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K Y B E R N E T I K A — V O L U M E 16 (1980), NUMBER 4 

An Invariant for Continuous Mappings 

J. S. CHAWLA 

The purpose of this work is to show that the Topological Entropy given by Adler, Konheim 
and McAndrew [1] is not the only invariant for continuous mappings, but, there also exists 
another invariant which we call here the Topological <5-entropy. 

1. <5-ENTROPY 

In what follows, we shall assume that X is a compact topological space. For any 
open cover 21 of X, let JV(2I) denote the number of sets in a subcover of minimal 
cardinality. A subcover of a cover is minimal if no other subcover contains fewer 
members. Since X is compact and 21 is an open cover, therefore there always exists 
a finite subcover. 

Definition 1.1. The expression #a(2l) = [log N(%)]s, 0 < <5 ^ 1; is defined as 
the <5-entropy of the open cover 21. 

Definition 1.2. For any two open covers 21 and 23 of X, 21 v 23 = {A n BJA e 21, 
B e 23} is defined as the join of 21 and 23. 

Definition 1.3. An open cover 23 is said to be a refinement of an open cover 2t; 
denoted as 21 -< 23, if every member of 23 is a subset of some member of 21. 

The following theorem shows that <5-entropy is sub-additive. 

Theorem 1.1. If 21 and 23 are open covers of X, then 

Hs(<& v 23) ^ Hd(SH) + H.(SB). 

Proof. Let [Au A2, ...,ANm} be a minimal subcover of 21 and {Bu B2,..., BN(m^ 
(here from typographical reasons N(fi(), resp. N(3S), is used instead of N(2I), resp. 



316 N(SB)) be a minimal subcover of 93. Now, {A ; n Bjji = 1,2,..., AT(2l); / = 1, 2,... 
..., N(23)} is a subcover of 21 v 93. Consequently, 

/V(2T v 93) g N(2t) N(33) => IogAt(2I v 93) ^ log /V(2t) + log /V(93) => 

=> [logJV(2l v SB)]4 ^ [ l o g A ^ V f + [logjV(93)]4 => 

(cf. Hardy [2] - p. 32) 

=> tfa(2T v 93) g tf,(2I) + Hs(<8). 

2. TOPOLOGICAL cS-ENTROPY 

Let $ be a continuous mapping of X into itself. If 2T is an open cover of X, then, 
the family <P~1'QX = {4,~1AJA e 2t} is also an open cover. 

Definition 2.1. The Topological <5-entropy hs(<P) of a continuous mapping <P is 
defined as 

hs(<P) = Sup he(<P, 21) 

where Sup is taken over all open covers 2r of X and hd(<t>, 2() is given by 

hd(<P, 2-0 = lira H.(2t v cp-^r v ... v *-<--»«) | nb. 

In the following note we justify that this limit exists and is finite. 

Note 2.1. Let the number of members in a minimal subcover of 21 v $ - 1 2 t v ... 
... v #-("-1)2Jf be denoted by AT„(2T). Therefore, 

h3(<p, 21) = lim i%(21 v ^ ' ^ r v ... v #<*-->«) | «' = 

= i,m i^mr = lim ri^mr, rHm i ^ w 
-->.[ n J L-« « J 

From [ l ] 

exists and is finite. Hence, 

lim - log Nn(Щ 
Л-00 П 

,. Я І 2 I v ф-^21 v ... v Ф- ( Я - 1 ) 2Í) 
hm — ь  

exists and is finite. 



Theorem 2 .1 . Topological ^-entropy is an invariant in the sense that h ^ W l ) = 317 
= hi(<P) where 4> is a continuous mapping of X into itself and ¥ is a homeomorphism 
of X onto some X'; where X and X' both are compact topological spaces. 

Proof. For an open cover 9 of X, we have 

/̂ CPd^P'1, f * ) = 

= lim/^("Ptt v (•Pdi'p-1)-1 ¥"M v ... v (<Pd><p-1)-<"-" <P2I)/.t* = 

= lim/•/,,( </'« v «P<Z> '</' '¥"« v ... v V ' t f - c - ' " ? - ' ^ . ) / / . * = 

= lim//i('P
,!}l v "P^- ' tf v ... v "Pd>("- l»«)/n* = 

= lim //,(Sl v # _ 1 * v . . . V * - ( , - ,»<a)/ii* = /»4(4>, 21). 

Since "P is a homeomorphism; therefore, as "21 ranges over all open covers of X, 
¥"•.![ ranges over all open covers of X'. Hence, 

hi(H'M'-1) = hi(<P). 

(Received September 21, 1977.) 
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