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KYBERNETIKA-VOLUME 22 (1986), NUMBER 2 

ON A SIMULATION OF THE OSCILLATION EXCITED 
BY A RANDOM FORCE 

PETR HOLICKY 

We propose a numerical method for simulation of the weak solution of a system of stochastic 
differential equations. The essential features of the system are the discontinuity of the drift-
vector and the singularity of the diffusion-matrix. Such systems could find applications when 
describing the behaviour of several interacting mechanical systems including external random 
forces. We restrict ourselves to one such example given in Fig. 1, and use the results of [1] for 
a rough comparison with our results. 

1. FORMULATION OF THE PROBLEM 

Our note is motivated by investigation of the oscillations of a two-mass-system 
in [1]. The system is depicted in Fig. 1 and describes the oscillations of masses Mj 
and M 2 representing the wheel and the corresponding sprung part of the vehicle 
which moves on a pavement with random unevennesses. The unevennesses are 
represented by a stationary Gaussian process with non-smooth trajectories. 

The interaction between M1 and M 2 includes the dry friction and thus it leads 
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to the discontinuity of the coefficients of the system of equations describing the 
problem (see (1) below). 

The author of [1] uses a difference method for ordinary differential equations 
to generate a trajectory of the solution of (1). The two mentioned peculiarities 
of the system are not considered. However the numerical results seem to be quite 
satisfactory. 

Our first aim was to find some exact interpretation of (1). We shall interpret it as 
a system of stochastic differential equations (see (2), or (3) for a more general formul
ation) and we discuss the problem of the existence of the solution. 

The main aim of our investigations is to find a simulation method which will 
respect discontinuity of the coefficients. We propose a procedure leading to such 
a method. 

To make sure that the (numerical) method developed by our procedure leads 
to reasonable results, we use it for solution of the system (2) which represents a re
formulation of (l). Then we compare the results of [1] with our results. 

From this reason we introduce now a short description of the problem taken 
over from [1]. 

The coordinates corresponding to the centers of gravity of the masses Mx and M2 

are denoted by «., M3, respectively, and the coordinate describing the unevenness 
of the pavement is denoted by u5. The values ut = u3 = u5 = 0 correspond to 
the equilibrium state of the system, and the coordinates thus describe the deviations 
from this state where the deviations upwards are positive . The dots represent some, 
not exactly specified, time derivatives. 

The connection between the masses Mu M2 includes a viscous damping 
(I^i("3 — "i))> a sP r ing element (Fcl(u3 — «,)), and especially a dry friction (R . 
. sgn (M3 - tij), -R =• 0, sgn (x) = 1 for x > 0, sgn (0) = 0, sgn (x) = - 1 for x < 0). 
The connection between the mass Mu representing the wheel, and the pavement 
includes a viscous damping (E„2(M5 — "3)) ar>d a spring element (Fc2(u5 — M3)). 

The stationary Gaussian process ws is described by its spectral density function 
a2(aJTz) (co2 + a2)"1 . Here a, and a are some positive constants with corresponding 
physical dimensions. As usual, g denotes the acceleration of gravity. The forward 
speed of the vehicle is denoted by v0. 

The information about the system is summarized in [ l ] using the following system 
of equations: 

"1 = « 2 

"2 = M1
][Fcl(u3 - Ul) + Fttl(u4 - u2) + R. sgn (u4 - M2)] - g 

(1) U3 = M4 

"4 = M2
_1[Ec2(M5 - U3) + E^(ll5 - u4) - Ecl(M3 - II.) -

- - i v K - "2) - R • sgn (M4 - M2)] - g 

"s = -a^ot 's + a\/(2ccv0) t](t), 

where rj is the white noise. 
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2. A SYSTEM OF STOCHASTIC DIFFERENTIAL EQUATIONS 

We are going now to rewrite (1) in the form of the system of stochastic differential 
equations. We shall suppose that F^x) = n2 . x for some positive constant \i2. 
With respect to a remark in [1] (see p. 144, lines 10 — 19 from below) this assumption 
is reasonable. Let z = (zu z2, z3, z4, z5) e W5. We introduce the following denota
tions: 

flj(z) = z2 

a2(z) = M1- ,[Ec l(z3 - z,) + F^(zA) + R sgn (z4)] - g 

a3(z) = zA + z2 

a4(z) = {M^lF^z, - z3) + lx2(-av0z5 - z4 - z2) - Fcl(z3 - z/J -

- F^(zA) - R sgn (z4)] -g}- a2(z) 

as(z) = -av0z5 

b1 =b2 = b3 = 0 

bA = IhMz*a\f(2av0) 

b5 = GyJ(2av0) 

a(z) = (at(z), a2(z), a3(z), a4(z), a5(z)) 

b = (b» b2, b3, b4, b5). 

Using the substitution z. = uu z2 = M2, Z3 = M3, z4 = M4 - M2, Z5 = M5 we 
see that (1) can be rewritten as 

(2) dz = a(z) At + b dw(t) . 

Here, w is the standard Wiener process in five-dimensional space, and (2) is thus 
a system of stochastic differential equations with discontinuous coefficients (the 
drift-coefficient a is discontinuous), and with the singular diffusion. 

We summarize several known results or their slight generalizations in Theorems 1 
and 2, and in Corollary in the last section of this note. Our main motivation which 
leads us to the derivation of the numerical method comes from the following corolla
ries of those results. 

Although it is not the case in our problem, we shall suppose in all what follows 
that the coefficients ah i = 1, 2 , . . . , 5, are bounded functions from W5 to R5. 

Proposition 1. For any z° e R5 there is a continuous weak solution z(t) of (2) 
on [0, r]. 

Before we state Proposition 2 let us introduce some denotations. 

Let v: R5 ->• R be such that 

(a) v, (djdzj) v, (d2jdzi dz/) v are bounded continuous functions on W5 if i, j = 
= l , . . . , 5 , ( / , j ) * ( 4 , 4 ) . 

(b) (d2ldzl) v is bounded continuous in the half-spaces H_ = {z; z4 < 0} and 
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H + = { z ; z 4 > 0 } , and the limits lira (d2\dz\) v(z) = (<52/<3z2) v±(z°) exist for 
, 0 _ ( 0 0 0 r. 0\ z - z ° 
* - l Z l > Z2> Z3> U> Z 5 j - zs/ /± 

5 5 
(c) The function £ fl.(z) (dv]dz) (z) + ( i £ bibj^vjdz; dzj) (z) is continuously 

; = i ; . ; = i 

extendable to « 5 , i.e. (d2jdzl)v+(z) - (d2jdzl)v.(z) = 4b4
2R[M2

l(8vjdzA)(z) + 
+ M1

_1(c3y/<3z4)(z) - M~1(<3[;/3z2)(z) for z = (z l5 z2, z3, 0, z5), and let us denote 
the extension by Dv. 

We shall use the denotation o e f for v: « 5 -• » fulfilling (a), (b), and (c). 

Proposition 2. Let z(r) be a weak solution of (2) on [0, T] with z(0) = z° a.e. Let 
v e •f. Then 

lim E(«z(/i)) - v(z°))\h) = Dy(z°). 
ft->0 + 

Remark. Notice that Dy is continuous in the case that dvjdz2 = dv]dz4 = 0 on 
{z; z4 = 0} and v e C2(R5). We tired to obtain a larger class of functions v with Dy 
continuous. It is obvious that there are no other functions from C2(R5) with this 
property. This is the reason for the use of the Ito formula with generalized derivatives 
in Section 5 which leads to the preceding Proposition 2. 

3. DERIVATION OF A METHOD WORKING NEAR 
TO THE DISCONTINUITY 

We shall look for probabilities Phz0 on R5 approximating the distribution of z(h) 
for z being a solution with z(0) = z°. Our main requirement on P„,2o is that 

(*) J « z ) - v(z0)) P„,2o(dz) - Dv(z°) = o(h) , h -» 0+ , 

for o e f . We shall try to fulfil (*) with Gaussian probabilities PA-o such that 

{**) (z; - z?) P„,zo(dz) = 0(h), h -» 0 + , i = 1, ..., 5, and 

( * ( z i - z ° ) ( z , - z 0 ) P A , z o ( d z ) - = 0 ( h ) , h-0+J W = l , . . . , 5 . 

Let o e f , and we shall express the integral in the left-hand side of (*). 

^(v(z) - v(z°))Plhz0(dz) -itfvjdz^z0)^ - Z°)P„,o(dz) + 

_ S f r (32«/52; dzj) (z° + T(Z - z0)) (z; - -?) (z, - z°) (1 - r) dr P„,2o(dz) = 

= £(a ! ; /fe, .)(z0) j(z i-
z°)r- f t ,zo(dz) + 

+ 
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i £ (dhjdZi ČZj) (z°), f( ř < - z°) (z, - z?) P„,o(dz) 
.,_» = 1 J 

+ I [(a2^z;5z,)(z° + T(z-z 0 ))-
ij = l J Jo 

- ( ^ Z ; 0*,) (Z°)J (Z; - Z°) (Z, - Z°) (1 - T) dT Ph,zo(dz) . 

Now we interrupt the development of the integral from (*), and state a lemma 
which we shall use several times in what follows. 

Lemma. Let q>(x, z) be a bounded measurable function defined for x e [0, 1] and 
z e Hs. Let lim cp(x, z) = 0 uniformly in r, and let Pb _0 fulfil (**). Then 

lim (1/fc) f/>(T, Z) (Z ; - z°) (z, - z°) (1 - T) dT P„,o(dz) = 0 . 
*-»o + J Jo 

Proof. For a given e > 0 we find (5 > 0 such that for any x e [0, l ] and \z — z°\ < 
< d the inequality \cp(r, z)\ < e holds. Further we can find h > 0 such that 3J(h) < 5. 
Then 

f f ^(T, Z) (Z; - Z°) (Z, - Z°) (1 - T) dT R,„o(dz) < 
J|z-z°|</,*J0 

< J2E(|z; - z°Y + |z, - z°) P„,„(dz) = £ . 0(A) , 

we have used (**) in the last equality, and 

f P <?(r, Z) (Z; - Zf) (Z, - Z°) (1 - T) dT T„,o(dz)j < 
J|_--z°|_.**Jo I . 

< 2 sup I ^ T , z)| f (|z; - z°|2 + |z, - Z°)2) R„,o(df) < 
J|z-z°|g;,i 

< 8 sup U(T , z)\ (max \ \zt - EzJ2 Ph ,„(dz) + JEz - z°\2\ < 
\ 1 J |--_U(| _.**-_.* / 

< 8 sup |<P(T, Z)J max |z; - Ez;|
2 P„,o(dz) + o(h) = o(h) , 

i J|_-E_|_.i\fA* 

where L, M are constants and E denotes the mean value with respect to RA,o. • 

We return now to the estimation of j(v(z) — v(z0)) PAj._(dz). The term 

jj^ WvJdZi dZj) (z° + T(Z - z0)) - (d2i>/<5z; dZj) (Z°)J . 

. (Z; - Z°) (Z, - Z°) (1 - T) dT PhJdz) = 0(h) 

according to the lemma for (i,j) + (4, 4). It suffices to put q>(x, z) = [(<92_>/<3z,- dZj) . 
. (z° + <z - z0)) - (d2vjezi ezj) (z0)] (1 - T) for this purpose. 

For i = j = 4 the derivative e2v\dz\ differs from a continuous function on the seg-
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ment {z° + T(Z — z°); T e [0, 1]} by a function which equals zero for x e [0, T 0 ] , 

and 

( - sgn z°) 4b4

2R[M:\8v\dz4) (z° + x(z - z0)) + 

+ M;\dv\8z4)(z° + x(z - z0)) - M-\dv\dz4)(z° + x(z - z0))] 

on (T 0 , 1] , 

where T 0 = -z°4,(z4 - z°) if z 4 #= z° and -z°4\(z4 - z°) e [0, 1]. We put T 0 = 1 

otherwise. Using the lemma with cp(x, z) = [the continuous part of d2v\dz2

4 in z° + 

+ T(Z — z°) minus the same function in z°] (l — T) we obtain that 

1 f f [(d2v\dZi dZj) (z° + T(Z - z°)) - (82v\8zt dZj) (z 0)] . 
U = lJ Jo 

. (z ; - z°) (z, - Z°) (1 - T) dT P„,zo(dz) = o(h) + ( - sgn z°) . 

. I T 4b 4 - 2 R[M- 1 (^/3z 4 ) (z° + T(Z - z0)) + M;\dvldz3) (z° + T(Z - z0)) -

- Ml\dv\dz4) (z° + T(Z - z°))] (z 4 - z 0 ) 2 (1 - T) dT P„,z„(dz) . 

Since 

Iff 1 464-
2R{[M2-

1(<5t>/5z4)(z° + x(z - z0)) + 
\J J To 

+ MY\8vjdz4)(z0 + x(z - z0)) - ^ ^ ^ ( ^ / ^ ( z 0 + < - - z°))] -

- ^ - ' ^ . / ^ ( z 0 ) + M1-
1(^/az4)(z°) - MrH^/^)^0)]} -

. (z 4 - z 0 ) 2 (1 - T) dT P„,zo(dz)| g 

^ f f cp(x, z) (z4 - z°4)
2 dT P„,2o(dz), where <p(x, z) . 

= | 4 * ; 2 R { [ . . . ] - [ . . . ] } | ( 1 - T ) 

is the absolute value of the corresponding part of the integrand, we use the lemma 

to obtain 

я: [(82v\8zl)(z° + x(z - z0)) - (d2v\dz2

4)(z°)] (z4 - z 0 ) 2 . 

. (1 - T) dT P„,zo(dz) = o(h) + ( - sgn z°) 4b4-
2R[M2- \8v\8z4) (z°) + 

+ M;\8V\8Z4)(Z°) - M;\8v\8z2)(z0)-} . 

We can compute that 

J ( ( z 4 - z 0 ) 2 J ' (1 - T) dT^ P„,zo(dz) = ]-^([z4 sgn z°]-) 2 P„,z0(dz) , 

where [a\~ stands for the non-positive part of a. We have just used that (z 4 — z°4)
2. 

. J 4 ( l - T ) d T = i z 2 f o r T 0 < l . 
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Summarizing the above we get 

J ( , (z ) - ,(z0)) P„,z„(dz) = ijdvjdz) (z°) J ( z ; - z°) P;„2o(dz) + 

+ i i (d2vldZidZj)(2°) \(Z, - zf)(Zj - Z°)P„,zo(dz) + 

+ U ( [ z 4 sgn z 0 ] - ) 2 P„,z„(dz) ( - sgn z°) 4b 4
2 «[.*--(&,/0z...) (2°) + 

+ M;\dvjdzA)(z0) - M;\dvl8z2)(z
0)-] . 

We use the following denotations for the mean values 

Hz, - z°) P„,z„(dz) = m,.(/i, z°) = m,-, 

J(z, - z°) (z, - z°) P„,z0(dz) = mij(h, z°) = m y . 

To fulfil our requirement (*) we need 

(aj) mx = fta^z0) + o(/t), 

(a2) m u = o(h), 

(a3) m2 = ba2(z°) + 2b 4 - 2RMr 1 ( -sgn z°) J([z4 sgn z0]"2) P„,zo(dz) + o(h) , 

(a4) m22 = o(h) , 

(a5) m3 = ha3(z°) + o(/i) , 

(a6) m33 = o(b) , 

(a7) m4 = ba4(z°) - 2b;2R(M~l + M f 1 ) ( - sgn z°) j'([z4 sgn z°]~)2 . 

. P„,z0(dz) + o(h), 

(a8) m44 = /ib2 + o(b), 

(a9) m5 = fca5(z°) + o(h), 

(a10) m55 = hb\ + o(h), 

( a u ) m45 = /ib4b5 + o(/?) , 

(a«) m y = o(/t) for {/,j} * {4, 5} . 

Let us choose for example 

(a) mt = hax(z°), mll = 0 , m22 = 0 , m3 = ha3(z°), m33 = 0 , 

m44 = hb\ , ms = has(z°), mss = hb\ , m45 = hb4b5 . 

We notice that the second moment of the non-negative part of a Gaussian variable 
£ with the mean value m and the variance a2 > 0 equals E(^+)2 = (^2 + »"2) • 
. <P(mja) + am cp(mja), where $ is the distribution function and <p is the density 
of the standard normal distribution. 
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Similarly we have 

f([z4 sgn z°4]-)2 PM„(dz) = ((z° + m4)
2 + a2

4) 4>((z°4 + m4)ja4) + 

+ (z°4 + m4) a4 cp((z°4 + m4)/cr4) 

where a4 is the variance of z4 by Ph<zo, and z\ is supposed to be negative. For positive 
z4 the values m4 andz° should be interchanged by - m 4 , - z ° i n t h e right-hand-side. 
For the value z4 = 0 the integral equals zero. 

We suppose that z\ < 0 in the following for simplicity. 
Let us notice that we can not fulfil the equations (a3), (a7) with m2 = 0(h) and 

m4 = 0(h). We shall consider only small |z4 | in some sense depending on h. We 
denote z4 = a x/(h), and let us recall that we have chosen the case a < 0. 

Let us consider equations (a3) and (a7). We have 

f ( K T ) 2 I\*o(dz) = (a2h + 2a V(ft) m4 + ml + a2
4). 

• *((* VCO + W*)/^) + (»I4 + «V(/l)) (74 9((«VC») + m 4 ) / 0 = 

= (a2h + hb2
4) 4>(a/|b4|) + aftfc4 ^(a/|b4 |) + o(h) 

for |a| less than some constant which does not depend on h and h -» 0+ according 
to the fact that the variance of z4 fulfils the relation a4 = m44 + 0(/i). We put 

(a,) m2 = h[a2(z°) + 264-2Mr'R{(a2 + b2) <P(a/64) + afo4 p(a/fc4)}] 

and 

(a7) m4 = ft[fl4(z°) - 2b~4
2R(M;1 + M~v) {(a2 + b2

4) <P(a]b4) + 

+ ab4 cp(*lb4)}] . 

Our choice of mu m,7 is thus complete, and (*), (**) are fulfilled with the limita
tion to z4 = a y/(h) with |a| less than some constant. 

4. THE SIMULATION AND RESULTS 

Let us recall that the preceding derivation leads to a choice of the probability 
P,,Eo which should approximate the distribution of a solution at time t + h given 
that z(t) = z° with |z4 | < a y/(h) for a = 0(1). In fact we deal with the solution 
as it would be a homogeneous Markov process. This seems to be connected with 
the problem of uniqueness of the solution of (2). 

We shall now describe the method which we used for the simulation on the com
puter EC 1021. Let us mention that the program from IBM SSP was used for the 
generation of the normal distribution. 

We choose some h > 0 and an integer N such that Nh = Tand some initial value 
z° near to the supposed mean values of the stationary initial distribution. 
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Having z* for 0 < k < N we obtain zk+1in dependence on the value of z\: 

A. Let |z*| ^ 2 7(li) (3ft4 V(ft) = 2 V(l»)). Then we generate the Gaussian distribu
tion derived in Section 3 ((a), (a3), (a7) for zk instead of z°). 

B. Let |z*| > 2 7(h). We use the following expression for z*+1: 

z*+1 - z" - (ft/2) (afar*) + «(z* + fl(z*) ft + &£)) + *>£ , 

where ^ is a Gaussian variable with mean zero and standard deviation y'(h). 
This is the so called Heun's method [2] and its speed of convergence for zk 

to z(kh) in L2-norm is in the case of sufficiently regular coefficients the best 
possible one, i.e. the difference z(kh) — z* is of order o(h) (cf. [3]). 

The value z* + 1 is generated according to its known distribution in case B (cf. [1]). 
Since we suppose that the solution should be Markovian, all the generated distribu

tions are generated "independently". The mean values are computed from one long 
trajectory. 

The used numerical values for the method which lead to reasonable results were: 
h = 0-005; T = 10; the interval used for the expression of the means was [0-5, 10]. 

The constants and functions in (l) were defined to be as close as possible to those 
used in [1]. 

Mt = 390 [kg] 

M2 = 150 [kg] 

g = 9-81 [ms"2] 

a = 0 - 4 5 [ m _ I ] 

v0 = 15 [ms- 1 ] 

o-2 = 3-42 [cm2] 

Fc2(a) = c2a, where c2 = 392-4 [kNnT J ] 

F„2(a) = fi2a where p2 = 0-981 [kNsm"1] 

Fcl(a) = 166 667a for a g 0-120 
= 2 000 + 90 000(a - 0012) for a e (0-012, 0-052] 
= 5 600 + 45 455(a - 0-052) for a e (0-052, 0-14] 
= 9 600 + 66 667(a - 0-14) for a e (014, 0-2] 
= 13 600 + 150 000(a - 0-2) for a e (0-2, oo) 

F^(a) = - 1 280 + (a + 0-28). 1 000 for a < -0-28 
= 4 421a for a e (-0-28, 0-09] 
= 4 0 0 + 1 000(a - 0-09) for a e (0;09, oo). 

We have expressed only the following two values: 

03,i = tfZ3_z, = a«i-ui 

the deviation of z3 — z. = u3 - ul, and 
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the deviation of zs — z3 = us — u3 with respect to the stationary (initial) distribu

tion. We compare now our results with the corresponding data reproduced again 

from [1]. 

values of Я 0-00 286-9425 573-885 860-8275 1147-77 

M 1 CT3,1 

ст5,3 

2-68 
1-05 

2-14 

0-91 
1-73 
0-82 

1-41 
0-86 

1-18 
1-00 

M 2 CT3,1 
стs,з 

2-64 

1-05 
2-18 
0-95 

1-82 
0-86 

1-68 
0-86 

1-55 
1-00 

M 3 CT3,1 

CT5,3 

2-51 

1-13 

2-58 
1-08 

1-89 
0-998 

2-095 
1-07 

1-84 
1-07 

Here M 1 denotes the method of equivalent linearization used in [1], M 2 the 

method of simulation used in [ l ] , and M 3 the method which we described in this note. 

One can notice that our results are systematically greater than the results given 

in [ l ] . The only exception of this appearance is for the value of a31 for R = 0. 

It is interesting to note that the same can be said about the simulation method 

(M 2) with respect to the linearization method (M l) in [1]. The systematic devi

ation in our case (M 3) is approximately two times greater. 

The decreasing behaviour of a31 in dependence on R is strongest in the case of 

M 1, and the weakest for M 3. The curvature of the behaviour of aSt3 is also most 

expressive in the case of the linearization and least expressive in the case of our 

method. 

We can conclude that the results obtained by our method are comparable with 

those given in [1]. Since all discussed methods are only approximative one can 

hardly decide which of them gives results that are closest to the reality. 

5. RESULTS USED IN SECTION 2 

We use a known result for the definition of the solution of (1). For this purpose 

we introduce another denotation for the coefficients and the unknown process 

from (2): 
x l = ( ^ l l * x 1 2 > X 13> X1AJ > x = \XU X2) ' 

X l l = Z l •> X 1 2 ~ Z 2 > X 1 3 = Z 3 > * 1 4 = Z 5 > X2 = Z 4 > 

«i(x) = («n(je), • •., a1 4(x)) = (ax(z), a2(z) , a3(z), as(z)) , 

a 2 ( z ) = OA(Z) , where z = (xlt, x12, x13, x2, xl4), 
аnd 

/0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

1 0 0 0 0 bs) 

ß2 = (0,0,0,0,bĄ). 
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Let Wdenote the five-dimensional standard Wiener process. Then (2) is equivalent to 

(3) dxt = at(xu x2) dt + /J. dW 

dx2 = u2(xu x2) dt + p2 dW. 

The following Theorem 1 applies to our situation. It is formulated in [4] in our 
form and it can be proved following the procedures of the proof of Theorem 1 
in [5] and the proof of Theorem 1 in [6], Chap. II, § 6. 

Theorem 1. Let 

(4) dyx = 5y(yu y2) dt + al(yu y2) dV{t) 

d>'2 = o2(yu y2) dt + a2(yu y2) dV(i) 

be a system of stochastic differential equations where V is an (m + Tridimensional 
Wiener process, yt and y2 are processes from the interval [0, T] to the m-, respect
ively n-dimensional Euclidean spaces, and the coefficients are bounded measurable 
functions between the corresponding spaces. Moreover, let all coefficients be continu
ous in yx and (a2a2X, X) > s\X\2 for any X e R" for some s > 0 (a* is the adjoint 
operator to a2). Let y0 e Rm+". 

Then there is a weak solution y(t) on [0, T] of (4) with y(0) = j ; 0 a.e. 

The assumptions of Theorem 1 are supposed in all what follows. 

We would like to use ltd formula for the functions with generalized derivatives 
following [6], Chap. II, § 10. The generalized derivatives are derivatives in the sense 
of distributions which are locally integrable functions (cf. [6], p. 68). 

Given compact balls K, T in Rm or in R", respectively, we define the norm ||| • | | j p > K > r 

by I I I /OIJ J;2)|||p,K,r = (J| suPf()>i> ^2)1" dy2)1 /p for any bounded measurable / from 
yieK 

Rm x R" to R such that f(yu y2) is continuous in ) \ for y2 fixed (cf. [5]). 
We define the norm ||!-|||iF«(Kxr) like in [6, p. 71] with j;|-jjj instead |- | | . The space 

of functions W2(K x T) is obtained from C2(K x T) in the corresponsing way 
using |j["||]-norms instead of | - | -norms. 

Theorem 2. Let K, T be compact balls in Rm or R", respectively. Let v e W2(K x T), 

y(t) = y(0) + P 8(s) ds + P a(s) dV(s) 
Jo Jo 

where 5, a are bounded progressively measurable functions with respect to the 
filtration of c-fields generated by (V(s); 0 ^ s g t} for t e [0, T] is an (m + n)-
dimensional Wiener process, the values of 5 are n-dimensional vectors, and the values 
of a are the matrices of dimension n x (m + n). Let x be the time of the first exit 
of K x T. Then 

(5) v(y(h A T)) - v(y(0)) = j ^ i W O ' Vi>0#) + 
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+ i Tr[<r(t) ff(()* VVfl(XO)]} <*t + f " V»(j(t)) <K') d K ( 0 

where the generalized derivatives are employed. 

Theorem 2 has the following corollary: 

Corollary. Let v: ffm x ff" -> ff fulfil the following assumptions: 

(a) v is bounded and has continuous and bounded first derivatives everywhere, 

(b) v has bounded measurable generalized second derivatives which are continuous 
in the first m variables for fixed last n variables. 

Let y(t) be a continuous solutipn of (4) and let 

i Tr[<r(j;) a(y)* Wv(y)] + (5(y), Vv(y)) 

be continuous (and bounded). Then 

lim (Ev(y(h)) - v(y(0)))jh = Dv(y(0)) = 
h^O + 

= | Tr[>0<0)) aim)* VV,(X0))] + (5(y(0)), Vv(y(0))) . 
Proof. We can show that vj(K x T) fulfils the assumptions of Theorem 2 for 

compact balls K, r, in ffra, or ff" respectively, using a standard procedure of approxim
ation of v](K x r) by convolution (in last n variables). 

We can use the formula (5) from Theorem 2 for T = oo due to the boundedness 
of coefficients of (4) and derivatives of v. More precisely we can use Theorem 2 
for Kr x r, converging to Rm+n. Thus we can write 

lim(llh)E(v(y(h))-o(y(0))) = 
ft->0«. 

= lim JE(l/h) f (i) Tr [o(y(t)) <r(y(t))* Wv(y(t))] + 
*-o + ( J 0 

+ (S(y(t)), Vv(y))) At + f Vv(y(ij) a(t) dV(t)\. 

The mean value of the stochastic integral is zero. The limit and the 'E' can be inter
changed because (1 \h) J"0 (...) dr are uniformly bounded variables. Since the integrand 
is continuous, the assertion of the corollary is proved. 
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