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K Y B E R N E T I K A - V O L U M E 19 (1983), N U M B E R 2 

CONJUGATED AND SYMMETRIC POLYNOMIAL 
EQUATIONS 

I: Continuous-Time Systems 

The paper is divided into two separate parts. In Part I properties of conjugated and symmetric 
equations are investigated. The equations occur in the synthesis of continuous quadratically 
optimal controllers. In Part II a similar study is done for the equation from the corresponding 
discrete problems. 

INTRODUCTION 

In recent years, the polynomial equation approach was successfully used for for
mulation and solving of many problems in control theory [ l ] . For single-input, 
single-output systems, the equation 

(1) a(X)x(X) + b(X)y(X) = c(X) 

is relevant. The indeterminate X stands for either the derivative operator (for con
tinuous-time systems) or the delay operator (for discrete-time ones). In essence, 
this equation is equivalent to the problem of partial fraction decomposition: 

-W _. m + y(X) 
a(X) b(X) b(X) a(X) 

The theory of (1) is well developed along with practical solution methods. 

In linear-quadratic control problems where an integral 

_-_ n e
2 ( r ) d / = - ^ r E(S)E(-S)dS 

J-oo 27TjJ_ j ro 

plays a central role, polynomials x(—s) appear along with x(s). The polynomial 
approach to such problems, as used until now, removes the "conjugated" polynomials 
x(—s) in early stages of problem formulation and yields at the end the equation (l). 
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An alternative method is possible: to treat the conjugation as a basic operation 
in polynomial algebra and to develop a theory of conjugated and symmetric poly
nomial equations. The latter approacli seems to be more natural and going more 
deeply into the mathematical essence of the problem. This is done in the presented 
paper, namely the equations 

(la) a(s)x(-s) + b(-s)y(s) = c(s) 

(lb) a(s) x(-s) + a(-s) x(s) = 2 b(s) 

are investigated in Part J and their discrete-time counterparts 

(ic) a(c)x(ri) + b(ri)y(0 = c(0 + d(r1) 

(id) a(Qx(C1) + a(C1)x(C) = b({)+b(C1) 

in Part II. Some properties of (la) —(id) are similar to those of (l), other ones are 
strikingly different. For better understanding, the explanation begins with some 
algebraic preliminaries. 

The equations (la) —(Id) occur in other places of control theory and signal theory, 
too. The corresponding partial fraction problems, e.g. 

Kf) = *Ci) + £z£ 
a( — s)a(s) a(s) a(—s) 

arise in manipulation with rational spectral densities. The most important applica
tion of (lb) is in an iterative method for solution of the quadratic polynomial equation 

x(-s)x(s) = 2b(s) 

where a stable polynomial x(s) is looked for — [2]. This problem is known as "spec
tral factorization" and plays a key role in linear-quadratic control problems. For 
multiple-input, multiple-output control, (la) —(Id) represent basic tools for investigat
ing similar matrix equations. 

PRELIMINARIES 

We shall use the ring of polynomials over the field of reals, 8f will mean degree 
of f(s). The theory of polynomial equations [1] also will be used. We define an 
operation of "conjugation" f*(s) =f(-s). The following properties are evident: 

(2) {f(s) + g(s)]*=f*(s) + g*(S), lf(s)g(s)]*=f*(s)g*(s), 

f**(s)=f(s), 8f* = df. 

I f / ( - s ) = f(s) then the polynomial is called even, it can be expressed f(s) =/(s2). 
If / ( — s) = —f(s) then / is called odd, it can be expressed /(s) = sf(s2). Every 
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polynomial has a unique decomposition into its even part and odd part: 

(3) f(s)=fe(s2) + sf„(s2) 

It i s / ( - s ) = fe(s2) - sf0(s2). The parts are 

(4) us2) = f(*)+X-*), m = fJsLJldL 

For df even: 

df =1, df.< -^ - l , 3/0 < 5/e - l 
2 2 ' • ' • - • ' -

For 5/ odd: 

õfo = 1—ł, õfe < 1 , ôfe < ðf. 

In the next chapters, we shall use two following lemmas concerning common 
divisors. 

Lemma 1. g(s) = gcd (a(s), a( — s)) satisfies one of the following conditions: 

a) g(-s) = g(s) b) g(-s) = -g(s) 

Proof. First, we shall prove that g( — s) = gcd (a(-s), b(-s)) follows from 
g(s) = gcd (a(s), b(s)). Actually, from 

a(s) = a0(s) g(s) , b(s) = b0(s) g(s) 

by taking the conjugates 

a(-s) = a0(-s)g(-s), b(-s) = b0(-s)g(-s) 

we see that g( — s) is a common divisor of a( — s) and b(— s). To prove that it is the 
greatest one, suppose that h(s) is another common divisor of a( — s), b( — s). By taking 
the conjugates we see that h( — s) is a common divisor of a(s), b(s). So h(-s) divides 
g(s), h(s) divides g( — s), g( — s) is the greatest one. 

Second, applying this for a(s), a( — s) we see that g( — s) is gcd (a(s), a( — s)) as well 
as g(s) is. Therefore g(s), g( — s) are associated: g(s) = e g(—s) where e is a nonzero 
number. Substituting here its own conjugate, we have g(s) = e2 g(s), e = ± 1 . • 

Lemma 2. g(s) = gcd (a(s), a( — s)) can be expressed: 

a) for g(-s)= g(s) g(s) = w(-s) a(s) + w(s) a(-s) 

b) for g(-s) = -g(s) g(s) = -w(-s)a(s) + w(s)a(-s) 

where w(s) is a polynomial. 
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Proof. As the ring of polynomials is a principal ideal ring, g(s) can be expressed as 

g(s) - u(-s) a(s) + v(s) a(-s) 

where u(s), v(s) are polynomials. We have: 

a) g(-s) = g(s), g ( , ) - g ( ' ) +
2 g ( ~ 5 ) -

. «<-») +J_Zl) fl(s) + __) + »(-) a (_ s ) 
2 W 2 V ^ 

b) tf-5) - - , ( , ) , g ( , ) - . ^ Y ( " j ) -

y(—s) - M(—s) , ^ u(s) - «(s) / x _ 
- _ . J — / v—i ars\ + _ w w a t s \ Q 

2 w 2 

THE SYMMETRIC EQUATION THEORY 

It is evident that the equation (la) can be transformed to a common polynomial 
equation (l) by the substitution 

x(s) = x'(-s), b'(s)=b(-s). 

That is why it is no more interesting. Let us note in anticipation of Part II that the 
situation is quite different in the discrete case. 

In this chapter, the general solution of (lb) and some "minimal" one will be derived. 

Theorem 1. The general solution of the homogeneous equation 

(6) a(s) x(-s) + a(-s) x(s) = 0 

where g(s) = gcd (a(s), a( — s)) and a0(s) = a(s)jg(s) has one of the two forms: 

(7) a ) a ( - s ) = g(s) x(s) = a0(s) s t(s2) 

b) g(-s)= -g(s) x(s) = a0(s)t(sz) 

where t is an arbitrary polynomial. 

Proof. 

a) For g( — s) = g(s) the equation turns by cancellation by g(s) into an equivalent 
equation 

(8) a0(s) x(- s) + a0(- s) x(s) = 0 

with a0(s), a0( — s) coprime. Let us.consider a polynomial equation with two unknown 
polynomials 

(9) a0(s)y(s) + ao(-s)x(s) = 0 
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with the general solution 

(10) x(s) = a0(s) q(s), y(s) = -a0(-s) q(s) 

where q(s) is an arbitrary polynomial. Let us select only such solution which satisfy 
y(s) = x( — s). By substituting the general solution into this condition we obtain 
q( — s) = — q(s), i.e. q(s) is an arbitrary odd polynomial, q(s) = s t(s2) where t 
is an arbitrary polynomial, 

b) For g(-s) = -g(s) the equation obtained by cancellation is 

a0(s)x(-s) - a0(-s)x(s) = 0 

The polynomial equation 

«o(s)j'(s) - a0(-s)x(s) = 0 

with the general solution 

x(s) = a0(s) q(s) , y(s) = a0(-s) q(s) 

and with the condition y(s) = x ( - s ) leads to q(-s) = q(s), i.e. q(s) is an arbitrary 
even polynomial, q(s) = t(s2). • 

Theorem 2. The equation (lb) is solvable iff b(-s) = b(s), i.e. b(s) = b(s2) and 
g(s) = gcd (a(s), a( — s)) divides b(s). Further, 

a) for g(-s) = g(s), i.e. g(s) = g(s2): 

a l ) for dB < da — dg it exists a unique "minimal" solution satisfying dx < da — 

-dg 

a2) for db = da - dg it exists a unique "minimal" solution satisfying dx = 

= da — dg and no solution of lower degree 

a 3) for db > da — dg all solutions have dx ^ da — dg + 2. No dx exists for 

which the solution is unique. 

b) for g(-s) = -g(s), i.e. g(s) = s g(s2): 

b l ) for db < da — dg it exists a unique "minimal" solution satisfying dx < 

< da - dg 

b2) for dh >. da — dg all solutions have dx 2: da — dg + 1. No dx exists for 

which the solution is unique. 
Proof. Both conditions are necessary: let x(s) be a solution, the left-hand side 

of (l) is an even polynomial, so must be the right-hand one: 

( i i ) b(s) = B(s2), db = 2db 

The left-hand side is divisible by g(s), so must be the right-hand one. Conversely, 
let (11) hold and 

b(s) = b0(s) g(s), db0 = db - dg 
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Let us express g(s) according to Lemma 2: 

a) g{-s) = g(s) , g{s) = g{s2) , 8g = 2 8g , 

bo(~s) = b0(s), db0 even , 

g{s) = w{-s) a{s) + w(s) a(-s) 

b) g(-s) = -g(s), g(s) = s §{s2) , dg = 2 dg + I , 

b0{-s) = -b0(s), 8b0 odd , 

g(s) = -w(-s)a{s) + w{s)a(-s) 

From here we obtain in both cases 

b(s) = b0(s) g(s) = a(s) b0{-s) w(-s) + a{-s) b0(s) w(s) 

i.e. x(s) = 2 b0{s) w(s) is a solution. 
Let us investigate the minimal solution. We denote 

a(s) = a0(s) g(s), 8a0 = 8a - dg 

a l ) 8b < 8a - dg , 8b < 2 8a - dg , db0 < 2 da0. 

The equation turns by cancellation by g{s) into 

(12) i[a0{s) x(-s) + a0(-s) x(s)] = b0(s) 

Let us consider the polynomial equation with two unknowns 

(13) i[a0(s)y(s) + a0{-s)x(s)] = b0(s) 

For 8b0 < 2 8a0 the minimal solution exists [3], i.e. dx < 8a0, 8y < da0. We shall 
prove that this solution satisfies y{s) - x(-s). The right-hand side of (13) is even, 
so is the left-hand one: 

a0(s)y(s) + a0(-s)x{s) = a0{-s)y(-s) + a0{s)x(-s) 

a0(s) [x(-s) - y(s)] - a0{-s) [x(s) - y{-s)] = 0 

We denote z(s) = x(s) — }'( — s), dz < da0. According to Theorem 1, the general 
solution of 

(14) a o ( s ) z ( - s ) - a 0 ( - s ) z ( s ) = 0 

is z(s) = a0(s) t(s2) where / is an arbitrary polynomial. For nonzero z it must be 
dz S: da0. But we have dz < da0, hence it is z = 0, y(s) = x( — s). We have found 
a solution of (12) satisfying dx < da0 = da - dg. It is unique, otherwise we would 
have two different minimal solutions of (13) which is not possible. 

a2) 8b = da — 8g , 8b = 2 8a — dg , db even , dg even. 

We see in (lb) that no solution exists with 8x < 8b — 8a = da — dg. Let us look 
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for a solution dx = 8b — da. By matching the highest terms in (lb) we obtain 

(15) * » - * - • ( - - ) * -

aBa 

It is possible to express 

(16) x(s) = x'(s) + (-\f"b-™sdh-a° 
aSa 

By substituting into (lb) we have 

(17) i[a(s)x'(-s) + a(-s)x'(s)]~b'(s) 

where 

(is) b'(s) = b(s) - 5a ,»-«- i ^ j ^ t i f«X-_ i 

b ' ( - s ) = b(s), 8b'<8b 

For x'(s) we have an equation of the same form but with lower degree of the right-
hand side: 8b' < 8a — 8cj. According to what was proved in al), it exists the unique 
solution x'(s) satisfying 8x' <8a — 8g. Then (16) yields the unique solution of (lb) 
satisfying 8x = da — 8g. 

a3) db > da - 8g , 8b > 2 8a - 8g . 

In the latter inequality, both sides are even numbers, therefore 8b ^ 2 da — 8g + 2. 
We see in (lb) that dx 2; da — dg + 2 for every solution. According to Theorem 1, 
case a), infinitely many solutions of the homogeneous equation (6) exist with dx = 
= da - dg + 1. We shall obtain them by taking arbitrary number in place of 
t(s2). All these solutions can be added to x(s) giving new solutions of the same 
degree. 

b l ) db < da - dg , db < 2 da - dg + 1 , db0 < 2 da0 + 1. 

In the latter inequality both sides are odd numbers, therefore db0 < 2 da0 holds 
as well. The equation obtained by cancellation by g(s) is 

(19) i[«0(5) x(-s) - a0(-s) x(s)] = b0(s) 

Let us consider the polynomial equation 

(20) i[a0(s) y(s) - a0(-s) x(s)] = b0(s) 

For db0 < 2 8a0 the minimal solution exists, i.e. 8x < 8a0, 8y < da0. We shall 
prove that it satisfies y(s) = x(-s). The right-hand side is odd, so is the left-hand one: 

a0(s)y(s) - a0(-s)x(s) = -a0(-s)y(-s) + a0(s)x(-s) 

a0(s) [x(-s) - y(s)] + a0(-s) [x(s) - y(-s)] = 0 
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We denote z(s) = x(s) — y( — s), 8z < da0. The general solution of 

a0(s)z(-s) + a 0 ( - s )z ( s ) = 0 

is z(s) = a0(s) s t(s2). For nonzero z it must be dz = da0 + 1. But we have dz < da0, 
hence z = 0 and y(s) = x ( - s ) . We have found a solution of (19) satisfying dx < 
< da0 = da — dg. It is unique as in al). 

b2) 8b = da - dg , db^lda - 8g + 1 . 

We see in (lb) 8x = 8a —8g + 1. As in a3), solution of (6) can be added. According 

to Theorem 1, case b), there are infinitely many of them with dx = da - dg. • 

THE SYMMETRIC EQUATION SOLUTION METHOD 

The way how Theorem 2 was proved can serve as a numerical solution method 
for finding the minimal solution. The method consists of replacing the symmetric 
equation by non-symmetric one, solving it [3] and by restoring the symmetry. 

The most important case is that of stable polynomial a(s) and db < da or dh = da. 
Stability means a(s) 4= 0 for Re s = 0. For that case, g(s) = 1 and the minimal 
solution is dx < da resp. dx = da. The properties of stable polynomials make another 
algorithm possible which utilizes the symmetry and needs approximately four times 
less numerical operations. It was described in [1] in terms of Hurwitz matrices. 
Let us formulate it here in polynomial terms. 

Consider the equation 

(21) \{a(s) x(-s) + a(-s) x(s)] = b(s2), a(s) stable , db = da 

Let us express a(s) by its even and odd parts (3) and let us do the same with the 
conjugate of x(s): 

(22) a(s) = ae(s
2) + s a0(s

2) x(s) = xe(s
2) - s x0(s

2) 

a(-s) = ae(s
2) - s a0(s

2) x(-s) = xe(s
2) + s x0(s

2) 

By substituting (22) into (21) the equation turns into a non-symmetric polynomial 
equation which is of approximately half degree: 

(23) ae(s
2) xe(s

2) + s2 a0(s
2) x0(s

2) = b(s2) 

Methods for polynomial equations can be used. The equation is usualy attacked 
"from the left": For a stable a(s), a0 + 0, ax + 0 holds; by matching the absolute 
terms we have x0 = b0ja0 and we can express 

Xe(s2) = bJ> + s2 x ; ( s - ) 
a0 

(24) x0(s
2) = x'e(s

2) - - ° x'0(s
2) 
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By substituting it into (23) we have 

(25) a'e(s
2) x'e(s

2) + s2 a'0(s
2) x'0(s

2) = b'(s2) 

where 
o',(s2) = a0(s

2) 

(26) l a - 3 ) - ^ ^ ) - ^ «-(-*)] 

5'(s2 )= i [S(s2 ) -^ae (s2 ) ] 

It is an equation of the same form as (23), hence it is equivalent to an equation 

(27) i[a'(s)x'(-s) + a'(-s)x'(s)] = 6'(s2) 

where a'(s), x'(s) are defined by their even and odd parts as in (22). Let us investigate 
the degrees. From (26): 

da'e = da0, db' < max (3b, dae) ^ max (db, da) 

a) da even , da = 2 dae, da0 g 8ae — 1 , from (26) da'0 = dae — 1 , 

da'e <, da'0, da' odd , da' = 2 da'0 + 1 = da — 1 

b) da odd , da = 2 da0 + 1 , dae <, da0, 

da'0 < da'e, da' even , da' = 2 <3â , = da — \ 

The degrees got lowered. It follows from Routh-Hurwitz theory that a'(s) is again 
stable, a'0 + 0, a'x =t= 0. By repeating this process we shall come to the case da = 0, 
dae = 0, a0(s) = 0 which can be solved directly. By performing all substitutions 
backwards we obtain x(s). The forward part of the algorithm is the same as in Routh 
stability test. The procedure is easily mechanized for a computer or a calculator. 

EXAMPLES 

Very simple examples can be presented to illustrate Theorem 2. First of all, cases 
without common factor, e.g. a(s) = 1 + 2s, g(s) = 1: 

a l ) b(s) = 1, minimal solution x(s) = 1 
a2) b(s) = 1 — 6s2, minimal solution x(s) = 1 + 3s 
a3) b(s) = 1 — s2 — 2s4, every solution must have dx S; 3, e.g. x(s) = 1 + s + s2 + 

+ s3 + £(s + 2s2) where £ is an arbitrary number. 

Cases with g(-s) = g(s) e.g. a(s) = (1 + 2s) (1 + s2) = 1 + 2s + s2 + 2s3, g(s) = 
= 1 + s2: 

a l ) b(s) = 1 + s 2 , x(s)= 1 
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a2) b(s) = (1 - 6s2) (1 + s2) = 1 - 5s2 - 6s4, x(s) = 1 + 3s 
a3) b(s) = (1 - s2 - 2s4) (1 + s2) = 1 - 3s4 - 2s6, 

x(s) = 1 + s + s2 + s3 + £(s + 2s2) 
Cases with g( — s) = — g(s) e.g. a(s) = (1 + 2s) s = s + 2s2, g(s) = s: 
b l ) 6(s) = 2s 2 , x(s)= 1 
b2) b(s) = s2 + 2s4, every solution must have ox Ž 2, e.g. x(s) = 1 + s + s2 + 

+ č(l + 2s). 
(Received March 29, 1982.) 
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