
Kybernetika

Jiří V. Outrata
The second-order methods in discrete optimal control problems

Kybernetika, Vol. 12 (1976), No. 1, (38)--45

Persistent URL: http://dml.cz/dmlcz/124982

Terms of use:
© Institute of Information Theory and Automation AS CR, 1976

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/124982
http://project.dml.cz


KYBERNETIKA —VOLUME 12 (1976), NUMBER 1 

The Second-Order Methods 
in Discrete Optimal Control Problems 

M l V. OUTRATA 

In this paper a simple and effective method of the evaluation of the Hessian matrices in discrete 
optimal control problems is suggested. Thus, various second-order optimization techniques can 
be applied to solve this problem. Especially the switching from the first order to the second 
method near to the extremum appeares to be very efficient. The presented paper contains an 
algorithm of this type for solving of the unconstrained minimization problems using the Newton-
Raphson formulae. 

1. INTRODUCTION 

For solving of discrete optimal control problems preferably the first-order methods 
are used, for which there are several reasons. First, in linear-quadratic case, there is 
no need to use higher order methods, because already first-order ones will find the 
optimum with a sufficient accuracy and some of them even in a finite number of steps 
[-]> [-]» \?\ Second, the evaluation of the Hessian matrices made the computation 
very time-consuming. Moreover, several additional assumptions must be satisfied, 
which further restrict the applicability of higher oder methods. 

On the other hand, the second-order methods are of better rate of convergence. 
(See [1].) It leads us to the mixed first-second order methods, where only additional 
differentiability assumptions are required. For the evaluation of the Hessian matrices 
considerable a simple method is proposed, which at no time requires us to handle 
matrices of order higher than the order of the solved discrete system. An algorithm, 
based on this method is presented and its convergence is proved by means of abstract 
algorithm theory. 

The following notation is employed: E" is the Euclidean n-space, || • || is the norm, 
< •, • > is the scalar product, xs is the j-th coordinate of a vector x, Ar is the transpose 
of a matrix A. 



2. UNCONSTRAINED DISCRETE OPTIMAL CONTROL PROBLEM 
(UDOCP) 

Problem. Given a discrete dynamical system described by the equation 

(1) xi+1=fi(xi,ui), X , - E £ " , Ui-E"', i = 0, 1, .. . . k - 1 , 

where xt is the state of the system and ut is the control applied to the system at time i, 
fi[E" x Em -> £"] and A; is a given integer. Let 

(2) x0 = x0 

be the given initial state of the system. Find a control sequence u0, uu ..., uk-i 
and a corresponding trajectory x0, xt,..., xk, determined by (1), which minimize 
the cost functional 

(3) J = *(xk), 

where $ [£" -+ E1]. 

This problem can be easily transcripted into the form of an unconstrained optimiza­
tion problem 

(4) j°(z) -» min 

wherej°[£v -> E 1 ] . We set usually 

(5) z = (w0, U
2
0, ..., um, u\,..., um, ...,ul_x,..., umlt) 

i.e. 

(6) v = km . 

Hence 

(7) j°(z) = <2>(x,(z)). 

Now, following assumptions must be satisfied: 

AS 1: <P(xk) is two times continuously differentiable function and L(x;, u;), i — 
= 0, 1 , . . . , k — 1, are continuously differentiable functions. 

AS 2: The function j°(z) = <P(xk(z)) is bounded from below. 

AS 3: We can find a z0 e Ev such that the set 

.(8) C(zo) = { z | j ° ( z ) - j ° ( z o ) ^ 0 } 

is compact. 
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дЩф)) 
+ 0. 

dxl 

For the increment of the cost functional we can write 

8xk 2 \ dx2

k I 

It is well-known from literature, that the term 

^MlhXk 

dxk 

can be expressed in the following way 

(10) * & - - - ) ) 5xfc - - I ' d H ^ U ^ ^ 5M ; , 
dxk i=o dut 

where ff.(x;, M;, pi+1) = (Pi+i,fi(xt,Ui)}, i = 0, 1,..., k — 1, and vectors Pi<sE", 

i = 1, 2, ..., fe, are obtained as the solution of the adjoint equation 

(H) Pt^
dl^lPt+1, i = 0,i,...,k-l, 

OXi 

with the terminal condition 

(12) Pk=-»-l. 
dxk 

We shall express the second-order term in relation (9) in the similar way in the next 

section. 

3. THE EVALUATION OF THE HESSIAN MATRIX 

As the Hessian matrix we denote the [v x v] matrix H(z), satisfying the relation 

(13) ( / 5 x f c , ^ ^ 5 ^ = <5z,H(z)5z>, 

where 

(14) 5z = (5M 0 , 5M0, . . . , 5M 0 , 8U[, . . . , 5M^, . . . , 5M^_J, . . . , S M ^ ) . 



Clearly 

(15) Я(z) = 
-ð2Ф(xk(z)) 

ðul
0 ðul

0 

ð2Ф(xk(z)) 

ðul
0 ðu% 

д2Ф(xk(z)Ц 
ðuţðu^i 

ð2Ф(xk(z)) ð2Ф(xk(z)) ð2Ф(xk(z)) 

ðu2
0 ðul ðu\ Ъu\ ðulÕU™-! 

ð2Ф(xk(z)) õ2Ф(xk(z)) 

ðu\"_ ! ðu\ ^ ľ - iðм Г - i _ 

Involving matrix adjoint difference equation 

(16) pi=__^_____lpi+l
dM>__f_à\ 1 - 0 , 1 fc-1. 

ôx, dxi 

where Pt are [n x n] matrices with the terminal condition 

(17) 
_ õ2Ф(xк(z)) 

ðxl 
we can write 

(18) òxк, 
dx\ / \Bz dx2 dz 

ðfк-l(Xк-l,Uк-l) 

ðxк_x 

Ьxк_x + 

y--i(»--i'»--i)SH__1,ff-y--^--''w--')sxt-1 + 
du t _, \ dxk_i 

ðfk-i(xк-l,Uк-l) 

ðщ-i 

Sfi(xj, «,) 

3uř 
Ч ) - - Ï ( < ^ ^ . - ™ + 

The last expression implies that 

(19) _ ^ ) ) , _ 3 f . ( W f ^ ^ ^ ^ / = 0 j l ) _ ; k _ L 

duidui dUi dut 

In order to express matrix terms d2i>(xk(z))jdUi duj, i + j , in the similar way, we 
involve the matrix adjoint difference equation given in (21). We set first 

(20) p. =s\ for ř = 1,2,..., k. 



42 Now for every matrix S\, i = 2, 3, . . . , k, as the terminal condition we solve the 
equation 

(21) 

Clearly for j < i 

(22) 

Thus 

(23) H ( z ) - -

. _ Õfj.^Xj.uUj^Y 
Sj.t _ Sj, 7 - 2 , 3 , . . . , . . 

________) в _ g/X^, " ; ) T

 s ,+ i <?/,(*.-, « І ) 
дujдUi õuj J дiif 

<__si_f_ 
õu0 ' őи 0 

дJls2_f_ 
ôu0 ðu_ 

дfj 02 ð/i 
i_>2 

őu t <5u! [_SM0 _ M J 

r_s_5___iT r__2s._v.__T 
_L-u0 - U * _ J L 5 M I 5 M „ _ J 

_H _*_____ 
8u0 duk.t 

_£_*&__. 
-Mi 25M f c_x 

3/f-i s* ðЛ-i 
-«*_! *дuk__ 

We shall now demonstrate this method in the linear-quadratic case. Considering 
the stationary linear system described by the equation , 

(24) x i + 1 = Axi + BUІ, i - 0 , 1 , . . . , k - 1, 

where A resp. B is [n x n] resp. [n x m] constant matrix and quadratic cost func­

tional 

(25) Ф(xk) = <x„, ßxk> , 

we conclude that 
Pk = S\= - 2 ß , 

p ŕ = s; = -2(ATAT... Aт) ß(AA. .Ä), 

( Ь i ) x ( ( ( - , )* 
(26) S j - -2(A T A T . . .A T )S|, 

(,-/)* 

дщ 

According to formulae (23) we see, that if for example k = 2, m = 1, n = 2, then 

(27) J_(z) = 2 p T A T Q A P BTArQBl. 

_BTQAB BTQB J 



4. NUMERICAL METHOD FOR SOLVING THE UDOCP 43 

First we transcribe the UDOCP into the form (4) by means of (5), (7). Then we 
apply the following algorithm: 

Algorithm A. 

0. Select a z0 e Ev such that the set C{z0) is compact; select an a e ]0, 1[ and a 
j S e [ 0 , l ] . 

1. Set i = 0. 

2. Compute Vj°(z;). 

3. If Vj°(z;) = 0, stop; else compute tf(z;). 

4. If H~l{z,) exists, compute h(z;) by solving 

(28) ff(z;)h(z;)=-Vj°(z;) 

and go to step 5; else, set 
(29) h{zt) = -V j°(z ;) 

and go to step 7. 

5. Compute <Vj0(z,.), h(z;)>. 

6. If <Vj°(z;), h(z;)> ^ 0 then set h(z;) = -Vj°(z,.) 

and go to step 7. 

7. Set X = 1. ; 

8. Compute 

(30) 4 = j°(z; + X h{z,)) - j°(z;) - Aa<Vj°(z;), %•)> . 

9. If A s£ 0, set A; = A and go to step 10; else, set X = Xp and go to step 8. 

10. Set z ; + 1 = z ; + Xi h(z;), set i = i + 1 and go to step 2. 

The presented algorithm is of the form of the following algorithm model, construct­
ing points in the closed subset Tof a Banach space B which have property P. (Further 
we shall call them "desirable"). Let a[T-> T] be a search function and c[T-> E1] 
be a stop rule. 

Model M. 

0. Compute a z0 e T. 

1. Set i = 0. 

2. Compute a(z;). 

3. Set z ; + ] = a(zj). 

4. If c(z i + 1) 2: c{zt), stop; else, set < = i + 1 and go to step 2. 



44 The convergence properties of this model are specified in the following theorem, 
proved in [1]. 

Theorem 1. Suppose that 

(i) c(z) is continuous in all nondesirable points z e T. 

(ii) for every z e T which is not desirable, there exists an e(z) > 0 and a S(z) < 0 
such that 

c(a(z')) - c(z') < d(z) for all z' e B(z, e(z)), 

where B(z, e(z)) = {z' e T\ \\z' - z\\B < E(Z)} . 

Then, either the sequence {z;} constructed by algorithm model M is finite and its 
next to last element is desirable, or else it is infinite and every accumulation point 
of {zf} is desirable. 

Referring to the model M, we shall say that the point z is desirable if Vj°(z) = 0, 
we set c(z) = j°(z) and we define a(z) as follows: 

a(z) = z + X h(z) 

where X > 0 is determined in step 9 and h(z) is determined either in step 4 or in step 
6. Algorithm A then clearly satisfies the assumption (i) of the previous theorem. 
We shall prove that the assumption (ii) is satisfied as well. 

Suppose, that an e' > 0 can be found such that for all z' e B(z, e') . {z' | ||z' — 
— z|£V ^ e'} the vector h(z') is computed in the same way, i.e. either according to 
(28) or (29). 

The assumption AS 1 implies that the product <Vj°(z'), h(z')> is a continuous 
function of z' for all z' e B(z, e'). As if z is nondesirable, then 

<Vj°(z), h(z)} . 2y(z) < 0 , 

there must exist an e(z) ^ e', e(z) > 0 such that 

<Vj°(z'), h(z')y < KYj°(z), h(z)} = y(z) < 0 

for all z' e B(z, e(z)). For X' satisfying the relation (30) it is true that 

j°(z' + X' h(z')) - j°(z') < A'«<Vj°(z'), h(z')) = X'a y(z) < 0 . 

The e' > 0 cannot be found if and only if the matrix H(z) is not invertible. Then the 
vector h(z) is computed according to (29) and for every e(z) the set B(z, e(z)) can 
contain points z' such that h(z') are computed according to (28). However, for every 
e(z) an integer q > 0 can be found such that 

<Vj°(z'), h(z')> < i <Vj°(z), h(z)> < 0 

for all z' e B(z, e(z)) what completes the proof. 
Therefore, following theorem is true. 



Theorem 2. Suppose that {z;} is a sequence constructed by algorithm A; then 
either the sequence {z;} is finite, terminating at zt,where Vj°(zfc) = 0, or else it is 
infinite and every accumulation point z' of {z,} satisfies Vj°(z') = 0. 

Corollary. Consider the set Z = {z | Vj°(z) = 0} and suppose that for every 
z' 4= z" in Z, j°(z') 4= j°(z"). Then any infinite sequence {zJ?L0 constructed by algo­
rithm A must converge to a point z e Z. 

The proof is quite evident. 

5. CONCLUSIONS 

If the vector h(z;) in the iteration scheme of algorithm A can be computed accord­
ing to (28) and the step size would not be restricted in step 9, we obtain the usual 
Newton-Raphson formulae 

z H . 1 = z i + # - 1 ( z i ) V j 0 ( z j ) . 

However, the step size adjustment of step 9 does not influence the rate of conver­
gence, which was proved to be quadratic [ l ] . 

If the solved control problem has a constrained set of admissible controls or state 
space variables, another numerical method must be used, as for instance the second-
order feasible direction method. In this case, the evaluation of the Hessian matrices, 
proposed in the section 2, can be applied as well. 

We hope that the second-order methods, applied to the optimal control problems 
will, at least in some cases, spare the computation time due to better rate of conver­
gence. Moreover, if by means of some first-order method some stationary point of 
a solved UDOCP is obtained, we can use the corresponding Hessian matrix for 
testing, whether this point is really a local minimum. 

(Received September 10, 1975.) 
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