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K Y B E R N E T I K A - V O L U M E 23 (1987), N U M B E R 1 

PERTURBATION THEORY OF DUALITY 
IN VECTOR OPTIMIZATION 
VIA THE ABSTRACT DUALITY SCHEME 

TRAN QUOC CHIEN 

The perturbation theory of duality has been usually constructed with help of the theory of 
conjugate functions (see [1,2,3,4]). In this paper, unlike the traditional method, two kinds 
of perturbation duality in vector optimization are suggested on the basis of the abstract duality 
scheme which has been introduced in Tran Quoc Chien [5, 7] and further generalized in Tran 
Quoc Chien [8]. This approach is much simpler than the one using a generalization of conjugate 
functions in vector case (see Azimov [4]). It gives, however, almost the same or, in some cases, 
stronger results. The classical Fenchel duality is also generalized for maximizing a sum of n 
(instead of n = 2 in other works) concave functions. The only mathematical tool is separation 
of n convex sets introduced in [8]. 

0. INTRODUCTION 

In this work X, Yand Q are real linear spaces if other requirements are not added, 

Yis ordered by a positive cone Y+. All notations, concepts concerning linear spaces, 

ordering and optimality used in this paper are referred to Tran Quoc Chien [8]. 

Now given a function / : X -> Y Y= Yu { —oo, +co}, we shall be concerned 

with the probem 

(P) Max-Sup/(X). 

We will consider a suitable function 

<P:X x Q -> F 

termed the perturbed essential objective such that 

0.1. 4>(x, 0) = f(x) V . x e l , 

where 0 is the zero element of the space Q. 

For every q e Q the problem 

(Pq) Max-Sup <P(X, q) 

is termed the perturbed primal problem. 
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In [1, 2, 3, 4] the perturbed primal problem and the theory of conjugate functions 
play a crucial role in establishing a dual to problem (P), although they have only 
an auxiliary character. The approach using the abstract duality scheme, needs no 
knowledge of conjugate functions and gives stronger results (note that in [4] the 
space Y is of finite dimension and the function $ is convex). 

Following [8] we put 

0> = Q x Y, P{y) = En Ey 

where 
E=\J{{q,y)ef?:y£*ix,q)} 

and xeX 

Ey = {0} x (y + Y+). 

It is evident that the multivalued function P: Y-* 0> satisfies the primal availability 
(see [8], Section 2). We have then 

SP0 = {(q, y) e 9 | 3 / e Y: (q, y) e P(y')} = 

= {(0, y)eSP\ 3.x e X: y = $(x, 0) = f(x)} 
and 

M% y) = { / e Y: (0, y) e P(y')} = y - Y+ 

for every (0, y) e 0>o. 

Consequently 

H{0>o) = fKX) - Y+ 

So from definition it follows 

0.2. Proposition. Problem (P) is equivalent to the following abstract primal 

(AP) Max-Sup n(SP0) 
in the sense that 

MaxjpT) = Max/i(^0) 
and 

Sup/(X) = S u p / ^ o ) . 

Now in order to be able to construct a dual to problem (AP) or, what is the same 
because of Proposition 0.2, to problem (P), we have to choose a suitable set 2) and 
a multivalued function D: Y-> 9 satisfying the dual availability (see [8], Section 2). 
Because of the complicatedness and difficulties joined with the vector structure 
we suggest the two following kinds of duality which coincide with each other in the 
scalar case. Each duality has its advantage and disadvantage and they complete 
each other. 

The corresponding sets to these dualities are the following 

9= Q* x Y+*+ + 

where Y+ + + is the set of all positive linear functional on Y (y* e Y* is called positive 



if (y*,y> > OVj'e Y++)and 
£e c £C(Q, Y) 

where S£(Q, Y) is the space of linear operators from Q to Y. 

1. FUNCTIONAL DUALITY 

1.1. Definition. Given & = Q* x Y*++ we define 

D(y) = {(q*, y*) e 2: (y*, y> ^ sup {<<?*, q) + <j;*, 4>(x, q)>: (x, q) e X x Q}} 

and 
v(q*, y*) = {y e Y: (q*, y*) e D[y)} . 

Obviously function D(y) satisfies the dual availability. Putting 

^o = {(»*= y*) e &•• v{q*, y*) + 0} , 
the problem 

(D 1) Min-Inf v(30) 

is called the functional <t>-dual to program (P). 

1.2. Theorem. (Weak Duality.) The weak duality condition is satisfied and hence 

f(X) 5 v(90) . 

1.3. Weak Optimality Condition: 

Y++ = c o r Y + + 0 . 

1.4. Normality Condition: 

E n Ey = 0 => £y. n lin E = 0 V / > >>. 

1.5. Convexity Condition: 

icr E is nonempty and convex. 

1.6. Lemma. If the weak optimality condition, the normality condition and the 
convexity condition hold then the Sup-Inf strong duality condition (see [8], Section 2) 
is fulfilled. 

Proof. Lety0 e Ybe such that P(y) = 0 My > y0. Then, by the normality condition, 
Ey n lin E = 0 Vj> > y0. Fix a j ' ( > y0 and (q*, y*) e icr E. Consider the segment 

[(a*, j '*), (0, j-/)] = {<<?*, j,*) + (1 - t) . (0, yi): 0 = * £ 1} . 

Since (0, >>.) £ lin E, there exists e > 0 such that 

M = {t. (q*, v*) + (1 - t). (0, yi): 0 | i ^ } n £ = i 

Hence, by Theorem 3.4.2 of [8], there exists a nonzero (q*, y*) e Q* x Y* such 



that 

(1.6.1) a ^ b 

where 
a = sup {{q*, qy + {y*, j'>: (q, y) e E} 

and 
b = inf [t. <q*, qy + <y*, ty* + (1 - t) y.>: O ^ ^ E } . 

Obviously y* e Y*. Suppose, on the contrary, that (q*, y*) $ 3 which means 
y* = 0. Then q* + 0 for (g*, y*) + 0. 

Since (0, f(x)) e E we have 

(1.6.2) a ^ O . 

From (1.6.1) and (1.6.2) it follows that 

<q*,q*> = 0-

Since (q*, y%) e icr E there exists a pair (q', y') e E such that 

<<?*, «'.> + <y*, / > > 0 

(for <g*, o'> + <}'*, / > is not constant on E), which contradicts a ^ b = 0. The 
proof is thus complete. 

From Theorem 2.5 of [8] and Lemma 1.6 it follows 

1.7. Theorem. (Strong Duality.) If the weak optimality condition, the normality 
condition and the convexity condition are satisfied, then 

Sup/(x) = Infv(®0) . 

We formulate now another sufficient condition for the Sup-Inf strong duality 
to be valid. 

1.8. Slater's Condition: 
0 6 icr EQ 

where 
EQ = {qeQ\3yeY:(q,y)eE} 

= {qeQ\3xeX:<P(x, q)eY}. 

1.9. Lemma. If E is convex then the Slater condition implies the normality condition. 

Proof. Let E n Eyo = 0. Suppose, on the contrary, that there exists a yt > y0 

such that Eyi n lin E 4= 0, which means 

(0, >».) e fin E. 

There exists, by definition, a (qe, ye) e E such that 

[(cj,, yc), (0, vx) [ c= £ . 
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By the Slater condition there exists a k > 0 such that - kqe e EQ that means there 
exists an ye Y with (~kqe, y) e E. 

Now let 5, e be sufficiently small positive numbers. Obviously 

% « . ye) + (1 - <5) • (0. 3>i) = (*«., <5y, + (1 - <5) y t) 6 E 
and 

(9a. * - ) - = ( - - « ) • iple, fye + (1 - <5) )'i) + e(-fcgc„ v) = 

= (((1 - e) 8 - ' efc) ae, (1 - e) <5ye + (1 - e) (1 - 8) v, + ey) e E . 

Now it suffices to choose s and <5 so small that 

q2=((l-e)S-ek)qe = 0 
and 

y2 = (1 - E) §ye + (1 - e) (1 - 8) y. + ey > y0 . 

We obtain then E n Eyi + 0 that contradicts 

E n £yo = 0 . 
The proof is thus complete. 

From Lemma 1.9 and Theorem 1.7 it follows 

1.10. Corollary. If the weak optimality condition, the convexity condition and the 
Slater condition hold then 

Sup/(Z) = Infv(®0) . 

However, since the Slater condition is stronger than the normality one, it gives 
a stronger result. 

1.11. Theorem. If the weak optimality condition, the convexity condition and the 

Slater condition hold then 

Sup/(X) = Inf v(®0) = Min v(@0) . 

Proof. It suffices, in view of Corollary 1.10 and the fact that 

Min v(90) cz Inf v(90), 
to prove 

Sup/(X) cz Min v(.?0). 

Let j ' * eSup/ (x) . Obviously (icr E) n icr Ey» = 0. So there exists a nonzero 
(q*, y*) e Q* x Y* such that 

<y*, y*> ^ <q*, q) + <y*, <P(x, «)> V(x, q)eX x Q. 

Since 0 6 icr EQ, y* cannot be zero. Consequently, 

y* 6 v(q*, y*) c v(®0) . 

Now, by the weak duality, we have y* e Min v(90). 

The weak optimality condition in Theorem 1.11 cannot be omitted, because y* 
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is not generally positive. However, if the weak optimality condition is not supposed 
we have the following weaker assertion. 

1.12. Theorem. (Direct Duality.) Suppose that the convexity and the Slater condi
tions are satisfied. If y^eMaxf(X) is such that there exists a y* e Y+ + + with 

<y*,y*>£<y*,f(x)> v . v e i 
then 

j ' * e Min v(3>0). 

Proof. Let y*ef(X) and y* e Y*++ be such that 

<y*, y*> Z <y*,f(x)> V x e X . 

By Lemma 1.13 below there exists a q* e Q* such that 

<y*,y*> ^ <q*,q> + <y*,<!>(*,q)> V ( x , g j e l x g . 

Hence v* e v(0o) and, by the weak duality, y* e Min v(S>0). 

1.13. Lemma. Suppose that the convexity and the Slater conditions hold. Let 
y* ef(X) - Y+ and j>* e Y* + be such that 

<y*,y*y^<y*,f(x)> V x e X . 

Then there exists a q* e Q* such that 

O;*, y*> ^ <</*, q> + <y*, <P(x, q)> V(x, q) e X x Q . 

Proof. Put 
M = {(0,y)eQ x Y: <y*, y> = <y*, y*>}. 

It is evident that M n icr E = 0. Hence, in view of Theorem 3.4.2 of [8], there 
exists a nonzero pair (q, y) e Q* x Y* such that 

<«. q'> + <y, y'> ^ <y, y> v(«', / ) e E v(o, y) e M . 
We have, in particular, 

<y,y*>^<y,y> V ( 0 , y ) e M 
that means 

ker y* <= {ye Y: <y, y> ^ 0} . 

Hence, by Corollary of Theorem 1.5 in [6], there exists a real k such that y = k . y*. 
Because of the Slater condition y cannot be zero and consequently k 4= 0. Now 
it suffices to put q* = q[k and we obtain the required functional. 

2. OPERATOR DUALITY 

2.1. Definition. Given if <= SS(Q, Y) we define 

L(y) = {leSe:y= l(q) + <P(x, q) V(x, q) e X x Q) . 
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Obviously the point-set function L: Y-> «§? satisfies the dual availability. Putting 

v(l) = {y e Y: I e L(y)} 
and 

jS?o = {/ei?:v(f) + 0 } , 
the problem 

(D2) Min-Infv(j*?0) 

is called the operator Q-dual to problem (P). 

Obviously 

2.2. Theorem. (Weak Duality.) The weak duality condition is satisfied and hence 

f(X) % V(J2?o) • 

2.3. Lemma. It the weak optimality condition is satisfied and the function <P(x, q) 
is concave then 

v(j?0) c- v(r^o) • 

Proof. Let y' e v(j9?0) then there exists an le SC0 such that 

y'$ l(q) + 4>(x, q) V(x,q)eX X Q. 
Put 

M = {yeY\ 3(x, q)eX x Q: y < l(q) + $(x, q)} . 

Obviously M is convex, cor M =j= 0 and y' $ cor M. Hence there exists a. y* e Y* + > 
and because of the weak optimality condition y* is positive, such that 

<y*, / > ^ <}>* o /, «J> + <y*, <f>(x, g)> V(x, g) e X x Q . 

Putting q* = y* o 1, we have (q*, y*) e 3)0 and y' e v(q*, y*). 

2.4. Completeness condition: 

\f(q*,y*)e$0 3le &: q* = y* 01. 

2.5. Lemma. If the completeness condition holds then 

v(90) e v(jSfo) • 

Proof. Let y e v(-^0) then there exists a (g*, y*) e 3) such that 

(2.5.1) <y*, yy ^ <q*, q> + <y*, <2>(x, g)> V(x, q) e X x Q . 

In view of the completeness condition there exists an / e =S? such that q* = >>* ° '• 
Now, if there is an x' e X and «?' e <2 such that 

y < l(q') + #(:*', <?'), 

one has then, for y* is positive, 

<y*, y> < <y*. /, «'> + <}>*, * ( * ' , «')> 

that contradicts (2.5.1). Hence y e v(l). 
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Summarizing Lemmas 2.3 and 2.5 we obtain 

2.6. Proposition. Suppose that <P(x, q) is concave, the weak optimality and the 
completeness conditions hold. Then 

v(0 o ) = v(.S?0) . 

Obviously, the concavity of function $(x, q) guarantees the convexity of the set E. 
Consequently from Theorem 1.7 and Proposition 2.6 it follows 

2.7. Theorem. (Strong Duality.) If the function <P(x, q) is concave, icr E =(= 0 and 
the weak optimality, the normality and the completeness conditions hold then 

Sup/(X) = Infv(i?0) . 

Similarly, using Theorem 1.11 and Proposition 2.6 we obtain 

2.8. Theorem. If <Z>(x, q) is concave, icr E =j= 0 and the weak optimality, the Slater 
and the completeness conditions hold then 

Supj(x) = Inf v(.S?0) = Min v(.S?0) . 

2.9. Theorem. (Direct Duality.) Suppose that the convexity, the Slater and the 
completeness conditions hold. If y* e Maxj(X) is such that there exists a y* e Y+ + + 

with 
<y*,y*>£<y*,f(x)> V x e X , 

then 
j>* e Min v(jSf 0) . 

Proof. The proof of this statement is similar to that of Theorem 1.12 

2.10. Strong Completeness Condition: 

V(«*, y*) 6 Q* x Y*+ 3le^:q* = y*ol, 

where 

Qo = k* e Q* | 3y* e T+*+: sup {<a*, q} + <y*, <P(x, q>: (x, q) e X x Q} < + ex-} . 

2.11. Theorem. (Direct Duality.) Suppose that icr E #= 0, the function fp(x, f̂) 
is strictly concave and the Slater and the strong completeness conditions hold. Then 

Max/(Z) c Min v(.S?„) • 

Proof. Let j * = j(x*) e Maxj(X). Obviously ( i c r £ ) n £ ^ = 0 . There exists 
a nonzero (g*, y*) e Q* x Y* such that 

(2.11.1) <y*, y*> = <q*, q> + <y*, 4>(x, o)> V(x, tj) e X x Q . 

In view of the Slater condition we have y* e Y+ + . Then by the strong completeness 
condition there exists an / e i f such that q* = y* 0 /. If there exists an (x', q')eXxQ 
such that 

y* < /(«') + *(*'. «0 « 
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then by (2.HA) we have 

<y*, y*> = <q*, q'> + <y*, <?(*', q')> . 

Now since <P(x, q) is strictly concave, for any 

(x, q) e {((x*, 0) + (1 - t). (x', q'): 0 < t < 1} 
we have 

<y*, y*> < <q*, q> + <y*, *(*, «)> 

which contradicts (2.11.1). Consequently y.. e v(/) and by the weak duality y* e 
e Min v(if 0)- The proof is complete. 

2.12. Theorem. (Converse Duality.) Suppose that the Slater and the strong com
pleteness conditions are satisfied, <P(x, q) is concave and the set/(x) - Y+ is closed. 
If /* e i f 0 is an optimal solution of problem 

Min v(if 0) , 

then there exists an optimal solution x* of problem 

Maxf(X) 
such that 

f(x*)ev(l*). 

Proof. By definition there exists a y , e v(l*) n Min v(i?0). If y* ef(X) — Y+ 
there exists an x* e X with 

f(x*) ^ y* 

and the weak duality guarantees that y* = f(x*) e v(/*). 
Suppose, on the contrary, that y*$f(X) - Y+. Then there exists a y0 <§ y 

such that 
y0 ef(X) - Y+ and ]y0, y„] n (f(X) - Y+) = 0 . 

Consequently there exists a y e Y++ such that 

<y,yo>£<y,f(x)> V x e X . 

By Lemma 1.13 there exists a q e Q* such that 

<y, y0> ^ <§, q> + <y, <P(x, q)> V(x, q) e X x Q . 

By the strong completeness condition there exists an / e i f such that q = y o I. 

Now choose a y such that y0 < y < y* one has 

y = /(a) + <P(x, q) V(x, tj) eX x g , 

which means y e v(if 0), a contradiction to y* e Min v(if 0). 

2.13. Theorem. (Inf-Sup formulation.) If Y+ is reproducing and the weak optimality 
condition holds, then 

Inf v(if0) = Inf Sup {l(q) + $(x, q): (x, q) eX x Q} . 
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Proof. We have 

Inf v(__0) = Inf Inf v(/) (by Propositions 1.13 and 1.17 of [8]) 
Xo 

= Inf Sup {l(q) + _>(x, q): (x, q)eX x Q} (by Corollary 1.15 of [8]) . 

__ 
2.14. Remark. The operator duality, thanks to its Inf-Sup formulation is more 

analytical and applicable. On the other hand, the (strong) completeness condition 
makes it less general than the functional duality. However, this condition is easily 
satisfied if dim Y< +oo as it is shown in the following theorem. 

2.15. Theorem. Suppose that Y = R", Y+ + = R"+ + and S? c SS(Q, Y) is such that 

(2.15.1) {t(q*, q*,..., _*): q* e Q0, t > 0} c Sf . 

Then the strong completeness condition is fulfilled. 

Proof. Let q* e _* and y = (yl,y2, •••, y„) e R"+ + . Put 

t=U(yi + yi + ••• + }'n) and 1 = t,(g*,q* ,...,q*) 

Then, by condition (2A5.1), / e S? and q* = y 0 I. The proof is complete. 

2.16. Example 1. Lagrange dualization. 

Suppose that A is a nonempty subset in X, Z is an ordered linear space with 
cor Z+ +- 0 and f(x) and g(x) are functions mapping X to Y and Z respectively. 
Consider the problem 

(Pl) Max-Sup {j(x): x є A and g(x) є Z + } . 

Put 

ß = z 
and 

Ф(X, q) = Дx) + _;(x) + á-+(ø(x) - ҙ) , 
where 

Å~í \ i ^ ^ XЄA 
ó л W - j _ o o i f x ^ л . 

Given a set SS c SЄ(ß, Y) we have, for / є Jž?, 

v(í) = {y є Y: y = /(đ(x)) + j(x) Vx є A} . 
Put 

i ? 0 = {/єi?:v(/) + 0 } . 
Problem 

( D І ) MinAnfv(i?o) 

is then called the Lagrange dual to problem (P_). 

If the weak optimality condition holds and Y+ is reproducing, then the dual 
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Inf-problem can be written as follows 

Inf Sup {/(*) + l(g(x)): x e A} . 
&a 

From definitions it follows immediately 

2.16.1. Theorem. If the set A is convex and the functions f(x) and g(x) are concave 
then the convexity condition is fulfilled. 

2.16.2. Theorem. If there exists a point x0 e A such that 

g (x 0 ) eco rZ + 

then the Slater condition is fulfilled. 

2.16.3. Theorem. If Y = R", Y+ = R"+ and 

{(q*,q*,...,q*):q*eO + } <= S? 

n-times 

then the strong completeness condition is fulfilled. 

Proof. It is easily seen that Q* e: Q*. Consequently the statement follows from 
Theorem 2.15. 

2.17. Example 2. Fenchel dualization. 

Suppose that Su S2, ..., S„ are nonempty subsets in X, fi(y) f2(
x)- •••>f„(x) a r e 

functions from X to Y We will be concerned with the problem 

(P2) Max-Sup {/.(x) + f2(x) + ...+ f„(x): x e (\ St} . 
i = l 

Put 

e=n,n/ 
and „ 

$(x, q) = ft(x + qi) + f2(x + q2) + ...+ fix + q„) + t <5s-(x + qt) , 
i = l 

where q = (qu q2,..., qn) e Q. 
Given a set Sf c Sf(Q, Y) = [ ] £?(X, Y) such that 

n-times 

yi = (lu...,QeSf:fjli = 0 

we have, for / = (/. , . . . , I „ )e i f , 

v(l) = {yeY:y%t (/.(««) + Ux + «<) + 5sl* + 4>)) 
i = i 

V(x, q)eX x Q} = 

= { j e Y: y ^ t W**) + / i^O) V(*i, • • •, x„) e Sx x ... x S„} . 
; = i 

Put 

-S?0 = {7eiP:v( .) + 0 } . 
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Problem 

(D2) Min-Infv(JS?0) 

is then called the Fenchel dual to problem (P2). 
If the weak optimality condition holds and Y+ is reproducing, then the dual 

Inf-problem can be written in the following form 

Inf Sup { £ (llxt) + fix,)): (*., . . . , x„) e S, x . . . x S„} . 
&0 i = l 

From definitions it follows immediately 

2.17.1. Theorem. If the sets St, S2, ...,S„ are convex and the functions 
fi(x),f2(x), ...,f„(x) are concave, then the convexity condition is fulfilled. 

2.17.2. Theorem. If 
0 cor Si 4= 0 , 

; = i 

then the Slater condition is satisfied. 

2.17.3. Theorem. If SB is the set of all l = (\1,..., l„) from \\ &(X, Y) such 

t h a t £ /; = 0 and Y+ = JR™, then the strong completeness holds. 
»=) 

Proof. Let q* = (q*,..., q*) e Q* c X* x ... x X*. There exists a point 
y* e R"l + such tha t n-times 

sup { £ «q*, qi> + <y*,f(x + <Z;)> + Sst(x + q$: (x, q)eXx Q} 
; = i 

= S"P { I (<3*, ^i> + <y*,fi(x,)» -{fq*,xy. (x, xu ..., x„) e 
i = l i = l 

eX x Si x ... x S„} < + oo . 

So we have Y^qi = 0. 

Now for any y є R™ + we define 

h-

i = (h,..,Q 

,., и 

where 
ř = l/(y! + ... + У m ) . 

It is easy to verify that 

É-I - 0 

and i = l 

3 * = У o / . 

The proof is thus complete. 

78 



3. EXTREMAL-VALUE FUNCTION 

In the literature duality criteria have usually established with help of the so-called 
extremal-value function. Following this tradition in this section we derive, via the 
extremal-value function, some sufficient criteria for the convexity and the normality 
conditions to be valid. 

3.1. Definition. Consider the perturbed primal problem (P9) in Section 0. The 
function h: Q -» 2 r u { — oo, +co} defined as follows 

f -oo if <*>(*, a) = 0 
h(q) = I Sup <P(X, q) if Sup (X, q) + 0 

[ + oo if $(X,q) is not weakly bounded from above by any element from Y 

is called the extremal-value function of problem (P?). 

3.2. Definition. The multivalued function h: Q -• 2 r u { — oo, +00} is said to be 
concave if for any qu q2e Q and a, ft > 0: a + /? = 1 we have 

a h(qx) + /? h(q2) <= h(aq, + 0q2) = Y+ . 

Supposing that Q is a topological space we say that function h is weakly upper 
semicontinuous at q0 e Q if h(q0) c Yand 

V>+ e cor Y+ 3 neighbourhood U of q0 Va e U: h(q) < h(q0) + y+ . 

Analogously are defined convex and weakly lower semicontinuous functions. 
Evidently the just defined notions are a generalization of the corresponding ones 
of the scalar functions. 

We denote the hypograph of function h(q) by H: 

H^{(q,y)€Qx Y: y € h(q) - Y+} . 

In the sequel we suppose that the weak optimality is fulfilled and Y+ is reproducing. 

Obviously 

3.3. Lemma. If the function h(q) is concave then the hypograph H is convex. 

3.4. Lemma. We have 

H c lin E 

where the set E has been defined in Section 0. 

Proof. Let (q0, y0) e H. By definition 

y0 e lin [<P(X, q0) - y + ] . 
Then since 

{(q0, y)- y e $(X, q0) - Y+] cE, 
we have 

(9o, y0) e lin E . 
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3.5. Lemma. We have 

Ec H. 

Proof. Given (q0, y0) e E then there exists an x0eX with 

y 0 ^ <P(x0, q0). 

If h(q0) = + oo then obviously (q0, y0) e H. 
If h(q0) 4= + GO then <P(X, q0) is weakly bounded from above and, by Proposition 

1.12 of [8], h(q0) is sup-stable with respect to <P(X, q0). So there exists aye h(q0) 
with 

y ^ <P(x0, q0) = y0 . 
Hence (q0, y0) e H. 

Summarizing Lemmas 3.3, 3.4 and 3.5 we obtain 

3.6. Proposition. If function h(q) is concave then the convexity condition is fulfilled. 

3.7. Definition. Suppose that Q is a linear topological space then the problem (P) 
is said to be normal with respect to <& if h(q) is weakly upper semicontinuous at 0. 

3.8. Proposition. If problem (P) is normal then the normality condition is satisfied. 

Proof. By contradiction. 
Let y0 6 Ybe such that E n Eyo = 0 and E n Eyi + 0 for some yt P y0. Choose 

a point y+ e cor Y+, then on the segment 

bo -t.y+'.t £0} 

we can find an }>* e h(0) = Sup/(Z) + 0. Put 

y2 = i(Ji + Jo) • 

Then obviously y2 > y* and hence, considering the upper semicontinuity of function 
h(q) at 0, there exists a neighbourhood U of 0 such that 

(3.8.1) h(q) = h(0) + y2 - y* V ? e U . 

But since E r\ Eyi 4= 0 there exist a qeU and a n x e X such that 

<2>(x, a) > y2 . 

Hence there exists, for h(^f) is sup-stable with respect to <P(X, q), a y e h(g) such that 

y ^ $(x, f̂) ^ y2 , 

which contradicts (3.8.1). The proof is thus complete. 

The following statement is evident from definition. 

3.9. Lemma. Suppose that Q is a linear topological space. If there exist a neigh
bourhood U of 0 and a map x: U -> X such that 

$(q,x(q))eY VqeU, 

then the Slater condition is fulfilled. 



From Lemma 3.9 it follows immediately 

3.10. Proposition. If Q is a linear topological space and 

0 e int {q e Q: h(q) * - c o } , 

then the Slater condition is satisfied. 

Now summarizing Propositions 3.6, 3.8, 3.10 and Theorems 1.7 and 1.11 we 

obtain: 

3.11. Theorem. Suppose that Q is a linear topological space and the extremal-

value function h(q) is concave. Then 

(a) If problem (P) is normal with respect to <P, then 

Sup/(x) = Inf v(0o) 

(b) If 0 e int {q e Q: h(q) =f= - co}, then 

Supf(X) = Min v(@0). 
(Received September 10, 1985.) 
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