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KYBERNETIKA — VOLUME 10 (1974), NUMBER 2 

A Diffusion Approximation in the Ruin 
Problem for a Controlled Markov Chain 

PHAM VAN KlEU 

The reward from a controlled Markov chain is approximated by a diffusion process. From 
a control policy maximizing its expected discounted trajectory under a penalty for reaching 
zero a control of the original Markov chain is derived. 

The ruin problem in controlled Markov process was considered by Z. Koutsky 
in [4]. In the present paper a diffusion appproximation is used to calculate controls 
taking the ruin probability into account. In Part 1 the problem is defined and the 
proposed solution is explained. In Part 2 a limit theorem is given which confirms 
the legitimacy of the approximations employed. 

1. THE STATEMENT OF THE PROBLEM 

Let {X„, n = 0,1,...} denote the trajectory of a controlled Markov chain with 
transition probabilities 

(1) K W ; - ) > ze<2r(i) ijel. 

Here / is the finite state space of the chain, !%(i) the set of control parameter values 
in state I, is I. Z(i), is I, are assumed to be closed and bounded in Rs. p(i,j; z) 
is the transition probability from state i into state j under control parameter value z. 
Further, let c(i, j ; z) denote the reward the controller gets from such transition. 
The functions 

c(i,j;z), zs%(i), ijel, 

as well as the probabilities (1), are assumed to be continuous in z. 

Let Z„ be the control parameter the controller selects after n steps. {Z,„ n = 0, 1,...} 
is thus a sequence of random variables depending on the past trajectory. Suppose 



1~6 that the controller posseses an initial capital C0. His capital after M steps includes 
the reward from the chain, and equals therefore 

CM = C0 + Ylc(Xm,Xm+1;Zm), M - 1 , 2 , . . . 
m = 0 

Introduce R = inf {M :CM = Q}. If R < oo, we say that the controller was 
ruined after R steps. To balance the change of being ruined and his aim to maximize 
the reward when selecting the control policy, the controller employs the criterion 

(2) E{Co +RZdm + 1c(Xm, Xm+.; Zm) - NdR} , 
m = 0 

where d is a discount factor, 0 £ d < 1, and JV > 0 is a penalty for the ruin 

From the Markovian property it follows that after n steps, (X„, Cn) contains 
sufficient information for controlling the chain in an optimal way according to crite­
rion (2). The controller thus looks for a function 

(3) z(i, C), iel, Ce(0, oo), 

such that the expectation (2) is maximal for Z„ = z(X„, C„), n = 0 , 1 , . . . , R — 1. 

Let Q be the set of all functions co ~ z(i) mapping i e I into S(\). Q is the set 

of stationary controls. (3) can be written as 

(4) co(C), Ce(0, oo). 

To obtain a diffusion approximation for C„, n = 0, 1, ..., introduce the duration 
T of one step in the chain. Thus, the controller's capital at time t equals 

(5) Vt = CUM + {th}(C[m+1-CltM). 

In (5), [a] {a} denote the integral part and the fractional part of a, respectively. 
Linear interpolation is used to make (€t continuous. Assume first that (4) defines 
a stationary control, i.e. 

co(C) = co ~ z(x), C e (0, oo) . 

Then [X„, n = 0 ,1 , . . .} is a homogeneous Markov chain with transition pro­
babilities 

(6) \\p(i,j;z(i))\\iJeI. 

Thorought the paper we shall make the following hypothesis. 

Assumption. For arbitrary co e Q the states which are recurrent with respect to 
the transition probability matrix (6) form only on irreducible set. 



From the central limit theorem for Markov chains follows that C„ is asymptotically 
normally distributed N(0(co) n, a2(co)n) as n -» oo. Denote 1/V'T = fc. Let 

(5') C0 w fc , ©(to) » 1/fc , a2(co) x 1, 

where k is fairly large. C£t+A - (€t will be approximately normal N(0(co) k2A, 
a2(co) k2A) for k2A large. Thus we expect that the evolution of #(/fc will be sufficiently 
closely described by the stochastic differential equation 

(6') dyt = 0(co) kdt + a(co) dW,, t = 0 , 

where {Wt, t — 0}, is a standartized Wiener process. 
In Part 2 of the paper we give a limit theorem establishing the convergence of #(/fc 

to the solution of (6') in the non-stationary case provided that co(C) is continuous. 
co in (6) then depends on kyt. To approximate the criterion, we set d = exp (— X\k2) 
and consider, instead of (2), 

(7) E (y0 + f e~At dy, - v s~A = EU | V A ' (y, + v) dt\ - v . 

where 
C = inf{ i :y ( :g0}, v = NJk. 

The original problem is thus converted into the problem of controlling the diffu­
sion (6') in such way that (7) is maximal. The following recipe can be found in the 
literature ([5], [7]). Solve 

Һcr2(co) ~ + (co) k - 1 - lv + Ąy + v) = 0, 
l d ľ

2 dľJ max 

v(0) = 0, v(y) = 0(y) as y -> oo . 

Let a control co(y), y e [0, oo), be such that 

W(&(y)) ^ # + *W» k ^ - Hy) + A(y + v) = o . 
dyz dv 

Then co(y) is optimal. 
If the conditions for the validity of the diffusion approximation (i.e. essentially the 

order relations (5') and the continuity of cb(y)) are fulfilled, then a choice of (4) 
which is nearly optimal with respect to the criterion (2) is given by 

co(C) = co(CJk) , C 6 [0, oo), 
or 

Z„ = £(X„, C„/fc), n - 0 , 1 . . . 

Further, the maximal value of (2) is approximately kv(C0jk) — N. 



1 2 8 Finally let us mention that to determine 0(co), a2(co) for given co ~ z(i) one has 
to solve 

(8) Y>(i, j ; z(i)) [c(i, j ; z(i)) + w/J - wt - 0 = 0 , iel, 
J 

and 

(9) 5>(i, / ; z(i)) [(c(i, j ; z(i)) - 0)2 + 2(c(i, j ; z(i)) - 0) w, + w2J] -
j 

— w2i a2 — == 0 , iel, 

for the unknowns 0, wt, iel, and a2, w2i, i el, respectively [1], [6]. 

2. THE LIMIT THEOREM 

Let the reward functions c depend on an auxiliary parameter k = 1, 2 , . . . , and 
denote them by 

c(i,j;z,k), ze££(i), ijel, fe=l,2,... 

The functions c are assumed to be uniformly bounded. To each k there corresponds 
a controlled Markov chain with transition probabilities (1), as described in Section 1. 
To mark the dependence on the parameter, we shall add the index k to the symbols 
l ike Xk

n, Ck, Zk
n etc. 

Introduce 

Y>(i, j ; z) c(i, j ; z, k) = ri(i, z;k), ze 2£(x) , iel,k = 1 , . . . , 
j 

Yp(i, j ; z) c(i, j ; z, k)2 = r2(i, z;k), ze 2£ (i) , iel, k = 1, 2, .... 

Assume 

(10) lim krx(i, z; k) = Qt(i, z)") 

> uniformly in z e ££(i), iel. 
lim kr2(i, z; k) = Q2(i, z)\ 

k-a, •> 

Theorem. Let, for iel, z(i, y) be a continuous mapping of y e [0, oo) into 2£(i). 
Assume that {Xk

n, n = 0, 1, . . . } , k - 1,2,. . . . is controlled by Zk - z(Xk
n, Ckjk), 

n = 0, 1 .... Let T> O. Denote by 0>\ the probability distribution of 

{yk
t = k~\C\m + {tk2} (C\m+l - C*ft2])] , t e [0, T]} 

in the space y of continuous functions on [0, T]. 

J / (10) holds, and lim co/fe = y, then &k
T as k -> oo converges weakly to the 



probability distribution 3PT of the Markov process {y„ t e [0, T]}, satisfying the 129 
stochastic differential equation 

(11) dyt = 0(yt) At + a(yt) dWt, t^O; y0 = y . 

{W„ t S: 0} is a standartized Wiener process. &(y) and a(y) are obtained from the 
equations 

Qi(i, z(i, y)) + £>(i, j ; z(i, y)) Wj - wt - 0 - 0 , iel, 
j 

Qi(i, z(i, l)) + I>(i> J> z(!> y))w2J - w2i-a
2 -0, iel, 

j 

for the unknowns 0, w;, i e I, a2, w2i, i e I. 
The proof of the theorem uses the methods developed in [6], the tightness of 

probability measures ([2]), and Doob's Theorem 3.3 ([3]). The course of the proof 
will be outlined in the subsequent four paragraphs. 

a) Solve 

ri(i, z(i, y);k) + Jp(i, Jl z(i, y)) w)(y) - w)(y) - 0\y) = 0 , iel, 
j 

lp(i,j; z(i, y)) [(c(i.j; z(i, y), k) - 0\y)f + 2wk(y) (c(i,j; z(i, y), k) - 0\y)) + 

+ wk
2j(y)]-wk

2i(y)-a2(y)-0, iel. 
Introduce 

(12) Mk
n = Ck -^0\Ck

mjk) + BEKm+1(Cm/fc) - wL(Cm/fc)] 
m=0 m = 0 

or 

Mk
n - Ck

n - ~t@(Ck
mJk) + Z K i C L i / f c ) - w*Xm(cm/fc)] + 

m=0 m = l 

+ wk
Xn(C

k^Jk) - wk
Xo(C

kJk), n = 1, 2, ... 

Then {Mk, n - 1, 2, ...} is a martingale with respect to {!F\, n - 1, 2,.. .}, where 
3?k

n denotes the Borel field of random events defined on {Xk
0, X\,..., Xk}. 

Furthermore, 

(13) Ek{(Mk
+l - Mkf \3Fk

n} - Ek{wk
2Xo(C

k
nJk) - w ^ / C ^ . J f c ) + 

+ "+E \wk2xm(ck
mik) - wk

2XM-M + T lvt(c*m}k) \K} , 
m = n + l m=n 

« = 0, 1..., J =1 ,2 , ... 
b) Set 

Hk
t - fc-^M*.^ + {tk2} (Mk

m+1 - M^2])] , t e [0, T] . 



130 Denote by StT the probability distribution of {[ik
t, t e [0, T]} on y. The sequence 

{<&k
T, k = 1, 2,...} is tight. In fact, consider, for given s > 0, the following limit 

lim lim Pk {sup \pLk
s - i/t\ > e} . 

<5-»0 fc->oo | s - ' | < 5 

It holds 

Pk I sup |^ - n)\ > si = £ pk \ sup |tf - rf,\ > i\ , 
(Js-f|<.S J /<r/<5 (.o:£s<(.+ l)c. 4J 

P*{ sup | M * - V „ | > i U l * { max | £ Y?|>^U 
^c5gs<(I+l)o 4J |>,<i-<a, + i j = a,+ l 4J 

\fcs j «<rS» , t I j'=a,+ l 

where a. — [/<5fc2]. 

To estimate the last term calculate 

E( °E -y)4 = E _(5?r*y*i?). 
j = a,+ l a,Si,j,m,r.Sai + 1 

If the largest index is not matched by any other, then, by E(Y„fc| #"*,-:) = 0, the term 
vanishes; hence 

E( °E YjT = "E - W + 4 E W W ) + 
j = a,+ l m = a,+ l a,gi<m<a, + 1 

[o/c2] ai + m - 1 

+ 6 E E{( E ^ M ^ + m ) 2 } - ^ 4 c o n s t . 
m = 2 J = a, + 1 

From the martingale inequality (Doob's Theorem 3.4, p. 317). 

E{ max \Mk - MkV) g (-—\ £{|M*r+l _ MkJ} , 
«I<'S«1M \V ~ l j 

we get 

E{ max ( E y?)4} ^ (4 /3) 4 ^ 2 . const. 
a,SrSa,*i J = a,+ 1 

Consequently, 

Pk{ sup |/z* - /4| > e} ^ (—} (^) k4S2 . const I = const. 5 . 
U-.<V \kej \ 3 j ,? 

We conclude that 

lim lim Pk{ sup \nk — pik\ > s} - o . 
o->0 fc-»oo | s - í | S o 



Furthermore, from (12), (10) follows 131 

(14) £ = y \ - j V o f t d u + irJ, t = 0 , 

where 

(15) lim Pk{ sup |i-*| > e} = 0 for s > 0 . 
k-*x 0<t<T 

Let J* be the probability distribution of 

We have 

P* j sup |y* - y* - r|0fc(r«) d«| < e\ < 

<.p*{ sup |^_ M *|>i l + j P *j sup |,;_-*|>£V 
l..-.|<«' 2j l|S~.|<al ' 2J 

By the above result and by (15) the right hand side converges to zero as k -> oo, 
8 ~> 0. Thus, {15-, fc = 1,2,...} is tight. Similarly, from P"{ sup | J"? 0(y*) du| > e/2}-» 
-> 0 as 5 - 0, it follows that {^, k = 1, 2, ...} is tight. |s~'l=5 

c) From this we imply that there exist a subsequence {0>\J, j = 1,2,...} of {0"\, 
k = 1,2,...}, lim /cj = oo, possesing the weak limit S?T. Define 

Џ, = У,~ [ (yu)åu, íє[0, T]. 

Then {fit, t e [0, T]} is a martingale on (y, 2PT) with respect to {<Pt, t e [0, T]}, where 
<2>r denotes the Borel field of random events defined on {ys, s e [0, t]}. From (13) 
trough a passage to the limit follows 

(17) ST{(ut+h - ut)
2 |*.} = £T | f + V ( y s ) ds |*,J , 0 < t < t + h < T. 

d) Using (17) and 

<?T{{y,+k - y,) |*.} - » - r | J ®(y0d* |* , J , o < f < * + h < r , 

the assumptions of Doob's Theorem 3.3 ([3] p. 287) are verified for {yt, t e [0, T]} 
on (y, S?T). This shows that ^V is the probability distribution of a Markov process, 
satisfying (11). Such probability distribution is unique. Consequently, {0>k

T, k = 
= 1, 2,...} has only one accumulation point. This together with its tightness implies 
the assertion of the theorem. 



The paper was prepared under the guidance of DrSc. Petr Mandl in the Institute of Information 
Theory and Automation, Czechoslovak Academy of Sciences. 

(Received October 10, 1973.) 
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