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KYBERNETIKA CiSLO 6, ROCNIK 6/1970

Quasi-Questionnaires, Codes and Huffman’s
Length

C. F. Picarp

New concepts are defined, in particular the quasi-question or vertex with an outgoing arc of zero
probability. A quasi-questionnaire is a probabilistic homogeneous (rooted) tree with quasi-
questions.

It is shown that every instantaneous code is a quasi-questionnaire with precise restrictive
conditions; it may also be a questionnaire, without an arc of zero probability.

Also, an approximation is given — without use of the classical construction —of the average
length of Huffman’s code with a given alphabet and given probabilities of code-words.

INTRODUCTION

A questionnaire is a graph with the set X of vertices having the partition Q U E
such that:

- Q, the set of questions, is formed by the vertices which are origins of at least two
arcs; there is one and only one vertex x, € Q which is terminal extremity of no arc:
it is the root.

— E is formed by the set of terminal vertices, called events.

~ If there is one and only one path from x, to all the other vertices, then the graph
is an arborescence (or rooted tree) and there enters exactly one arc in every vertex,
but x4: it is always the case in this paper.

— There exists a mapping P : i —» p(i) from X on the interval [0, 1] such that

%Zﬁp(e) =1. p0) =_§'P(j) forall ieQ,

where I'; is the set of successors of i; then p(xo) = 1.
— || > 1forallie Q.

The outward degree of every question is called the basis of the question and it is
written a; (or a if possible). If all the questions have same basis, a, the questionnaire
is called homogeneous. There is a compatibility relation between the number of



events, |E| = N, the number M of questions and the basis: M = (N — 1)f(a — 1).
If this relation is true, then the questionnaire is strictly homogeneous; else there is
a question with § + 1 for basis, where § is the rest of the integer division (N — 1) +
+ (a — 1); B is then strictly less than @ — 1; all the other questions have same basis a
and the questionnaire is called homogeneous in the wide sense.

If a = 2, the questionnaire is always strictly homogeneous and is called a dichoto-
mic one, if @ > 2, then it is a polychotomic one.

An heterogeneous (rooted-tree) questionnaire is defined in the case where the
bases are not the same for all the questions: o/ = {al, - aM} is the set of the bases
and the compatibility relation is now

g(a,-—l)=N—1‘

It is possible to associate a code to a questionnaire by a mapping from the set of
events on the set of codewords. At every answer I'°, I''i, ..., I'*~'i to the question i
(without an explanation of the kind of answer), we associate a a-ary digitje {0, 1, ...
ey d - 1}. The path from x, to x must be coded with, say, ! a-ary digits if this path
contains [ arcs: at every arc, corresponds one digit, the left one for the answer to x,,
the right one for x. In doing this, we get a word with [ digits and this is the codeword
of the code associated to the questionnaire. Because the questionnaire is a rooted-
tree, it is possible to code all the events with other words and the code is decipherable
and instantaneous. Then Huffman optimal coding procedure is able to give the algo-
rithm for building an optimal homogeneous questionnaire. The case of heterogeneous
questionnaire needs to use sometimes an alphabet with a; letters (0 to a,_,) for the
question of basis a, and we gave already a generalization of Huffman’s algorithm to
the heterogeneous case. From the coding point of view, it is for example the use of
letters and digits to code an event.

In fact the root operates a partition of E in a,, subsets and every other question i
operates a partition of a subset of E in a; subsets. If all the successors of a question {
are events ey, ..., ¢, then i operates the final partition of a subset of size a.

The theory gives rules for building algorithms for feazible questionnaires, when
some restrictions are done over the partitions of E and of its subsets; for example
the unique type of question is to operate an ordinary comparison between two num-
bers with two (or three) outcomes as a > b,a < b(ora > b,a = b,a < b).

Some operations are defined over the questionnaires: they allows to build sophistic-
ated graphs and questionnaires with very ordinary ones; they give too questionnaires
with one or other extremum property. .

The theory of questionnaires leads to use the information theory in view of the
evaluation of the information value of a questionnaire. In this paper, we use essen-
tially the concept of routing length i.e. the expectation of the length of a path in
a questionnaire and the concept of information transmitted by a quesjionnaire
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when the set E is given, with its distribution of probabilities; it has been shown that
the information transmitted by a questionnaire is always less than the routing length.

1. QUASI-QUESTIONNAIRES

Definition 1. A quasi-event is a terminal vertex of a probabilistic tree with a zero
probability.

Definition 2. A quasi-question is an inner vertex of a homogeneous tree with at
least one terminal vertex of nonzero probability as descendant and one quasi-event
as SuCcessor.

Definition 3. The probability of a quasi-question x is the sum of the probabilities
of the terminal vertices of nonzero probabilities which belong to the descendance of x.
If a quasi-question x has only one successor y of nonzero probability, all the other
successors of x are quasi-events and the information given by x is zero because the
conditional probability of y is equal to 1.

A quasi-question is not a question in the usual sense of questionnaires.

To repeat, an event is a terminal vertex of nonzero probability and a question
is a vertex with a successors which are events or questions.

Definition 4. A polychotomic quasi-questionnaire is a probabilistic homogeneous
tree with the two following properties:

1. the vertices are events, quasi-events, questions or quasi-questions;
2. the sum of the probabilities of the events is 1.

It will be noted that in a quasi-questionnaire* there are two kinds of terminal ver-
tices:

— terminal vertices giving a complete system of events that is the set E = {e;} such
as Y. ple;) = 1, where P = {p(e;) | e; € E} is given.

eeE

— terminal vertices such as V; p(¢;) = 0 giving the set E = {g;}.

This case is very different from the incomplete systems studied by, for example,
Renyi [8] and those used in the sub-questionnaires (Dubail ([3]).

In a probabilistic tree, a non-terminal vertex with only quasizevents as successors
will be “reduced” in a quasi-event with reduction of the order of the tree.

In a wider sense, a homogeneous questionnaire, such as the number of events N
is N=d"+oa(a — 1) + B, may be considered as a quasi-questionnaire with
(N — B — 1)/(a ~ 1) questions and a quasi-question with (a —~ B — 1) quasi-events
as outcomes.

* See figure in the annex.




The average path-length of a quasi-questionnaire K is defined by the usual sum: 421
6 L= 3 ple)r(e)

where the rank of the event e; is r(ei). That is, the event e, is connected with the roo
by a path whose length is r(E,—). Of course, the possible extension of the sum to the
quasi-event ¢; does not change L. Lis called routing-length (or ring-length)

Theoreme 1. The routing-length of a quasi-questionnaire is

@ L= ¥ pla)
qeQul
where q is a question (q € Q) or a quasi-question (q € Q).

The equivalence between (1) and (2) is proved in the same way as for rooted-tree
questionnaires (Picard [7]).

To a polychotomic questionnaire K constructed on (a, P) we can map an infinity
of quasi-questions obtained by substituting P to P, where P is a distribution of the
same N nonzero probabilities and of a multiple of (a — 1) zero probabilities.

But reciprocally to a quasi-questionnaire K is associated only a couple (a, P)
where P is a distribution of N nonzero probabilities.

Let N be the number of quasi-events of K and let M > 1 be the number of quasi-
questions.

The attempt is made to do some transfers of terminal vertices by interchanging the
probabilities of two vertices, an event e; of rank — the rank of e; is the path-length
from the root to ¢; — r(e;) and a quasi-event of rank r,,.

If 1y, < r(e;) then the rtng-length of the new tree is:

3 L — ple) [r(e) — n] -

This type of transfer must be repeated as often as possible.

If during this process a tree is such that there is a vertex y with only quas-events
as descendants, then only the vertex y will be substituted for the subtree issued
from y, and y will be taken as quasi-event.

At the end N will be reduced by a multiple of @ — 1 and M will also be reduced.

Let r,, be the highest rank of the events; then there is no quasi-event of rank ry, > ry;
if not, there would be a vertex of rank r,, of which no descendant would be an event.

If all the quasi-events are of the rank ry,, it is possible to do again a transfer be-
tween an event and a quasi-event.

Such transfers will not reduce the rtng-length but may permit to give a quasi-
events as successors to the same vertex. Then the number of quasi-events and quasi-
questions will be reduced.

If and only if N < a - 1, no possible transfer can reduce N.

All transfers performed one after the other make it possible to form a homogeneous
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questionnaire K" in the strict sense (if N’ = 0) or in the wide sense (if 0 < N’ < a — 1);
the events ¢, of this questionnaire K’ have as rank r'(e;) such that r(e;) < r(e;) V i.
Consequently the rtng-length L of the questionnaire K’ is

O] L<L.
Furthermore, if a quasi-event has a rank r, < ry, then the inequality yields:
® L<L.
If all the quasi-events are of maximal rank then
1. if K has N < a — 1 quasi-events then, at the most, N — 1 transfers will permit
to form a homogeneous questionnaire, in the wide sense, with a rtng-length
‘ L=L;

2. if K has N > a — 1 quasi-events, then some transfers will permit to form at
feast a non-terminal vertex with no more than one outgoing event.

If there is no outgoing event this vertex will be replaced by a quasi-event of rank
less than r, in such a way that a new transfer will permit to reduce the rtng-length;
if not, the following case will occur.

Every quasi-question of rank r with only one outgoing event e; may be replaced
by this event; consequently, there is a reduction of rtng-length of

((e) = 1) ples)

Thus, the following result has been obtained:

Theorem 2. Every quasi-questionnaire K constructed on (a, P), with a routing-
length L, and with N > a — 1 quasi-events may be reduced to a questionnaire K’
constructed on (a, P) with a routing-length L < L.

We note that the restriction N > a ~ 1 follows from the fact that if N = a* +

+ o{a — 1) + P then the same rooted tree K may be considered both as a question-
naire and as a quasi-questionnaire.

2. INSTANTANEOUS CODES AND QUASI-QUESTIONNAIRES

Some connexions have already been noted between coding and questionnaire
(see, for example, Picard {7} § 1—5 and Césari [2]).

The couple (g, P) is the base of the questions and the distribution of the probabili-
ties of the complete system of events E (in the sense of questionnaire) or the number
of the letters of the alphabet and the probabilities of the code-words which still form

a complete system of events E (‘m the sense of coding).



The words of an instantaneous code are those of the terminal vertices of a pro- 423
babilistic rooted-tree which have nonzero probability.

The problem of instantaneous coding is to determine the ordered sequence of the
arcs of the path connecting the root to the code-words.

This coding is also used in the Theory of Questionnaires to locate the events.

But in this last theory the questions or inner vertices are also to be noted; since
the characters used to code a question, i.e. to locate its position on the rooted-tree,
are the prefix of the characters of the terminal vertices, we must, to decode them,
know the rank of the vertices ([7], § 1.2.1.).

An instantancous code is a quasi-questionnaire because definition 4 holds.

Let A be a strict homogeneous rooted-tree. Every vertex of A has either no succes-
SOF OF @ SUCCESSOTS.

Let E be the set of the terminal vertices with N elements, E = {e; | i=12..N}
and let r{e;) be their ranks.

Picard [7] and Ash [1], for example, have proved that it is possible to construct
an optimal questionnaire on A, without “discrepancy” K,, using an information
equal to the rtng-length (called also the absolutely optimal code) assigning the pro-
bability p(e,) = a~"®? to the vertices of rank r(e,).

The calculation step by step (from the events to the root) of the probabilities of the
questions shows that all the vertices of K, have a probability connected to the rank
by: p(x) = a”"™®_ Indeed, a question x of rank r has for successors: the vertices
(events or questions) of rank r + 1and of probability a~*** thus p(x) = Ya ¢* V=
= a"". In particular the root x, is such that p(xo) = a° = 1. From p(x,) = Y, a~"¢?

e

it follows
(6) Z a e 1

eicE

The property (6) holds for every questionnaire constructed on A.
Let then E be the partition E = E’ U E of the terminal vertices of 4 and let g(e)
be the probabilities of an instantaneous code K, such that:

g [GEeB @) =0,
e =t ana {4

the property (6) implies:
] Ya Y@ =1

ecE’ &E

thus,

®) Y a7 < 1

ejeE’

and nevertheless E’ is a complete system of events.
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E is the set of quasi-events.
The guasi-questionnaire is a questionnaire if an only if E = @ so that the follow-
ing theorem is proved:

Theorem 3. An instantaneous code constructed on a complete system of evens
E= {e,»} is a strictly homogeneous questionnaire, if and only if:
YoaTred =1,
eicE
The existence of an instantaneous code for which the rank of every codeword e;

is the integer immediately greater than the logarithm (of base a) of the inverse of the
probability p(e;) has been indicated by Shannon ([9] § 9) and proved by Feinstein [4].

Noiseless Coding Theorem. There exists an instantaneous code C such that

© logL <re) < IogL +1
p(es) p(es)
for every code word e;.
In such a code, the word ¢; is coded by a word of r(e;) characters.
The multiplication of each member of (9) by p(e;), and then the summation over
the elements e; of the set E of code-words C, lead to the double inequality:

(10) I(E) < L(C) < I(E) + 1

where I N(E) is the Shannon’s information of code C, expressed with logarithms
of base a and L(C) the rtng-length of the quasi-questionnaire C. One could also write:

A N T

p(e i)

and

(12) L(C) = ¥ ple) ([105 —1—-] + 1)
ek ple;)
where [x] is the greatest integer strictly less than x.
Let then C be a Feinstein’s code of which the ranks of the words are determined
by (9). :
If log 1/p(e;) is integer for every e, then r(e;)) = log 1/p(e;) (Vi) and therefore
¥ a~"®) = 1, thus C is a questionnaire.

e:i€E
If log 1/p(e;) is not integer for at least one word e;, then, according to (9) r(e;) >
> log 1/p(e;), that is

13) ple) > a™r¢9,



Since for every word of C, ple) = a™"?, if (13) holds for at least one word, then

T~ < ¥ ple) and,thus Y a7~ <L
ek eicE

eicE

and so, according to Theorem 3, C is a quasi questionnaire.

Theorem4. A code C satisfying the inequalities (9) of the Noiseless Coding
Theorem is a strictly homogeneous questionnaire if and only if

r(e) = log]— (vi).

ples)

The homogeneous questionnaires in the wide sense have in fact a property similar
to the homogeneous questionnaires in the strict sense.

The sub-tree with one question of base § + 1 < @ may admit some events of the
same probability of the form a™"/(8 + 1).

Then if each of the N — (8 + 1) other events e; forming the subset E; < E has
a probability of the form a "®?, then the quasi-questionnaire is a homogeneous
questionnaire in the wide sense:

Corollary. A code C satisfying the inequalities (9) of the Noiseless Coding
Theorem is a homogeneous questionnaire in the wide sense, if and only if, the fol-
lowing conditions hold:

LN—B+1) isamultip;eofa— landf +1<a,

2. N — (B + 1) events have a probability of the form a™~"¢?,

3. (B + 1) events have a probability of the form a™*|(f + 1),

4. s z sup r(e;) where E, is the set of N — (B + 1) events of type 2.
eicEy .

Otherwise C is a quasi-questionnaire.

The last condition places the usual restriction on the optimal homogeneous
questionnaires in the wide sense: the question of base # + 1 has as outcome the events
of smallest probabilities.

3. OPTIMAL QUESTIONNAIRES AND QUASI QUESTIONNAIRES

The questionnaires of the minimal rtng-length K or optimal questionnaires, may
be constructed — within one equivalence ~ by Huffman’s algorithm (1952).

This algorithm allows the evaluation of the rank of the events, thus the determina-
tion of the rtng-length Lg, but, to our knowledge, there does not exist a formula
which gives Ly directly without using this algorithm.

Now let us study the rank of the vertices of the optimal questionnaires.

425
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Let us suppose that the ranks of the events of a questionnaire Ky are at least equal
to ko. For every rank r £ kg, there are exactly a” vertices and the sum of the pro-
babilities of the vertices of every rank (0 £ r £ ko) is L.

Let X, be the set of the vertices of rank r

1. r £ k, then it follows:

(19 x| =a
and
(15) 2 p)=1

Furthermore, if Ky is an optimal questionnaire:
(16) xeX, and yeX,,, = p(x) = p(y)
and for the predecessor x, of y, (Vy € Fxo) :

) plxo) > p(y) .

However, these properties are not sufficient to characterize an optimal question-
naire.
If, in Ky, it was possible to find a vertex y of rank r < k, + 1 such that

P(J’)é;‘;:q, B

then for all the rank r — 1 we would have, according to (14), (16) and (17):

2 px)>dat py) 21,

xeXr—1

which is in contradiction with (15),
Thus:

(18) "x) £ ko + 1= p(x) < —
s0

r(x)<logf—1—+1,

p(x)
which is the second inequality of (9), extended to the questions of Ky.

2. r > ko + 1 with K;; being always an optimal questionnaire.

I+

If for every vertex of rank r — 1 we have p(x,_;) £ a™'*", is-it possible to have

a vertex of rank r + 1 such that p(x,,,) = a~'?



In this case, all the vertices of rank r would have the probability p(x,) = a~ !, and
for at least a question of rank r : p(g,) > a % and the questions of rank r — 1 would
have the probability p(4,-;) = a~'*" and for at least a question of rank r — 1

p(g,-1) > a~'*"; which leads to a contradiction. Therefore:

Theorem 5. In an optimal questionnaire in which the events are of rank at least
equal to ko, the probability of every vertex x of rank r(x) < ko + 1 is such that
p(x) < 1a"@ Y if for r > ko + 1every vertex of rank r — 1is such that p(x,_;) <
< a~"*! then all vertices of rank r + 1 have a probability p(x,+,) < a” "

A necassary condition of optimization such that: “No vertex of rank r has a pro-
bability greater than the sum of the probabilities of a other vertices of the same
rank” [7] leads naturally to theorem 5, but not to stronger inequalities when r >
> ko + L

Theorem 5 leads to the comparison of the ranks of the events in Huffman’s and
Feinstein’s codes. Let r(e) and ry(e) be the respective ranks of the same event with
the same probability p(e) and let inf ry(e) = k.

eck

Then:
ru(e) = ko = ple) < a™™*' and rfe) 2 ko,
ru(e) = ko + 1= ple) < a™* and rfe) 2 ko + 1,
ru(e) = ko + 2=>ple) < a™® and rfe)z ko + 1,
ru(e) = ko + 3=>ple) < a™™' and r(e) 2 ko + 2,
and also

ru(e) =.ko + 2h = ple) <a ™' and rfe) =k, +h,
(@) =ko +2h + 1=ple) <a™™ ™ and rfe)Z ko +h+1,

that is,
ru(e) = ko + 2h =rfe) 2 ryle) — b,

ra(€) = ko + 2k + 1 = r(e) 2 rg(e) — k.

Let then e, be the event with the greatest probability
Pler)-= Sup p(e;) ;
eicE

The rank of e; is ko, that is, ry(e;) = ko and furthermore

rfe,) = [log p(lel)] +1.

427



428 The preceding inequalities lead to

1
ko < | log ——] + 1.
° [ ples)

Furthermore, let us suppose:

1
ko £ [Iog ] -1,
P(el)

pley) S a7

that is:

since the questionnaire is optimal, the vertices of rank k, + 1 have a probability:

P(xkun) = P(el) = a k1
and the questions of rank k:

pai) < a7
so that

Ypx)S(@o - 1a+aR <1

xeXiq

which is absurd.
Thus

ko = [Iog p(]e,)] + a

where a = 0 or 1 and k, has no other possible value.
Hence the results:

Theorem 6. In an optimal questionnaire Ky, the event of greatest probability e,
has a rank ry(ey) = ko such that:

k,, - [log ;(i_l)] or ko = [Iog ;(—1;)} +1.

For h 2 0, the ranks of the events ry(e) are connected with the ranks r/(€) of Fein-
stein’s code by:

(19)  rule) = ko + 20 or ry(e) = ko + 2h + 1 =>r,(e) = ryle) — h.



Aplications. 1. Let us consider the two following Huffman’s questionnaires

0,19
0,38 038
0.62
0,62 0,19
0.24
1 0,24
0,19
0,38
038
019

for which Ly = 2.
The first one is such that k, = log, [(100/38)] + 1 = 2.
The second one is such that kg == log, [(100/38)] = 1.
2. Let us consider this example given by Y. Césari to whom I am grateful:

For p(e;) = 0,47 we have ryle|) == ko + 2k,

p(ey) = 0,26 rgley) = ko + 2k, + 1,
ple3) = 0,26 ryles) = ko + 2h;,
pley) = 0,01 ruley) = ko 4 2h,,
with
hy=hy =0 and hy=hy=1
we have:

re)) > rple)) — by
r(e) = ryle)) — hy
reles) == ryles) — Iy
reg) >ryley) — by .

The calculation of a bound of the routing-length of the optimal questionnaire
is a consequence of:
Ly =L £ L(C)

where Ly is the rtng-length of an optimal questionnaire Ky, L(C) the rtng-length of
Feinstein’s code, L — the rtng-length of a questionnaire K’ deduced from Feinstein’s
code, these 3 quasi-questionnaires being constructed on the same couple (a, P).

It is possible to bound the preceding inequalities by some informations:

(20) IE)SLy s LS LC) SIWE) + 1,

429
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From (12) and (20) we have

@ Ly < zZEP(ei) ([log p—(];z,—)] + 1)

if at least the probability of an event is not a power of 1/a (from theorems 2 and 4).
Let us suppose now that this condition holds; the code C is then a quasi-question-
naire and from theorem 2 there exists a questionnaire K’ such that L' < L(C).
The evaluation of (11), according to (21) requires the determination for every

event e;, of
ci=|:log-i—]+ 1.
ple:)

Let us then call Sup ¢; = ¢y and

(22) Ta=1-¢

eicE
where
= —r(&;)
g=)a
¢ is the residue corresponding to the quasi-event of C. ¢ is then sum of N = !Fl
powers of 1/a (distinct or not) corresponding to the quasi-questionnaire C.
These powers may be obtained explicitly from (22): we shall use a system of nume-

ration of base a to express . a~°‘ and g may be written:
eicE

N
e= Y ta™" with 0S¢ <a.
ri1

N will be then the sum of the nonzero digits:

Example, If P = {0,90;0,10} then ¢; =1 and ¢, =4; 3 27¢:=>0,1001 so that p =
ek
= 0,0111: thus N = 3 and the ranks of the quasi-events are 2, 3 and 4.
Also fora =3

32 025 20 15 5 2 1
~ 1100’ 100 100 * 100 * 100 ° 100 * 100

thus ¢; = 2,2,2,2,3,4,5, and

M

i
Al

37 =011l =1—¢



since 4 X 372 =31 1 372 apnd p = 0,11112 thus

N=Yt==6
i=1
32
15
20
15 s 2 1
0
0 [ -0 o 0

Let us call 7; the ranks of the quasi-events, for j = 1, ..., N. A quasi-questionnaire
K, is deduced from C by a succession of N permutations (at the most) among the
events and the quasi-events; each one may be followed by a substitution in case there
would be a non-terminal vertex of zero probability.

The maximal rank of an event of C is:

(23) cy = Fy = 1 + Max [log L]
eicE ples)
and corresponds to the event ey with the smallest probability py.

If ey is the only event of rank cy, before a permutation we can replace the quasi-
question with outcome ey by an event of probability py; the rank of ey is ey — 1
and the reduction of the rtng-length is py (recursive operation).

If the difference of rank between ey and the event of probability immediately
higher, ey_, is cy — ¢y, we shall have reduced the rtng-tength by py(cy — ¢}) and
the number of quasi-events by (a — 1) (cy — cpy).

Let us suppose then that cy = cy and let cy be the rank of ey in C.

If there exists a quasi-event of rank ¢; < cy, then the permutation of ey_; with
this quasi event gives a reduction of (cy — ;) p(ey— ).

But we can increase this reduction by doing a permutation between the quasi-event
of minimal rank &, and the event of maximum probability among the events of rank
higher than &,; then, by other steps (), by substituting a new value to &, (greater or
equal to the previous value) we can repeat the process.

This algorithm may be expressed as follows:

L. Let &) be the smallest rank of a quasi-event at the step j (j starting at 1);
the permutation of a quasi-event of rank &o(j) with the event of greatest probability,
having a rank c; greater 1han Go(j), leads to the reduction of

Max){p(e,.)} x (e; — 2o(J)) -

c> EolJ.

431
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2. For the next step (j + 1) we shall substitute éo(j + 1) to &(J) where
Eo(j -+ 1) 2 Eo(j)

the algorithm will stop at step ¢ such that for every event ¢ < Zo(t).

At the end, one will obtain a quasi-questionnaire K; with N, quasi-events and
a routing-length:

T
(24) Ly = L(C) = ). (e; — @) Max {p(e)}
=1 > o)

C et Ky have the property P:

The events ordered according to the decreasing probabilities have non-decreasing
ranks. .

This is a necessary property for optimal questionnaires. This property is true for
K'. K’ will be deduced from K according to theorem 2.

Furthermore, the rtng-length of K' is less than that of K: every time (a — 1)
quasi-events have been suppressed, then the event of probability p; > py may receive
a rank lower.

Thus

(25) L<L —(N,%(a—1)py.

(a % b means the integer part of the quotient of a by b.)
This formula may be expressed more accurately

(1) by writing Ny, in a polynomial form
Ny =Yuaa - 1)
and using the successive remainders;
(2) by substituting to py the (N, % (a — 1)) smallest probabilities among the
P(ei)'
From (24) and (25):

Theorem 7. It is possible to find an upper limit to the routing-length of a poly-
chotomic questionnaire by

(26) Ly < L) —jg(ci - E"(j))c}\ffnfj‘) {p(e} — p(N, % (a = 1))

~where L(C) is defined by (12), N, is the number of quasi-events of the quasi-ques-

tionnaire K, of which all the quasi-events are of maximal rank, py is the smallest
probability of P.
For the ranks ¢;, &(j) and ¢ see formula (24). This formula is not trivial.



Nevertheless, it gives the determination of the upper limit of Ly without using
Huffman’s construction and has the theoretical interest to use the events by their
probabilities p(e;) without using the questions.

By substituting a questionnaire K” to the code C without using the questionnaire K,
we found a more elementary formula:

w

Since C has N quasi-events, we can deduce from the polynom N = Y 8.(a — 1)
how many times the rank of an event may reduced by one so that:

27 Ly SL < IC) ~ (N%(a — 1)) py.

L’ may be stated more accurately as in (25), but we are not sure that the question-
naire K” with the routing-length L’ has the property P. (26) is more exact than (27).

According to a communication by E. Gilbert (Bell C°), it seems that E. Moore
has shown a simpler formula but less precise than (27) (see also Jelinek’s Annex [6])

Ly SIME)+1—~2py for a=2.
ANNEX. EXAMPLES OF QUASI-QUESTIONNAIRES AND CODES

1. Let a = 2, P = {90/100, 10/100}.
For ¢; = 1, ¢; = 4 we have found ¢y(1) = 2. (24) leads to

10
L, =I(C)— 2 X —
1 © 100
then L' == Ly = 1 and I(C) = 1,3.
0,9 0 0 0,1
< 01 0,1 0,1 0

2. Let a = 3, P = {32/100, 25/100, 20/100, 15/100, 5/100, 2/100, 1/100}

. . 32
J=1 ) =1 ¢; =2 ple,)=—,
¢ ! ST

. 5
J=2 ¢@2)=2 c;=3 ple,) = —
0 2 2) 100

; _ 2
J=3 BB =2 =4 pley) — > .
3 pled) =155

. - 1
JMax=4 ¢4 =3 ¢, =35 ,) =
4 pley) 100"

Ny=2=a—1=L=LC)
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R45+2x24+1%x2 1
L' S I(C) ~ —r——f»iaé— 2h1x2 o0 " L8

Thus Ly = 1,51 and T(C) = 2,12.

3. Leta == 3, P = {22/45,1/5, 1/15 (three times), 1/54 (six times)}; the ranks are determined
by

3°>Eg3“‘ >lg3'2
45 5

;>§l:‘§3‘4
Thus c¢;:= 1, 2, 3, 4, we have

3714372 13,373 1 6.374=3"142.37242.373
Thusg¢ =37 ' 4+ 37 3and N =2

1 1 1 1
LgsLO)—|-X 14+ —X 14+ — - =,
" (C) [5 'rlsx +54X 2] 5

29
Ly S L(C) — =.
n=HO=55

Thus:
84 54
Z(C)‘—-1+§6 and LH:=1+§E

so that the bound is close to Lyg.

4. Let C be the code defined by: a = 2 and P == {0,425/0,250/0,08125 (four times)}; the
ranks of C are:
rley) = rey)) =2
rlez) = ...=rleg) =4
Thus
> 27red = 0,11

ep
and

p =001,

There is only a quasi-event of rank 2. The difference L(C) — L’ is obtained in the following
way:

e3 will change from rank 4 to rank 2 by permutation, then e, will change from rank 4 to rank 3
since N; = 1.
Thus L(C) — L’ = 3 X 0,08125 = 0,24375.
(Received April 6, 1970.)
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VYTAH

Kvazi-dotazniky, kédy a Huffmanova délka

C. F. PICARD

Definuji se nové koncepce, a to zejména kvazi-otdzka neboli uzel s vychdzejici
vétvi o nulové pravdépodobnosti. Kvazi-dotaznik je pravdépodobnostni homogenni
strom s kvazi-otdzkami.

Ukazuje se, Ze kaZdy okamZity kod je kvazi-dotaznik s pfesné vymezenymi pod-
minkami; mZe byt téZ dotaznikem bez vétve o nulové pravdépodobnosti.

TéZ je ddna aproximace — aniZ by se pouZilo klasické konstrukce — primérné
délky Huffmanova kédu s danou abecedou a s danymi pravd&podobnostmi kédovych
slov.

C. F. Picard, Equipe de recherche structures de Iinformation, Tour 42, Faculté des Sciences,
9 Quai St. Bernard, Paris V°. France.

435



		webmaster@dml.cz
	2012-06-04T19:47:52+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




