lambda}\right)$ is the spectral characteristic for interpolation of $X_{s+t_{j}}(j=0,1, \ldots . n)$ based on $\left\{X_{s+t_{j}+k}\right\}, k \neq t_{0}-t_{j}, \ldots, t_{n}-t_{j}$.

Proof. We use a method similar to that given in [1] for the case of extrapolation. From a) and b) we have that $\Omega_{j, 0}^{*}(z)$ and $\Omega_{j, n+1}^{*}(z)$ can be expressed in the form

$$
\Omega_{j, 0}^{*}(z)=\sum_{k=-\infty}^{t_{0}-t_{j}-1} a_{k} z^{k}\left(z \in U^{c}\right), \quad \Omega_{j, n+1}^{*}(z)=\sum_{k=t_{n}-t_{j}+1}^{\infty} a_{k} z^{k} \quad(z \in \bar{U})
$$

Then there exist $d \in(0,1)$ and $d^{\prime} \in(1, \infty)$ that both sums converge for $d<|z|<d^{\prime}$. Thus $\sum_{k=-\infty}^{t_{0}-t_{j}-1} a_{k} \mathrm{e}^{\mathrm{i} k \lambda}$ and $\sum_{k=t_{n}-t_{j}+1}^{\infty} a_{k} \mathrm{e}^{\mathrm{i} k \lambda}$ converge in the quadratic mean with respect to $f(\lambda)$. Denote

$$
\begin{aligned}
\hat{X}_{s+t_{j}}^{(0)} & =\int_{-\pi}^{\pi} \mathrm{e}^{\mathrm{i}\left(s+t_{j}\right) \lambda} \sum_{k=-\infty}^{t_{0}-t_{j}-1} a_{k} \mathrm{e}^{\mathrm{i} k \lambda} \mathrm{~d} Z(\lambda), \\
\hat{X}_{s+t_{j}}^{(n+1)} & =\int_{-\pi}^{\pi} \mathrm{e}^{\mathrm{i}\left(s+t_{j}\right) \lambda} \sum_{k=t_{n}-t_{j}+1}^{\infty} a_{k} \mathrm{e}^{\mathrm{i} k \lambda} \mathrm{~d} Z(\lambda),
\end{aligned}
$$

where $Z(\lambda)$ is the random measure corresponding to $\left\{X_{t}\right\}$ (see [1]). Then we obtain

$$
\begin{aligned}
\widehat{X}_{s+t_{j}}^{(0)} & =\underset{N \rightarrow \infty}{\text { li.m. }} \sum_{k=-N}^{t_{0}-t_{j}-1} a_{k} X_{s+t_{j}+k}, \\
\hat{X}_{s+t_{j}}^{(n+1)} & =\underset{N \rightarrow \infty}{\text { l.i.m. }} \sum_{k=t_{n}-t_{j}+1}^{N} a_{k} X_{s+t_{j}+k} .
\end{aligned}
$$

Denote

$$
\hat{X}_{s+t_{j}}^{(i)}=\int_{-\pi}^{\pi} \mathrm{e}^{\mathrm{i}\left(s+t_{j}\right) \lambda} \Omega_{j, i}(\lambda) \mathrm{d} Z(\lambda)=\sum_{k=t_{i-1}-t_{j}+1}^{t_{i}-t_{j}-1} a_{k} X_{s+t_{j}+k}, \quad i=1,2, \ldots, n .
$$

Then

$$
\hat{X}_{s+t_{j}}^{(0)} \in H_{K}, \quad \hat{X}_{s+t_{j}}^{(n+1)} \in H_{K} \quad \text { and } \quad \hat{X}_{s+t_{j}}^{(i)} \in H_{K}, \quad i=1,2, \ldots, n .
$$

Thus

$$
\begin{gathered}
\hat{X}_{s+t_{j}}=\sum_{i=0}^{n+1} \hat{X}_{s+t_{j}}^{(i)} \in H_{K}, \\
\left(X_{s+t_{j}}-\hat{X}_{s+t_{j}}, X_{s+k}\right)=\mathrm{E} \int_{-\pi}^{\pi} \mathrm{e}^{\mathrm{i}\left(s+t_{j}\right) \lambda}\left(1-\Phi_{j}(\lambda)\right) \mathrm{d} Z(\lambda) \overline{\int_{-\pi}^{\pi} \mathrm{e}^{\mathrm{i}(s+k) \lambda} \mathrm{d} Z(\lambda)}= \\
=\int_{-\pi}^{\pi} \mathrm{e}^{\mathrm{i}\left(t_{j}-k\right) \lambda} \Psi_{j}(\lambda) \mathrm{d} \lambda=\int_{-\pi}^{\pi} \sum_{l=0}^{n} c_{l} \mathrm{e}^{\mathrm{i}\left(t_{l}-k\right) \lambda} \mathrm{d} \lambda .
\end{gathered}
$$

Hence

$$
\left(X_{s+t_{j}}-\widehat{X}_{s+t_{j}}, X_{s+k}\right)=0 \quad \text { for } \quad k \neq t_{0}, t_{1}, \ldots, t_{n}
$$

This implies $\left(X_{s+t_{j}}-\hat{X}_{s+t_{j}}\right) \perp H_{K}$. Thus we have proved that $\hat{X}_{s+t_{j}}$ is the projection of $X_{s+t_{j}}$ onto H_{K}.
Remark 2. In the special case when $K=\{s\}$ we have

$$
\Psi_{0}^{*}(z)=\left(1-\Phi^{*}(z)\right) f^{*}(z)=c_{0} \quad \text { where } c_{0} \text { is a real constant }
$$

Remark 3. For finding the best linear interpolation $\hat{X}_{s+t_{j}}$ it is sufficient to determine numbers $c_{0}, c_{1}, \ldots, c_{n}$ (depending on j) in (3.2) and then to express $\Phi_{j}^{*}(z)$ from (3.1) in the form

$$
\begin{equation*}
\Phi_{j}^{*}(z)=1-\left(1 / f^{*}(z)\right) \sum_{k=0}^{n} c_{k} z^{t_{k}-t_{j}} \tag{3.3}
\end{equation*}
$$

Especially if $K=\{s\}$ then

$$
\Phi_{0}^{*}(z)=1-\left(c_{0} \mid f^{*}(z)\right)
$$

Theorem 2. Define a vector $\mathbf{e}_{j}=\left(\delta_{0, j}, \ldots, \delta_{n, j}\right)^{\prime}$, where $\delta_{k, j}$ is Kronecker's δ. Then

$$
\begin{equation*}
\widehat{X}_{s+t_{j}}=-\sum_{\substack{l=-\infty \\ l \neq 0, t_{1}, \ldots, t_{n}}}^{\infty} X_{s+l}\left(c_{0}^{*} p_{l}+c_{l}^{*} p_{l-t_{1}}+\ldots+c_{n}^{*} p_{l-t_{n}}\right) \tag{3.4}
\end{equation*}
$$

where $c^{*}=\left(c_{0}^{*}, c_{1}^{*}, \ldots, c_{n}^{*}\right)^{\prime}$ is a solution of the equations

$$
\begin{equation*}
\mathbf{P c}^{*}=\mathbf{e}_{j}, \quad j=0,1, \ldots, n \tag{3.5}
\end{equation*}
$$

Proof. We can write $f(z)=\left(\sigma^{2} / 2 \pi\right) / \sum_{l=-\infty}^{\infty} p_{l} z^{l}$.
Using (3.3) we get further

$$
\begin{gather*}
\Phi_{j}^{*}(z)=1-\sum_{l=-\infty}^{\infty} p_{l} z^{l} \sum_{k=0}^{n} c_{k}^{*} z^{t_{k}-t_{j}}= \tag{3.6}\\
=1-\sum_{l=-\infty}^{\infty} \sum_{k=0}^{n} p_{l} c_{k}^{*} z^{l+t_{k}-t_{j}}
\end{gather*}
$$

where $c_{k}^{*}=\left(2 \pi / \sigma^{2}\right) c_{k}$.

To fulfil the conditions from Theorem 1 the coefficient by $z^{t_{i}-t_{j}}$ must be equal to $\delta_{i, j}$. For $k=m(m=0,1, \ldots, n)$ and $l=t_{i}-t_{m}$ we have $z^{l+t_{k}-t_{j}}=z^{t_{i}-t_{j}}$ and the coefficient standing by $z^{t_{i}-t_{j}}$ is equal to $\sum_{k=0}^{n} c_{k}^{*} p_{t_{i}-t_{k}}$. Hence we have the linear equations $\sum_{k=0}^{n} c_{k}^{*} p_{t_{i}-t_{k}}=\delta_{i, j}$ which are equivalent to (3.5). But the formula (3.6) can be written in the form

$$
\Phi_{j}^{*}(z)=-\sum_{\substack{l=-\infty \\ l \neq t_{0}-t_{j}, \ldots, t_{n}-t_{j}}}^{\infty} \sum_{k=0}^{n} p_{l-t_{k}+t_{j}} c_{k} z^{l}
$$

and thus

$$
\hat{X}_{s+t_{j}}=\sum_{\substack{l=-\infty \\ l \neq t_{0}-t_{j}, \ldots, t_{n}-t_{j}}}^{\infty} \sum_{k=0}^{n} p_{l-t_{k}+t_{j}} c_{k}^{*} X_{s+t_{j}+l}
$$

Substituting $l^{\prime}=t_{j}+l$ we obtain (3.4).
Remark 4. If $K=\{s\}$ we have

$$
\hat{X}_{s}=-\left(1 / p_{0}\right) \sum_{k=1}^{\infty} p_{k}\left(X_{s+k}+X_{s-k}\right)
$$

Denote $P_{i j}^{*}$ the algebraic complement of $p_{i j}$ in the matrix \boldsymbol{P}. Then

$$
\begin{equation*}
\widehat{X}_{s+t_{j}}=-(1 / \operatorname{det} \boldsymbol{P}) \sum_{\substack{l=-\infty \\ l \neq 0, t_{1}, \ldots, t_{n}}}^{\infty} X_{s+l^{\prime}} \sum_{k=0}^{n} P_{j k}^{*} p_{l-t_{k}} \tag{3.7}
\end{equation*}
$$

Remark 5. Especially for $t_{i}=i, i=0,1, \ldots n$ we get

$$
\hat{X}_{s+t_{j}}=-(1 / \operatorname{det} \mathbf{P})\left[\sum_{l=1}^{\infty} X_{s+n+l} \sum_{k=0}^{n} P_{j k}^{*} p_{l+n-k}+\sum_{l=1}^{\infty} X_{s-l} \sum_{k=0}^{n} P_{j k}^{*} p_{l+k}\right] .
$$

4. COMPARISON OF BOTH METHODS

In this section we use the notation from the previous sections. The following theorem is the main result of our paper.

Theorem 4. Let $K=\left\{s+t_{0}, \ldots, s+t_{n}\right\}$. Then $\widetilde{X}_{s+t_{j}}=\widehat{X}_{s+t_{j}}, j=0,1, \ldots, n$.
Proof. Denote $\widetilde{\mathbf{X}}=\left(\widetilde{X}_{s+t_{0}}, \ldots, \widetilde{X}_{s+t_{n}}\right)^{\prime}$ and $\boldsymbol{V}=\left(V_{0}, \ldots, V_{n}\right)^{\prime}$. Using the notation from Section 2 we can write (2.2) in the form $\boldsymbol{P} \widetilde{\boldsymbol{X}}=\boldsymbol{V}$. Thus $\widetilde{\boldsymbol{X}}=\boldsymbol{P}^{-1} \boldsymbol{V}$. From here we obtain

$$
\tilde{X}_{s+t_{j}}=(1 / \operatorname{det} P) \sum_{i=0}^{n} P_{j i}^{*} V_{i}
$$

Hence

$$
\tilde{X}_{s+t_{j}}=-(1 / \operatorname{det} \mathbf{P}) \sum_{\substack{l=-\infty \\ l \neq t_{0}, t_{1}, \ldots, t_{n}}}^{\infty} X_{s+l} \sum_{i=0}^{n} P_{j i}^{*} p_{l-t_{i}}
$$

which corresponds to (3.7). Thus $\tilde{X}_{s+t_{j}}=\widehat{X}_{s+t_{j}}$.
[1] J. Anděl: Statistical Analysis of Time Series (in Czech). SNTL, Prague 1976.
[2] S. R. Brubacher and T. G. Wilson: Interpolating time series with application to the estimation of holiday effects on electricity demand. Appl. Statist. 25 (1976), 107-116.
[3] A. M. Jaglom: Vveděnije v těoriju stacionarnych slučajnych funkcij. Usp. mat. nauk 7 (1952), vyp. 5(51), 3-168.
[4] Ju. A. Rozanov: Stacionarnyje slučajnyje processy. Gos. izd., Moskva 1963.

RNDr. Petr Budinský, katedra matematiky a konstruktivni geometrie strojni fakulty ČVUT (Department of Mathematics and Constructive Geometry, Faculty of Mechanical Engineering Czech Technical University), Karlovo nám. 13, 12135 Praha 2. Czechoslovakia.

