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K Y B E R N E T I K A - V O L U M E 20 (1984), N U M B E R 4 

DUALITY IN VECTOR OPTIMIZATION 

Part I. Abstract Duality Scheme 

TRAN QUOC CHIEN 

This is a contribution to the duality theory in optimization theory. A unified approach is 
presented. The paper is divided into three parts. In the first part an abstract duality scheme is 
formulated and studied. The well-known duality principles are formulated and proved for this 
model, too. The second part studies the dual problems in the vector quasiconcave programming. 
The last part is devoted to the fractional programming. 

0. INTRODUCTION 

The duality theory of optimization has an extensive literature. This theory may be 
regarded as the most delicate subject in the optimization theory and its theoretical 
importance cannot be questioned (e.g. in the theory of prices and markets in econo­
mics). In the one-objective optimization there are several approaches to the duality 
theory: Wolfe's gradient duality [8], the Lagrangian multipliers method, the con­
jugate function method and the subgradient duality [9]. These approaches are 
applicable, unfortunately, only for the convex optimization. There are some attempts 
to extend the duality theory for wider classes of optimization (cf. [10], [11], [12]). 
Nevertheless, these approaches are not unified and require strong assumptions (con­
vexity, differentiability, constraint, qualification . . . ) . Moreover, most of them 
are difficult to convert to the vector optimization. 

This part of the tripaper presents a unified abstract duality scheme on the basis 
of which the duality theory for the vector optimization will be built up. 

1. OPTIMALITY CONCEPTS 

Throughout this work Y denotes the space in which the values of objective opera­
tors occur, therefore some optimality concepts for subsets in Y will be defined and 
discussed in this section. 
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So let Ybe a topological linear space, let Y+ c Ybe a convex cone with(— Y+) n 
n Y+ = {0} and int Y+ =f= 0. We define for any a, be Ythe following ordering: 

a > b iff a — b e int Y+ 

a ^ £> iff a - beY+ 

a > b iff a >. b and a 4= b 

a j> b iff a = 6 or 6 — a £ Y+ . 

We recall now some elementary notions needed in the further development. 

A subset A <= Y is called to be bounded from above if there exists an element 
y e Ysuch that a ^ y for all a e A; y is then called an upper bound for A. An upper 
bound y* for A is said to be the supremum of A, labelled by sup A, if j * ^ j for 
all upper bounds y for A. Analogously the boundedness from below, lower bounds 
and the infimum (inf A) are defined. Let {xa}aeA (where A is an ordered index set) be 
a net (a generalized sequence) in Y then the notions lim inf xa and lim sup xa are 
supposed to be traditionally defined. a 

Now we are ready to introduce the optimality concepts in question. Given A c Y 
an element y* e A is said to be a strong maximum of A if y > y* implies y $ A, 
(the same concept is called efficient, Pareto-optimal [2] or extreme points [3]), 
a weak maximum (weakly efficient, weakly Pareto-optimal or Slater optimal [2]) 
if y > y* implies y $ A. The set of all strong (weak) maxima of A will be denoted 
by Maxs A (Maxw A). 

It is not generally guaranteed that Max5 A or Maxw A is nonempty. That is why 
we take into consideration the following optimality concepts: y* e Y is said to be 
a strong (weak) supremal point of A if (i) y* e Maxs A(y* e Maxw A) or (ii) 
y* £ A and there is no net {ya}asA

 c A such that lim inf ya > (>) y*. Let 

Sups (Supw A) denote the set of all strong (weak) supremal points of A. 

Analogously are defined the strong (weak) minimum infimal point and the sets 
Mins A, Minw A, Infs A and Infw A. 

The following inclusions are trivial 

Max5 A c Maxw A 

Sups A c Supw A 

Maxs(w) A <= Sup5(w) A 

Mins A <= Minw A 

InfM d n f w A 

Mins(w) A c: Infs(w) A 

Given now a class of subsets {Ax}asA
 c Y> w h e r e -1 i s a n i n d e x s e t > i l follows 

immediately 
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Lemma 1.1. 

(1.1) Maxs(w)[ U Maxs(w) AJ = Maxs(w)[ U AJ 
aeA aeA 

(1.2) Mins(w)[ U Mins(w) As] = Mins(w)[ U A ] 
aeA aeA 

Lemma 1.2. Suppose that for any aeA, y e Aa there exists y' e Sups(w) Aa such 
that y' >; y, then 

(1.3) Sups(w)[ U Sups(w) AJ c Sups(w,[ U AJ 

Proof. Let y* e Sups(w)[ U Sups(w) AJ, then y* e U Sups(w) Aa c Sup U A« (the 
aeA aeA aeA 

last inclusion can be derived as follows Sups(w) A0 c Afi cz (J Aa V/J e A => U Sup s ( w ) . 
oceA aeA 

• A c U 4 =*- U Sups(w) Aa c \JAa). If y* i Sups(w)[ U A J then, by definition, 
aeA ' aeA aeA aeA 

there is a net {^} c U Aa such that lim inf j ^ > (>)y*. Then according to the 
aeA p 

assumption of the lemma there exists a y'p e Sups(w) Ap with j ^ > j ^ for each /?. 
Obviously lim inf y'p >, lim inf yp >, (>) y* and that contradicts the assumption 

P P 

that y* e Sups(w)[ U Sups(w) A J . Q 
oce/i 

Definition. We say that the space Yhas the K-property if any of its subsets that is 
bounded from above has a supremum (this property is called .K-property in honour 
of the Soviet mathematician L. V. Kantorovich who pioneeringly studied the so-
called Kantorovich's spaces). 

Corollary 1. Suppose Yhas the K-property and Aa is bounded from above for every 
aeA. Then the inclusion (1.3) holds. 

It is easy to check that spaces of finite dimension have the i^-property. So we have 

Corollary 2. Suppose Y is of finite dimension and Aa is bounded from above for 
every aeA. Then the inclusion (1.3) holds. 

Lemma 1.3. Suppose Aa — Y+ <= Aa for every aeA. Then 

(1-4) Supw[ U A] c Supw[ U Supw A J 
aeA aeA 

Proof. Let y* e Supw[ U AJ> then there exists a net {yp} c UAa 'SUch that 
aeA aeA 

lim yp = y*. Without loss of generality we may assume that yp £ y* for all /J (other-
P 

wise, instead of {yp} we choose the net {inf {yp, y*}} c U A)- Fixing ft we consider 
aeA 

the segment \yp, y*~\ = {yp + t(y* - yp) | t e [0, 1]}. Let AXf be such a set that 
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yf e AXf and put 

(1.5) y'„ - sup Aa, n [yf, >>*] 

We assert that y'f e Supw Aa?. Indeed, if it is not so, then y'„ < y* and there is 
a point y"f e A^ such that y"f > y'f. Then by the assumption of the lemma, y'f e 
eint {>- | y S y'f} c 4 . . - Hence the intersection (y'f, y*~\ n A^ + 0 that contra­
dicts (1.5). 

Evidently lim y'f = y*. It remains to prove that there is no net {xy} c U Supw Aa 
P aeA 

such that liminfxy > y*. If it is not so there exists an x e \J SupwA a such that 
y aeA 

x > y*. Let x e Supw Ax then there is a net in Ax converging to x. Hence we 
can choose a point z e Aa such that z > y* and this is a contradiction with 
y* e Supw [ U 4 ] - • 

aeA 

Lemma 1.4. Suppose that U 4 ' s closed, then the inclusion (1.4) holds. 
aeA 

Proof. Let y* e Supw [ U Aa]>
 t r i e n 3 '* 6 U Aa f ° r the closedness of U 4 - Eyi-

aeA aeA aeA 

dently y* e Supw Af <=. \) Supw Aa for some /i. The proof that there is no y e U Sup" '^ 
aeA aeA 

such that y > y* is the same as that one of Lemma 1.3. • 

Remark 1. The same results for minima and weak infimal points may be derived 
analogously. 

Remark 2. The analogous inclusion as (1.4) may not hold for the strong supremal 
points. We show it by the following example: Assume Y= R2 we put 

At = {(x; V) I A- < 0 & .v < 1} 

A2 = {{x; y) [ x £ 0 & y £ 0} 
Then 

Supw {A! u A2j = {(*; y) | (A- = 0 & v ^ l) v (>> = 1 & A ^ 0)} = 

= Supw [Supw A! u Supw A,] . 
But 

Sups [A ! u A2] = {(0; 0), (0; l)} * {(0; l)} = Sups [Sups A, u Sups A2] . 

2. ABSTRACT DUALITY SCHEME 

The duality theory in vector optimization, developed by numerous authors (see 
M> [3], [4], [5], [6], [7]) concerns exclusively the convex and linear optimization. 
In [1] Rubinstein presented a new approach with help of which he considerably 
extended the class of scalar optimization problems, having dual ones. In this section 
we generalize Rubinstein's approach for the vector optimization. The main results 
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are the strong duality principles for both the weak supremal and the strong maximum 
problems. 

In this section E is a nonempty set, Y is the space introduced in Section 1 and 
(A*, A*) is an order interval in Y it means 

(A*,A*) = {yeY\A* < y < A*} . 

Let us have a system of subsets of E: 

P,Qy ye (A*, A*) 
such that 

(2.1) V / , / ' e (A*, A*) : / g / ' => Qy„ c Qy. 

We denote 
Q = U Qy and P0 = P n Q 

A*<y<A* 

Further, given a set E* c: exp E we define 

P* = {E 6 E* | P C E} 
and 

Qy = {E e E* | Qy. n E = 0 V / ^ y} . 
Obviously 
(2.2) V / , / e (A , , A*) : y' S v" - 0* <= Q*» 
We denote 

Q* = 0 Q* and P* = P* n Q* 
A±<y<A* 

Further we put 
(2.3) n(a) = {ye(A*,A*)\ae.Q,} 
and 
(2.4) v(F) = {ye(A*,A*)\FeQ*} 

and ws have the following pairs of optimization problems: 
Primal Strong (Weak) Supremal Problem (Sp(w)) 

(2.5) find Sups(w) D n(a) = Ss
P

(w) 

aePo 

Dual Strong (Weak) Infimal Problem (Fd
(w)) 

(2.6) find Infs(w) U v(E) = Fd
(w) 

FePo* 

Primal Strong (Weak) Maximum Problem (Mp(w) 

(2.7) find Maxs(w) U Ka) = Mpw) 

aePo 

Dual Strong (Weak) Minimum Problem (Md
(w)) 

(2.8) find Mins(w) U v(F) = Ms
d

(w) 

FePo* 

Definition. Points realizing optimum in these problems are called optimal and we 
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say that the corresponding problems attain optimum at these optimal points. Nets 
which realize supremal or infimal optimum in the problems (2.5) and (2.6) are called 
optimal nets. 

Theorem 2.1. (Weak Duality Principle.) 

Va e P 0 VE e P* Vy' e fi(a) Vj;" e v(F) : / = y" 

Proof. Let a e P0, F e P*, y' e fi(a) and y" e v(F), we have then a e Qy,, a e P, 
F e Q*„ and P c F which follows that F n Qy - 0 for any y = y" and thus a $ Qy 

for any y = j>". Hence y' ^ / ' . • 

Corollary 1. 

(2.9) 

Corollary 2. 

[ U /<«)] n [ U v(ғ)] = мp n м\ = м ; n ЛÍJ 
oєPo ҒєPo* 

[ U *.(..)] п [ u v(ғ)] = sj, n /; 

Example. Let E = ( - o o , +oo), P = [0, l ] , 7 = ff2, A* = (0; 0), A* = (2; l) 

v = (yi',y2) e (-<-*, .4*), 6 , = [>„ + oo), £* e exp £ then 

and 
Po = (0, 1], Ö* = {í1 c £* | x < Уí Vx Є Ғ} 

P* = {£<=£* | (0, 1] c F & sup £ < 2} . 

Then it is easy to verify that 

U fi(a) = {v = (yi;y2) | 0 < y, = 1 anrf 0 < j 2 < 1} =- T, 
<JEPO 

U y(£) = {f = (.v,; y2) | 1 < J', < 2 and 0 < j>2 < 1} = T2 
FeP 

The sets are illustrated 

in Figure 1. 
1L - .—. 

o 

i т 
1 Fig. 1. 

We have then 

Max5 Ti = 0 , Min s T2 = 0 

Maxw ^ = {y = (y\; y2) | yt = 1 and 0 < j>2 < 1} 

Minw T2 = 0 

Sup'T, = { ( l ; i ) } , Iuf sT2 = {(l;0)} 

Supw Tj = {y = (j» i; j>2) | (yi = 1 & 0 = j 2 = 1) v (j>2 = 1 & 0 = j ; , < 1)} 

lnfw T2 = {y = (>,; j>2) j (y, = 1 & 0 = j ; 2 < 1) v ( j 2 = 0 & 1 £ j>. = 2)} 
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We see that 

ri n T2 = {>- = (>,.; >>-) j ^ i = l and 0 g y2 S 1} = 

= (Supw Tt) n (Infw T2) * (Sups T.) n (InfsT2) = 0 

In further development we use the convention 

Sups(w) 0 = A* and Infs(w-> 0 = A* . 

Lemma 2.1. If P n [ n Q J + 0, then 
A*<y<A* 

Sp=/f*> = {A*} 

Proof. P n [ n Qy] * 0 => P* = 0 => Sp = {A*} = ISJ-W) with regarding to the 
yl*<}'<4* 

just made convention. • 

Remark. If in the beginning we suppose that y can attain A* then in this case 
MP = {A} and M^(w) = 0. 

Lemma 2.2. If P* n [ n Q*] * 0, then 
A*<y<A* 

Sp = Ia = M 
Proof. P* n [ n Q*] * 0 => P0 = 0 => Sf > = Ia = {̂ *} 

/t*<}></i* 

Lemma 2.3. 
fP n 0... 4= 0 

Lemma 2.4. 

^ e M ? " , w V n g , = 0 V>> >(>)y* 

y*eM^~lP*nQ**9 

y eM* ^\P*nQ* = 0 V> <(<)>>* 

The proof of Lemma 2.3 and 2.4 is evident 

Lemma 2.5. 

v*eSwolPnQ^^y<y* 

Proof. The implication (<=) is clear. Let now y* e S™ then obviously P n Qy = 0 

V>> > j * . If there is a j < y* such that P n Qy = 0, then there exists a neighbourhood 

oof >>* such that [ U /'(«)] n 17= 0. It means y $ U ^(a) what contradicts >>* e S™. D 
aeP0 uePo 

Analogously we can prove 

Lemma 2.6. 

> e / ^ j p * n e * = 0 Vj,<3;* 
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Lemma 2.7. Let the following condition be fulfilled 

[A,] ^ 2 , * 0 V y < y * j * v * 
P n Qy = 0 Vy > y*] r ° y>' T V 

then 

S; <= / -

P r o o f . Let y* e Sw then by Lemma 2.5 we have 

P n g , * 0 Vy < y* 

PnQy = ® Vy > y* 

Hence in consequence of [Aj ] and Corollary 2 we have y* eld • • 

Lemma 2.8. Suppose 

[A2] P n e , = N P * n Q£ * 0 Vy' > y . 

Then 
n •= S; • 

Proof. Let y* E / J , then by Lemma 2.6 

(2.10) P* n Q* 4= 0 Vy > y* 

(2.11) P*nQ* = 0 Vy<y* 

Suppose, on the contrary, that y* $ Sw, then according to Lemma 2.5 we can conclude 
(i) there is a y < y* such that P n Qy = ®. Hence by [A2] there is y' such that 

y < y' < y* and P* n g* 4= 0 that contradicts (2.11), or 
(ii) there is y > y* such that P n 0,. 4= 0 what means y e U /.(a). According 

aePo 

to (2.10) we can choose a y ' such that y* < y' < y and y' e U v(E) and that contra­
dicts the weak duality principle. F E P ° * • 

For further purpose we formulate the following conditions 

[A3] P n Qy * 0 Vy < y* -» P n ( 0 fi,) * 0 

[AJ ľ * n Є , * + lí Vy > y* => P* n ( n Q*) * 

[AJ P n ( n ß,) - 0 
Л*<)><Л* 

[A6] p * n ( n ß*) = ø 
Л»<j><Л* 

Now we can formulate the celebrated strong dual principle for vector optimiza­
tion, which is easily proved by Lemma 2.7 Lemma 2.8 and evident considerations. 
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Theorem 2.2. (Supremal Strong Duality Principle.) 

Suppose P 0 =t= 0 or P* + 0, then under conditions [A :] and [A 2 ] we have 

s; = n 
If, in addition, P 0 #= 0 & P* # 0 and conditions [A3], [A 4 ] hold, then both problems 

[Sp] and [//] have optimal solutions. 

If conditions [A 5 ] and [A 6 ] hold, then in case P 0 = 0 or P* = 0 there exist 

no optimal solutions either in [S/] or in [//]. 

The following existence theorem and optimality criterion are immediate conse­

quences of Theorem 2.2. 

Theorem 2.3. (Existence Theorem). 

If conditions [ A j — [A 6 ] hold, then the following assertion are equivalent: 

1° There exist optimal solutions in both problems [Sp] and [/*]. 

2° There exist optimal solutions in one of the problems [S™] and [P/]-

3° There exist feasible solutions in both problems [S/] and [P^] i.e. P 0 + 0 and 

P* * 0. 

4° P 0 #= 0 and pi(a) is weakly bounded from above by a value ft < A i.e. 

V « e P 0 V>-e/.(a) y>P-

5° P* 4= 0 and v(E) is weakly bounded from below by a value a. < A i.e. 

. VE e P* V.v 6 v(E) ^ < a . 

Theorem 2.4. (Optimality Criterion.) 

A feasible solution a e P 0(E ' 6 P 0 ) is optimal in [S/] (in [//]) if and only if there 

exists a feasible solution E e P*(a' e P 0 ) such that /,i(a) n v(E) 4= 0(/j(a') n v(E') 4= 0). 

Furthermore we shall derive analogous results for the dual pair [M*] and [MJ]. 

Lemma 2.9. Suppose 

Pi 

PnQy = 0 Vv > J*J ,}=>p-ner.ф 
then 

M p c Ms

d. 

Proof. L e t j * e M p then by Lemma 2.3 and condition [Bj] we have P* n g*. 4= 0. 

That means that y* e \J v(F) and with regard to Corollary 1 of the weak duality 
FeP0* 

principle we have y* e M\. - Q 

Lemma 2.10. Let the following conditions hold 

[ B 2 ] PnQy = Q^P* n g* * 0 
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[B3] U n(a) is closed 
aePo 

then 

Ms
d e Ms

p 

Proof. Let y* e Ms
d, then 

(2.12) P* n 0* = 0 Vy < y* . 

If P n <2y. = 0, then for the closedness of \J fi(a), there exists a y < y* such that 
aePo 

P n (2V = 0. According to the condition [B2] P* n Q* + 0 that contradicts (2.12) 
Thus we have P n g^,. =f= 0 and it means >•* € (J //(a). Finally from Corollary 1 
it follows y* e Ms

p. "£i>0 Q 

Summarizing Lemmas 2.9 and 2.10 we have 

Theorem 2.4. (Minimum Strong Duality Principle.) 

Suppose P 0 =j= 0 or P* 4= 0 and conditions [B.] , [B2] and [B3] hold, then 

M« = A*2 . 

(Received October 3, 1983.) 
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