Kybernetika

Vladimír Kučera
 Algebraic theory of discrete optimal control for multivariable systems [III.]

Kybernetika, Vol. 12 (1976), No. Suppl, 221--239
Persistent URL: http://dml.cz/dmlcz/125041

Terms of use:

© Institute of Information Theory and Automation AS CR, 1976
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Now the optimal decoupled control problems considered in the paper can be formally defined as follows.
(6.47) Decoupling and stable time optimal control

Given a system \mathscr{S} which is a minimal realization of

$$
S=B_{1} A_{2}^{-1}=A_{1}^{-1} B_{2} \in \widetilde{\mathscr{F}}_{1, m}\left\{z^{-1}\right\}
$$

and a reference input sequence

$$
\boldsymbol{W}=\frac{Q}{p} \in \mathbb{F}_{l, 1}\left\{z^{-1}\right\} .
$$

Find a controller \mathscr{R} which is a minimal realization of some

$$
\boldsymbol{R} \in \widetilde{\mathscr{Y}}_{m, n}\left\{z^{-1}\right\}
$$

such that the closed-loop system is stably decoupled, the control sequence \boldsymbol{U} is stable, and the error component $e_{i}, i=1,2, \ldots, l$ vanishes in a minimum time $k_{i m i n}$ and thereafter.
(6.49) Decoupling and finite time optimal control

Given a system \mathscr{S} which is a minimal realization of

$$
S=B_{1} A_{2}^{-1}=A_{1}^{-1} B_{2} \in \tilde{\mathscr{F}}_{1, m}\left\{z^{-1}\right\}
$$

and a reference input sequence

$$
W=\frac{Q}{p} \in \mathscr{F}_{t, 1}\left\{z^{-1}\right\} .
$$

Find a controller \mathscr{R} which is a minimal realization of some

$$
\boldsymbol{R} \in \mathscr{F}_{m, l}\left\{z^{-1}\right\}
$$

such that the closed-loop system is stably decoupled, the control sequence \boldsymbol{U} is finite, and the error component $\boldsymbol{e}_{i}, i=1,2, \ldots, l$ vanishes in a minimum time $k_{i \text { in }}$ and thereafter.
(6.50) Decoupling and least squares control

Given a system \mathscr{S} which is a minimal realization of

$$
S=B_{1} A_{2}^{-1}=A_{1}^{-1} B_{2} \in \mathscr{F}_{l, m}\left\{z^{-1}\right\}
$$

and a reference input sequence

$$
\boldsymbol{W}=\frac{Q}{p} \in \tilde{F}_{l, 1}\left\{z^{-1}\right\} .
$$

Find a controller \mathscr{R} which is a minimal realization of some

$$
\boldsymbol{R} \in \mathfrak{F}_{m, l}\left\{z^{-1}\right\}
$$

such that the closed-loop system is stably decoupled, the control sequence U is stable, and the quadratic norm $\left\|e_{i}\right\|^{2}$ of the i-th error $e_{i}, i=1,2, \ldots, l$, is minimized.

The solution of these problems is given in the following three subsections.
Stable time optimal decoupled çontrol
Theorem 6.6. Let \mathfrak{F} be an arbitrary field with valuation \mathscr{V} and let the closed-loop system can be stably decoupled. Then problem (6.48) has a solution if and only if the linear Diophantine equations

$$
\begin{equation*}
b_{i}^{-} x_{i}+a_{i 0}^{-} p_{i} y_{i}=q_{i}^{+}, \quad i=1,2, \ldots, l, \tag{6.51}
\end{equation*}
$$

have solutions x_{i}^{0}, y_{i}^{0} such that

$$
\partial y_{i}^{0}=\min , \quad i=1,2, \ldots, l,
$$

subject to

$$
\begin{equation*}
\frac{s_{i}}{r_{i}}=\frac{a_{i 0}^{+} x_{i}^{0}}{p_{i 0} b_{i}^{+} y_{i}^{0}}, \quad i=1,2, \ldots, l \tag{6.52}
\end{equation*}
$$

and to stability of the resulting control sequence

$$
U=A_{2} M_{1} \frac{Q}{p}
$$

The optimal controller is not unique, in general, and all optimal controllers are given as minimal realizazions of (6.46), where the matrices involved satisfy (6.42) through (6.45) and (6.47), (6.52).

Moreover,

$$
\boldsymbol{e}_{i}=a_{i 0}^{-} q_{i}^{-} y_{i}^{0}, \quad i=1,2, \ldots, l,
$$

and

$$
k_{i \min }=1+\partial a_{i 0}^{-}+\partial q_{i}^{-}+\partial y_{i}^{0}
$$

Proof. If the system can be stably decoupled then all decoupling controllers are given by (6.46). It remains to further specify the $\boldsymbol{M}_{1}, N_{1}$ and $\boldsymbol{M}_{2}, N_{2}$ by choosing the \boldsymbol{D}_{1} and \boldsymbol{D}_{2} so as to make the i-th error component $\boldsymbol{e}_{i}, i=1,2, \ldots, l$, vanish in a minimum time by application of a stable control sequence \boldsymbol{U}.
Viewing

$$
S_{i}=\frac{b_{i}}{a_{i}}
$$

as a virtual single-input single -output subsystem and applying Theorem 1 in [32], the controller

$$
R_{i}=\frac{a_{i 0}^{+} x_{i}}{p_{i 0} b_{i}^{+} y_{i}}
$$

where x_{i}, y_{i} is any solution of equation (6.51), acomplishes the job.
We have denoted

$$
D_{1} D_{2}^{-1}=\operatorname{diag}\left\{\frac{s_{i}}{r_{1}}, \frac{s_{2}}{r_{2}}, \ldots, \frac{s_{l}}{r_{t}}\right\},
$$

where the s_{i} / r_{i} plays the role of the virtual controller \boldsymbol{R}_{i}. Hence we have to restrict D_{1} and D_{2} so that

$$
\begin{equation*}
\frac{s_{i}}{r_{i}}=\frac{a_{i 0}^{+} x_{i}}{p_{i 0} b_{i}^{+} y_{i}}, \quad i=1,2, \ldots, l . \tag{6.53}
\end{equation*}
$$

It follows that

$$
\boldsymbol{e}_{i}=a_{i 0}^{-} q_{i}^{-} y_{i}
$$

In order to make the \boldsymbol{e}_{i} vanish in a minimum time, we have to choose the solution x_{i}^{0}, y_{i}^{0} of equation (6.51) that satisfies $\partial y_{i}^{0}=\min$ subject to (6.53) and to stability of the resulting control sequence

$$
U=A_{2} M_{1} \frac{Q}{p}
$$

as required. Then

$$
k_{i \min }=1+\partial \boldsymbol{e}_{i}=1+\partial a_{i 0}^{-}+\partial q_{i}^{-}+\partial y_{i}^{0}, \quad i=1,2, \ldots, l .
$$

Therefore, only the \boldsymbol{D}_{1} and \boldsymbol{D}_{2} satisfying (6.47) and (6.52) can be used in expressions (6.45) and (6.46) for the optimal controller.

Example 6.6. Given a minimal realization of

$$
\begin{gathered}
\boldsymbol{S}=\frac{\left[\begin{array}{ll}
z^{-1} & -z^{-2} \\
0.5 z^{-2} & z^{-1}-z^{-2}-0.25 z^{-3}
\end{array}\right]}{1-0.5 z^{-1}}= \\
=\left[\begin{array}{ccc}
z^{-1} & 0 & 0.5 z^{-2} \\
z^{-1}\left(1-0.5 z^{-1}\right)
\end{array}\right]\left[\begin{array}{cc}
1-0.5 z^{-1} & z^{-1} \\
0 & 1
\end{array}\right]^{-1}= \\
=\left[\begin{array}{ccc}
1-0.5 z^{-1} & 0 \\
-0.5 z^{-1} & 1
\end{array}\right]^{-1}\left[\begin{array}{cc}
z^{-1}-z^{-2} \\
0 & z^{-1}\left(1-0.5 z^{-1}\right)
\end{array}\right]
\end{gathered}
$$

over the field \Re valuated by (2.25), solve problem (6.48) for the reference input sequence

$$
W=\frac{\left[\begin{array}{l}
1 \\
1
\end{array}\right]}{1-0 \cdot 5 z^{-1}}
$$

We first solve the decoupling problem. Compute

$$
\begin{gathered}
B_{11}=\left[\begin{array}{cl}
z^{-2} & 0 \\
0 \cdot 5 z^{-2} z^{-1}\left(1-0 \cdot 5 z^{-1}\right)
\end{array}\right], \quad \operatorname{adj} B_{11}=\left[\begin{array}{cc}
z^{-1}\left(1-0 \cdot 5 z^{-1}\right) & 0 \\
-0.5 z^{-2} & z^{-1}
\end{array}\right] \\
\operatorname{det} B_{11}=z^{-2}\left(1-0.5 z^{-1}\right) \\
b_{11}=z^{-1}, \\
b_{12}=z^{-1} \\
b_{01}=z^{-1}\left(1-0.5 z^{-1}\right), \quad b_{02}=z^{-1}\left(1-0.5 z^{-1}\right)
\end{gathered}
$$

and

$$
\begin{gathered}
A_{1}=\left[\begin{array}{cc}
1-0.5 z^{-1} & 0 \\
-0.5 z^{-1} & 1
\end{array}\right], \quad \operatorname{adj} A_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 \cdot 5 z^{-1} & 1-0 \cdot 5 z^{-1}
\end{array}\right] \\
\operatorname{det} A_{1}=1-0 \cdot 5 z^{-1} \\
a_{11}=1, \quad a_{12}=1 \\
a_{01}=1-0.5 z^{-1}, \quad a_{02}=1-0 \cdot 5 z^{-1}
\end{gathered}
$$

Equation (6.44) becomes
$\left[\begin{array}{ll}z^{-1}\left(1-0 \cdot 5 z^{-1}\right) & 0 \\ 0 & z^{-1}\left(1-0 \cdot 5 z^{-1}\right)\end{array}\right] D_{1}+D_{2}\left[\begin{array}{ll}1-0 \cdot 5 z^{-1} & 0 \\ 0 & 1-0 \cdot 5 z^{-1}\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
and hence

$$
\boldsymbol{D}_{1}=\left[\begin{array}{cc}
\boldsymbol{t}_{1} & 0 \\
0 & \boldsymbol{t}_{2}
\end{array}\right], \boldsymbol{D}_{2}=\left[\begin{array}{l}
\frac{1}{1-0 \cdot 5 z^{-1}}-z^{-1} \boldsymbol{t}_{1} \frac{1}{1-0 \cdot 5 z^{-1}}-z^{-1} \boldsymbol{t}_{2}
\end{array}\right]
$$

for arbitrary $t_{1}, t_{2} \in \mathbb{R}^{+}\left\{z^{-1}\right\}$. This equation is equivalent to the first equation (6.42) together with (6.45).

The second equation (6.42) becomes

$$
\left[\begin{array}{ll}
1-0 \cdot 5 z^{-1} & z^{-1} \\
0 & 1
\end{array}\right] N_{2}+M_{2}\left[\begin{array}{ll}
z^{-1} & -z^{-2} \\
0 & z^{-1}\left(1-0 \cdot 5 z^{-1}\right)
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

and it yields

$$
\begin{aligned}
& \boldsymbol{N}_{2}=\left[\begin{array}{rr}
1+z^{-1} \boldsymbol{v}_{11} & -z^{-1}-z^{-2} \boldsymbol{v}_{11}+z^{-1} v_{12} \\
z^{-1} \boldsymbol{v}_{21} & 1-z^{-2} \boldsymbol{v}_{21}+z^{-1}\left(1-0.5 z^{-1}\right) \boldsymbol{v}_{22}
\end{array}\right], \\
& \boldsymbol{M}_{2}=\left[\begin{array}{rrr}
0.5-\left(1-0.5 z^{-1}\right) \boldsymbol{v}_{11}-z^{-1} \boldsymbol{v}_{21} & -\boldsymbol{v}_{12}-z^{-1} \boldsymbol{v}_{22} \\
-\boldsymbol{v}_{21} & -\boldsymbol{v}_{22}
\end{array}\right]
\end{aligned}
$$

for arbitrary $\boldsymbol{p}_{i j} \in \mathfrak{B}^{+}\left\{z^{-1}\right\}$.
The mutual relations (6.43) then give

$$
\begin{aligned}
& v_{11}=\frac{0.5}{1-0 \cdot 5 z^{-1}}-\boldsymbol{t}_{1}, \quad v_{12}=0, \\
& \boldsymbol{v}_{21}=\frac{z^{-1}}{1-0 \cdot 5 z^{-1}}\left(\boldsymbol{t}_{1}-\boldsymbol{t}_{2}\right), \quad \boldsymbol{v}_{22}=-\boldsymbol{t}_{2} .
\end{aligned}
$$

Therefore, all controllers that stably decouple the closed-loop system are given as minimal realizations of

$$
\boldsymbol{R}=\left[\begin{array}{cc}
1-0.5 z^{-1} z^{-1} \\
0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1-0.5 z^{-1} & 0 \\
-0.5 z^{-1} & 1
\end{array}\right]\left[\begin{array}{ll}
1 & -0.5 z^{-1} \\
0 & 0 \\
0 & 1-0.5 z^{-1}
\end{array}\right]^{-1} \boldsymbol{D}_{1} \boldsymbol{D}_{2}^{-1}
$$

by (6.39).
For control purposes we introduce the virtual systems

$$
\begin{equation*}
S_{1}=\frac{z^{-1}\left(1-0.5 z^{-1}\right)}{1-0.5 z^{-1}}=z^{-1}, \quad S_{2}=\frac{z^{-1}\left(1-0.5 z^{-1}\right)}{1-0.5 z^{-1}}=z^{-1} \tag{6.54}
\end{equation*}
$$

and the virtual controllers

$$
\boldsymbol{R}_{1}=\frac{\left(1-0.5 z^{-1}\right) \boldsymbol{t}_{1}}{1-z^{-1}\left(1-0.5 z^{-1}\right) \boldsymbol{t}_{1}}, \quad \boldsymbol{R}_{2}=\frac{\left(1-0.5 z^{-1}\right) \boldsymbol{t}_{2}}{1-z^{-1}\left(1-0.5 z^{-1}\right) \boldsymbol{t}_{2}} .
$$

Partitioning W conformably, we obtain

$$
W_{1}=\frac{1}{1-0.5 z^{-1}}, \quad W_{2}=\frac{1}{1-0.5 z^{-1}}
$$

The equations (6.51) read

$$
z^{-1} x_{i}+\left(1-0 \cdot 5 z^{-1}\right) y_{i}=1, i=1,2
$$

and the general solutions are

$$
\begin{aligned}
& x_{i}=0 \cdot 5+\left(1-0 \cdot 5 z^{-1}\right) v_{i} \\
& y_{i}=1-z^{-1} v_{i}
\end{aligned}
$$

for any $v_{i} \in \mathbb{R}\left[z^{-1}\right], i=1,2$.
By (6.52) we obtain the equations

$$
\frac{\left(1-0.5 z^{-1}\right) \boldsymbol{t}_{i}}{1-z^{-1}\left(1-0 \cdot 5 z^{-1}\right) \boldsymbol{t}_{i}}=\frac{0 \cdot 5+\left(1-0 \cdot 5 z^{-1}\right) v_{i}}{\left(1-0 \cdot 5 z^{-1}\right)\left(1-z^{-1} v_{i}\right)}, \quad i=1,2
$$

which necessitate the choice

$$
\boldsymbol{t}_{i}=\frac{0.5}{1-0.5 z^{-1}}+v_{i}, \quad i=1,2
$$

To minimize the degree of y_{i}, we take $v_{i}=0, i=1,2$. Then

$$
\begin{gathered}
x_{i}^{0}=0 \cdot 5, \quad y_{i}^{0}=1 \\
t_{i}=\frac{0 \cdot 5}{1-0 \cdot 5 z^{-1}}, \quad i=1,2
\end{gathered}
$$

and hence

$$
D_{1}=\left[\begin{array}{cc}
\frac{0.5}{1-0 \cdot 5 z^{-1}} & 0 \\
0 & 0 \cdot 5 \\
1-0 \cdot 5 z^{-1}
\end{array}\right], \quad D_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

It follows that

$$
R=\frac{0.5}{1-0.5 z^{-1}}\left[\begin{array}{r}
1-z^{-1}-0.25 z^{-2} \\
-0.5 z^{-1} \\
\\
-1
\end{array}\right]
$$

is the unique solution and

$$
\begin{gathered}
\boldsymbol{U}=\frac{0.5}{1-0 \cdot 5 z^{-1}}\left[\begin{array}{l}
1+0.5 z^{-1} \\
1
\end{array}\right] \\
\boldsymbol{E}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad k_{1 \min }=1, \quad k_{2 \min }=1
\end{gathered}
$$

The reader can verify that the (coupled) stable time optimal control would give the same \boldsymbol{U} and \boldsymbol{E} but, of course, a greater variety of controllers would be available.

Example 6.7. Given a minimal realization of

$$
\begin{gathered}
S=\frac{\left[\begin{array}{l}
z^{-1} 0 \\
z^{-1} z^{-1}\left(1-2 z^{-1}\right)
\end{array}\right]}{1-z^{-1}}= \\
=\left[\begin{array}{ll}
z^{-1} & 0 \\
z^{-1} z^{-1}\left(1-2 z^{-1}\right)
\end{array}\right]\left[\begin{array}{ll}
1-z^{-1} & 0 \\
0 & 1-z^{-1}
\end{array}\right]^{-1}= \\
=\left[\begin{array}{ll}
1-z^{-1} & 0 \\
-1+z^{-1} & 1-z^{-1}
\end{array}\right]^{-1}\left[\begin{array}{ll}
z^{-1} & 0 \\
0 & z^{-1}\left(1-2 z^{-1}\right)
\end{array}\right]
\end{gathered}
$$

over the field \Re valuated by (2.25), solve problem (6.48) for the reference input sequence

$$
\boldsymbol{W}=\frac{\left[\begin{array}{l}
1 \\
1
\end{array}\right]}{1-z^{-1}}
$$

Compute

$$
\begin{gathered}
\operatorname{adj} B_{11}=\left[\begin{array}{cc}
z^{-1}\left(1-2 z^{-1}\right) & 0 \\
-z^{-1} & z^{-1}
\end{array}\right] \\
b_{11}=z^{-1}, \quad b_{12}=z^{-1} \\
b_{01}=z^{-1}\left(1-2 z^{-1}\right), \quad b_{02}=z^{-1}\left(1-2 z^{-1}\right)
\end{gathered}
$$

and

$$
\begin{gathered}
\operatorname{adj} A_{1}=\left[\begin{array}{l}
1-z^{-1} 0 \\
1-z^{-1} 1-z^{-1}
\end{array}\right] \\
a_{11}=1-z^{-1}, \quad a_{12}=1-z^{-1} \\
a_{01}=1-z^{-1}, \quad a_{02}=1-z^{-1}
\end{gathered}
$$

Equations (6.42) become

$$
\begin{aligned}
& {\left[\begin{array}{ll}
z^{-1} & 0 \\
z^{-1} & z^{-1}\left(1-2 z^{-1}\right)
\end{array}\right] M_{1}+N_{1}\left[\begin{array}{ll}
1-z^{-1} & 0 \\
-1+z^{-1} & 1-z^{-1}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{lll}
1-z^{-1} & 0 \\
0 & 1-z^{-1}
\end{array}\right] N_{2}+M_{2}\left[\begin{array}{lll}
z^{-1} & 0 \\
0 & z^{-1}\left(1-2 z^{-1}\right)
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]}
\end{aligned}
$$

and have the solutions

$$
\begin{aligned}
& \boldsymbol{M}_{1}=\left[\begin{array}{rr}
1+\left(1-z^{-1}\right)\left(t_{11}-t_{12}\right) & \left(1-z^{-1}\right) t_{12} \\
1+\left(1-z^{-1}\right)\left(t_{21}-t_{22}\right) & -1+\left(1-z^{-1}\right) t_{22}
\end{array}\right] \\
& \boldsymbol{N}_{1}=\left[\begin{array}{rr}
1-z^{-1} t_{11} & -z^{-1} t_{12} \\
1-z^{-1} t_{11}-z^{-1}\left(1-2 z^{-1}\right) t_{21} & 1+2 z^{-1}-z^{-1} t_{12}-\left(z^{-1}-2 z^{-2}\right) t_{22}
\end{array}\right] \\
& \boldsymbol{N}_{2}=\left[\begin{array}{rr}
1+z^{-1} v_{11} & z^{-1}\left(1-2 z^{-1}\right) v_{12} \\
z^{-1} v_{21} & 1+2 z^{-1}+z^{-1}\left(1-2 z^{-1}\right) v_{22}
\end{array}\right] \\
& \boldsymbol{M}_{2}=\left[\begin{array}{rr}
1-\left(1-z^{-1}\right) v_{11} & -\left(1-z^{-1}\right) v_{22} \\
-\left(1-z^{-1}\right) v_{21} & -1-\left(1-z^{-1}\right) v_{22}
\end{array}\right]
\end{aligned}
$$

for arbitrary $\boldsymbol{t}_{i j}, \boldsymbol{v}_{i j} \in \mathfrak{R}^{+}\left\{z^{-1}\right\}$.
The mutual relations (6.43) yield

$$
v_{i j}=-t_{i j}, \quad i, j=1,2
$$

Equation (6.44) becomes

$$
\left[\begin{array}{ll}
z^{-1}\left(1-2 z^{-1}\right) & 0 \\
0 & z^{-1}\left(1-2 z^{-1}\right)
\end{array}\right] D_{1}+D_{2}\left[\begin{array}{ll}
1-z^{-1} & 0 \\
0 & 1-z^{-1}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

and yields
(6.56) $\boldsymbol{D}_{1}=\left[\begin{array}{ll}-1+\left(1-z^{-1}\right) t_{1} & 0 \\ 0 & -1+\left(1-z^{-1}\right) t_{2}\end{array}\right]$,

$$
\boldsymbol{D}_{2}=\left[\begin{array}{ll}
1+2 z^{-1}-z^{-1}\left(1-2 z^{-1}\right) \boldsymbol{t}_{1} & 0 \\
0 & 1+2 z^{-1}-z^{-1}\left(1-2 z^{-1}\right) \boldsymbol{t}_{2}
\end{array}\right]
$$

for any $t_{1}, t_{2} \in \mathfrak{R}^{+}\left\{z^{-1}\right\}$. Relations (6.45) then give

$$
\begin{array}{ll}
t_{11}=-2+\left(1-2 z^{-1}\right) t_{1}+t_{2}, & t_{12}=t_{2} \\
t_{21}=t_{1}+t_{2}, & t_{22}=t_{2}
\end{array}
$$

and all controllers that stably decouple the closed-loop system are given as minimal realization of

$$
\boldsymbol{R}=\left[\begin{array}{cc}
1-2 z^{-1} & 0 \\
-1 & 1
\end{array}\right] \boldsymbol{D}_{1} \boldsymbol{D}_{2}^{-1}
$$

where D_{1} and D_{2} are given in (6.56).

To solve the control problem, consider

$$
S_{i}=\frac{z^{-1}\left(1-2 z^{-1}\right)}{1-z^{-1}}, \quad W_{i}=\frac{1}{1-z^{-1}}, \quad i=1,2
$$

and solve the equation (6.51),

$$
z^{-1}\left(1-2 z^{-1}\right) x_{i}+\left(1-z^{-1}\right) y_{i}=1, \quad i=1,2
$$

The general solutions are

$$
\begin{aligned}
& x_{i}=-1+\left(1-z^{-1}\right) u_{i} \\
& y_{i}=1+2 z^{-1}-z^{-1}\left(1-2 z^{-1}\right) u_{i}
\end{aligned}
$$

for any $u_{i} \in \Re\left[z^{-1}\right], i=1,2$.
Relations (6.52) yield

$$
\frac{-1+\left(1-z^{-1}\right) t_{i}}{1+2 z^{-1}-z^{-1}\left(1-2 z^{-1}\right) t_{i}}=\frac{-1+\left(1-z^{-1}\right) u_{i}}{1+2 z^{-1}-z^{-1}\left(1-2 z^{-1}\right) u_{i}}
$$

that is,

$$
\boldsymbol{t}_{i}=u_{i}, \quad i=1,2
$$

To minimize the degree of y_{i}, we take $u_{i}=0$. Then

$$
\begin{gathered}
x_{i}^{0}=-1, \quad y_{i}^{0}=1+2 z^{-1}, \quad i=1,2 \\
D_{1}=\left[\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right], \quad D_{2}=\left[\begin{array}{ll}
1+2 z^{-1} & 0 \\
0 & 1+2 z^{-1}
\end{array}\right]
\end{gathered}
$$

and the optimal controller is given as a minimal realization of

$$
\boldsymbol{R}=\left[\begin{array}{cc}
1-2 z^{-1} & 0 \\
-1 & 1
\end{array}\right]\left[\begin{array}{cc}
-1-2 z^{-1} & 0 \\
0 & -1-2 z^{-1}
\end{array}\right]^{-1}
$$

and it is unique. The resulting control

$$
\boldsymbol{U}=\left[\begin{array}{lll}
1-z^{-1} & 0 \\
0 & 1-z^{-1}
\end{array}\right]\left[\begin{array}{cc}
-1+2 z^{-1} & 0 \\
1 & -1
\end{array}\right] \frac{\left[\begin{array}{l}
1 \\
1
\end{array}\right]}{1-z^{-1}}=\left[\begin{array}{l}
-1+2 z^{-1} \\
0
\end{array}\right]
$$

is stable, as required, and the error becomes

$$
\boldsymbol{E}=\left[\begin{array}{l}
1+2 z^{-1} \\
1+2 z^{-1}
\end{array}\right], \quad k_{1 \min }=k_{2 \min }=2
$$

We also obtain

$$
K_{1}=\left[\begin{array}{cc}
-z^{-1}\left(1-2 z^{-1}\right) & 0 \\
0 & -z^{-1}(1-2) z^{-1}
\end{array}\right]
$$

It is easy to verify that the (coupled) stable time optimal control is obtained when using

$$
\boldsymbol{R}=\left[\begin{array}{rr}
1 & \left(1-z^{-1}\right) \boldsymbol{w}_{1} \\
0 & -1+\left(1-z^{-1}\right) \boldsymbol{w}_{2}
\end{array}\right]\left[\begin{array}{lc}
1 & -z^{-1} \boldsymbol{w}_{1} \\
1 & 1+2 z^{-1}-z^{-1} w_{1}-z^{-1}\left(1-z^{-1}\right) w_{2}
\end{array}\right]^{-1}
$$

where $\boldsymbol{w}_{1}, \boldsymbol{w}_{2} \in \mathfrak{R}^{+}\left\{z^{-1}\right\}$ arbitrary. It follows that

$$
\boldsymbol{U}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad \boldsymbol{E}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad k_{\min }=1
$$

but the associated matrix

$$
=\left[\begin{array}{ll}
z^{-1}-z^{-1}\left(1-z^{-1}\right) \boldsymbol{w}_{1} & z^{-1}\left(1-z^{-1}\right) \boldsymbol{w}_{1} \\
2 z^{-1}\left(1-z^{-1}\right)-z^{-1}\left(1-z^{-1}\right) \boldsymbol{w}_{1}- & -z^{-1}\left(1-2 z^{-1}\right)+z^{-1}\left(1-z^{-1}\right) \boldsymbol{w}_{1}+ \\
-z^{-1}\left(1-z^{-1}\right)\left(1-2 z^{-1}\right) \boldsymbol{w}_{2} & +z^{-1}\left(1-z^{-1}\right)\left(1-2 z^{-1}\right) w_{2}
\end{array}\right]
$$

cannot be made diagonal for any choice of $\boldsymbol{w}_{1}, \boldsymbol{w}_{2}$.
Note that the decoupled control is inferior to the coupled one due to the requirement of diagonality.

Finite time optimal decoupled control

Theorem 6.7. Let \mathfrak{F} be an arbitrary field with valuation \mathscr{V} and let the closed-loop system can be stably decoupled. Then problem (6.49) has a solution if and only if the linear Diophantine equations

$$
\begin{equation*}
b_{i} x_{i}+a_{i 0}^{-} p_{i} y_{i}=q_{i}^{+}, \quad i=1,2, \ldots, l \tag{6.57}
\end{equation*}
$$

have solutions x_{i}^{0}, y_{i}^{0} such that

$$
\partial y_{i}^{0}=\min , \quad i=1,2, \ldots, l
$$

subject to

$$
\begin{equation*}
\frac{s_{i}}{r_{i}}=\frac{a_{i 0}^{+} x_{i}^{0}}{p_{i 0} y_{i}^{0}}, \quad i=1.2, \ldots, l \tag{6.58}
\end{equation*}
$$

and to finiteness of the resulting control sequence

$$
\boldsymbol{U}=A_{2} \boldsymbol{M}_{1} \frac{Q}{p}
$$

The optimal controller is not unique, in general, and all optimal controllers are given as minimal realizations of (6.46) where the matrices involved satisfy (6.42) through (6.45) and (6.47), (6.58).

Moreover,

$$
\boldsymbol{e}_{i}=a_{i 0}^{-} q_{i}^{-} y_{i}^{0}, \quad i=1,2, \ldots, l,
$$

and

$$
k_{i \min }=1+\partial a_{i 0}^{-}+\partial q_{i}^{-}+\partial y_{i}^{0} .
$$

Proof. If the system can be stably decoupled then all decoupling controllers are given by (6.46). It remains to further specify the $\boldsymbol{M}_{1}, \boldsymbol{N}_{1}$ and $\boldsymbol{M}_{2}, \boldsymbol{N}_{2}$ by choosing the D_{1} and D_{2} so as to make the i-th error component $e_{i}, i=1,2, \ldots, l$, vanish in a minimum time by application of a finite control sequence U.

Viewing

$$
S_{i}=\frac{b_{i}}{a_{i}}, \quad i=1,2, \ldots, l,
$$

as a virtual single-input single-output subsystem and applying Theorem 2 in [32], the reasoning analogous to Theorem 6.6 proves our claim.

Example 6.8. Consider the finite automaton that is a minimal realization of

$$
\begin{gathered}
S=\frac{\left[\begin{array}{lll}
z^{-1} & z^{-1} & z^{-1} \\
0 & 0 & z^{-1}+z^{-1}
\end{array}\right]}{1+z^{-1}}=\left[\begin{array}{lll}
z^{-1} & 0 & 0 \\
0 & z^{-1} & 0
\end{array}\right]\left[\begin{array}{lll}
1+z^{-1} & 1 & 1 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]^{-1}= \\
=\left[\begin{array}{ll}
1+z^{-1} & 0 \\
0 & 1
\end{array}\right]^{-1}\left[\begin{array}{lll}
z^{-1} & z^{-1} & z^{-1} \\
0 & 0 & z^{-1}
\end{array}\right]
\end{gathered}
$$

over the field $\mathbf{3}_{2}$ valuated by (2.24) and solve problem (6.49) for the reference input sequence

$$
\boldsymbol{w}=\frac{\left[\begin{array}{l}
1 \\
z^{-1}+z^{-2}
\end{array}\right]}{1+z^{-1}}
$$

Equations (6.42) become

$$
\begin{gathered}
{\left[\begin{array}{lll}
z^{-1} & 0 & 0 \\
0 & z^{-1} & 0
\end{array}\right] \boldsymbol{M}_{1}+N_{1}\left[\begin{array}{ll}
1+z^{-1} & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],} \\
{\left[\begin{array}{lll}
1+z^{-1} & 1 & 1 \\
0 & 0 & 1 \\
0 & 1 & \boldsymbol{N}_{2}+M_{2}\left[\begin{array}{lll}
z^{-1} & z^{-1} & z^{-1} \\
0 & 0 & z^{-1}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{array}, . \begin{array}{lll}
&
\end{array}\right)}
\end{gathered}
$$

and have the solutions

$$
\begin{aligned}
& \boldsymbol{M}_{1}=\left[\begin{array}{rrr}
1+\left(1+z^{-1}\right) \boldsymbol{t}_{11} & \boldsymbol{t}_{12} \\
\left(1+z^{-1}\right) \boldsymbol{t}_{21} & \boldsymbol{t}_{22} \\
\boldsymbol{t}_{31} & \boldsymbol{t}_{32}
\end{array}\right], \quad \boldsymbol{N}_{1}=\left[\begin{array}{rr}
1+z^{-1} \boldsymbol{t}_{11} & z^{-1} \boldsymbol{t}_{12} \\
z^{-1} \boldsymbol{t}_{21} & 1+z^{-1} \boldsymbol{t}_{22}
\end{array}\right], \\
& \boldsymbol{N}_{2}=\left[\begin{array}{rrr}
1+z^{-1} \boldsymbol{v}_{11} & 1+z^{-1} \boldsymbol{v}_{11} & 1+z^{-1}\left(\boldsymbol{v}_{11}+\boldsymbol{v}_{12}\right) \\
z^{-1} \boldsymbol{v}_{21} & z^{-1} \boldsymbol{v}_{21} & 1+z^{-1}\left(v_{21}+v_{22}\right) \\
z^{-1} \boldsymbol{v}_{31} & 1+z^{-1} \boldsymbol{v}_{31} & z^{-1}\left(\boldsymbol{v}_{31}+\boldsymbol{v}_{32}\right)
\end{array}\right], \\
& \boldsymbol{M}_{2}=\left[\begin{array}{lll}
1+\left(1+z^{-1}\right) \boldsymbol{v}_{11}+\boldsymbol{v}_{21}+\boldsymbol{v}_{31} & \left(1+z^{-1}\right) \boldsymbol{v}_{12}+\boldsymbol{v}_{22}+\boldsymbol{v}_{32} \\
& \boldsymbol{v}_{31} & \boldsymbol{v}_{32} \\
\boldsymbol{v}_{21} & \boldsymbol{v}_{22}
\end{array}\right]
\end{aligned}
$$

for arbitrary $\boldsymbol{t}_{i j}, \boldsymbol{v}_{i j} \in \mathcal{Z}_{2}^{+}\left\{z^{-1}\right\}$. The mutual relations (6.43) yield

$$
\begin{array}{ll}
t_{11}=v_{11}, & t_{12}=v_{12} \\
t_{21}=v_{21}, & t_{22}=v_{22} \\
t_{31}=v_{31}\left(1+z^{-1}\right), & t_{32}=v_{32}
\end{array}
$$

Now compute

$$
\begin{gathered}
B_{11}=\left[\begin{array}{ll}
z^{-1} & 0 \\
0 & z^{-1}
\end{array}\right], \quad \operatorname{adj} B_{11}=\left[\begin{array}{ll}
z^{-1} & 0 \\
0 & z^{-1}
\end{array}\right] \\
\operatorname{det} B_{11}=z^{-1} \\
b_{11}=z^{-1}, \quad b_{12}=z^{-1} \\
b_{01}=z^{-1}, \quad b_{02}=z^{-1}
\end{gathered}
$$

and

$$
\begin{gathered}
A_{1}=\left[\begin{array}{ll}
1+z^{-1} & 0 \\
0 & 1
\end{array}\right], \quad \text { adj } A_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1+z^{-1}
\end{array}\right] \\
\operatorname{det} A_{1}=1+z^{-1} \\
a_{11}=1, \quad a_{12}=1+z^{-1} \\
a_{01}=1+z^{-1}, \quad a_{02}=1
\end{gathered}
$$

Then equation (6.44) can be written as

$$
\left[\begin{array}{ll}
z^{-1} & 0 \\
0 & z^{-1}
\end{array}\right] D_{1}+D_{2}\left[\begin{array}{ll}
1+z^{-1} & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

and its diagonal solution is

$$
\boldsymbol{D}_{1}=\left[\begin{array}{ll}
1+\left(1+z^{-1}\right) \boldsymbol{t}_{1} & 0 \\
0 & \boldsymbol{t}_{2}
\end{array}\right], \quad \boldsymbol{D}_{2}=\left[\begin{array}{ll}
1+z^{-1} \boldsymbol{t}_{1} & 0 \\
0 & 1+z^{-\mathbf{1}} \boldsymbol{t}_{2}
\end{array}\right]
$$

for any $t_{1}, t_{2} \in \mathcal{3}_{2}^{+}\left\{z^{-1}\right\}$.
Since

$$
\boldsymbol{M}_{11}=\left[\begin{array}{rr}
1+\left(1+z^{-1}\right) \boldsymbol{t}_{11} & \boldsymbol{t}_{12} \\
\left(1+z^{-1}\right) \boldsymbol{t}_{21} & \boldsymbol{t}_{22}
\end{array}\right]
$$

equations (6.45) yield

$$
\begin{aligned}
& \boldsymbol{t}_{11}=\boldsymbol{t}_{1}, \quad \boldsymbol{t}_{12}=0 \\
& \boldsymbol{t}_{21}=0, \quad \boldsymbol{t}_{22}=\boldsymbol{t}_{2}
\end{aligned}
$$

and all decoupling controliers are given by (6.46), where

$$
\begin{aligned}
& \boldsymbol{M}_{1}=\left[\begin{array}{lll}
1+\left(1+z^{-1}\right) \boldsymbol{t}_{1} & 0 \\
0 & & \boldsymbol{t}_{2} \\
& \left(1+z^{-1}\right) \boldsymbol{v}_{31} & v_{32}
\end{array}\right], \quad \boldsymbol{N}_{1}=\left[\begin{array}{ll}
1+z^{-1} \boldsymbol{t}_{1} & 0 \\
0 & 1+z^{-1} \boldsymbol{t}_{2}
\end{array}\right] \\
& \boldsymbol{N}_{2}=\left[\begin{array}{lll}
1+z^{-1} \boldsymbol{t}_{1} & 1+z^{-1} \boldsymbol{t}_{1} & 1+z^{-1} \boldsymbol{t}_{1} \\
0 & & 0 \\
z^{-1} \boldsymbol{v}_{31} & 1+z^{-1} \boldsymbol{v}_{31} & 1+z^{-1} \boldsymbol{v}_{31}+z^{-1} \boldsymbol{t}_{2} \\
& \boldsymbol{v}_{32}
\end{array}\right], \\
& \boldsymbol{M}_{2}=\left[\begin{array}{ccc}
1+\left(1+z^{-1}\right) \boldsymbol{t}_{1}+\boldsymbol{v}_{31} & \boldsymbol{t}_{2}+\boldsymbol{v}_{32} \\
\boldsymbol{v}_{31} & \boldsymbol{v}_{32} \\
0 & \boldsymbol{t}_{2}
\end{array}\right]
\end{aligned}
$$

To solve the control problem, we find the virtual subsystems

$$
S_{1}=\frac{z^{-1}}{1+z^{-1}}, \quad S_{2}=z^{-1}
$$

and

$$
W_{1}=\frac{1}{1+z^{-1}}, \quad W_{2}=z^{-1}
$$

Then equations (6.57) read

$$
\begin{array}{ll}
z^{-1} x_{1}+\left(1+z^{-1}\right) y_{1} & =1 \\
z^{-1} x_{2}+y_{2} & =1
\end{array}
$$

and the general solutions are

$$
\begin{array}{ll}
x_{1}=1+\left(1+z^{-1}\right) u_{1}, & y_{1}=1+z^{-1} u_{1} \\
x_{2}=u_{2}, & y_{2}=1+z^{-1} u_{2}
\end{array}
$$

for any $u_{i} \in \mathcal{3}_{2}\left[z^{-1}\right]$. Equations (6.58) yield

$$
t_{i}=u_{i}, \quad i=1,2
$$

The solution x_{i}^{0}, y_{i}^{0} with $\partial y_{i}^{0}=\min$ is obtained when setting $u_{i}=0, i=1,2$. Then

$$
\begin{array}{ll}
x_{1}^{0}=1, & y_{1}^{0}=1 \\
x_{2}^{0}=0, & y_{2}^{0}=1 \\
\boldsymbol{t}_{1}=0, & t_{2}=0, \tag{6.59}
\end{array}
$$

and the optimal controllers are given as minimal realizations of

$$
R=M_{2} N_{1}^{-1}=N_{2}^{-1} M_{1}=\left[\begin{array}{cc}
1+v_{31} & v_{32} \\
v_{31} & v_{32} \\
0 & 0
\end{array}\right]
$$

on using (6.59). The resulting controls are

$$
\boldsymbol{U}=\left[\begin{array}{c}
1+v_{31}+z^{-1} v_{33} \\
v_{31}+z^{-1} v_{32} \\
0
\end{array}\right]
$$

and the optimal error becomes

$$
\boldsymbol{E}=\left[\begin{array}{l}
1 \\
z^{-1}
\end{array}\right], \quad k_{1 \min }=1, \quad k_{2 \min }=2
$$

Note also that

$$
K_{1}=\left[\begin{array}{cc}
z^{-1} & 0 \\
0 & 0
\end{array}\right], \quad I_{1}-K_{1}=\left[\begin{array}{ll}
1+z^{-1} & 0 \\
0 & 1
\end{array}\right] .
$$

Least squares decoupled control
Theorem 6.8. Let \mathfrak{F} be a subfield of \mathbb{C} valuated by (2.25) and let the closed-loop system can be stably decoupled. Then problem (6.50) has a solution if and only if the linear Diophantine equations

$$
\begin{equation*}
b_{i}^{-} x_{i}+a_{i 0}^{-} p_{i} y_{i}=a_{i 0}^{-\sim} q_{i}^{*} b_{i}^{-\sim}, \quad i=1,2, \ldots, l . \tag{6.60}
\end{equation*}
$$

have solutions x_{i}^{0}, y_{i}^{0} such that

$$
\partial y_{i}^{0}<\partial b_{i}^{-}, \quad i=1,2, \ldots, l
$$

subject to

$$
\begin{equation*}
\frac{s_{i}}{r_{i}}=\frac{a_{i 0}^{+} x_{i}^{0}}{p_{i 0} b_{i}^{+} y_{i}^{0}}, \quad i=1,2, \ldots, l, \tag{6.61}
\end{equation*}
$$

and to stability of the resulting control

$$
\boldsymbol{U}=A_{2} \boldsymbol{M}_{1} \frac{Q}{p}
$$

and the error components

$$
e_{i}=\frac{a_{i 0}^{-} q_{i}^{-}}{a_{i 0}^{-\sim} q_{i}^{-\sim}} \frac{y_{i}^{0}}{b_{i}^{-\sim}}, \quad i=1,2, \ldots, l .
$$

The optimal controller is not unique, in general, and all optimal controllers are given as minimal realizations of (6.46), where the matrices involved satisfy (6.42) through (6.45) and (6.47), (6.61). Moreover

$$
\left\|\boldsymbol{e}_{i}\right\|_{\text {min }}^{2}=\left\langle\left(\frac{y_{i}^{0}}{b_{i}^{-}}\right)^{-}\left(\frac{y_{i}^{0}}{b_{i}^{-}}\right)\right\rangle .
$$

Proof. If the system can be stably decoupled then all decoupling controllers are given by (6.46). It remains to further specify the $\boldsymbol{M}_{1}, \boldsymbol{N}_{1}$ and $\boldsymbol{M}_{2}, \boldsymbol{N}_{2}$ by choosing the D_{1} and D_{2} so as to minimize $\left\|e_{i}\right\|^{2}$ by application of a stable control sequence U.
Viewing

$$
S_{i}=\frac{b_{i}}{a_{i}}, \quad i=1,2, \ldots, l,
$$

as a single-input single-output virtual subsystem and applying Theorem 3 in [32], the reasoning analogous to Theorem 6.6 proves our claim.

It is obvious that the decoupled least squares control cannot give results better than the (coupled) least squares control. The diagonality of K_{1} is rather a severe restriction.

Example 6.9. Consider a minimal realization of

$$
\begin{aligned}
\boldsymbol{S} & =\frac{z^{-1}}{1-z^{-1}}\left[\begin{array}{ll}
1 & 0 \\
1 & 1-2 z^{-1}
\end{array}\right]= \\
& =\left[\begin{array}{ll}
z^{-1} & 0 \\
z^{-1} & z^{-1}\left(1-2^{-1}\right)
\end{array}\right]\left[\begin{array}{ll}
1-z^{-1} & 0 \\
0 & 1-z^{-1}
\end{array}\right]^{-1}= \\
& =\left[\begin{array}{ll}
1-z^{-1} & 0 \\
-1+z^{-1} & 1-z^{-1}
\end{array}\right]^{-1}\left[\begin{array}{ll}
z^{-1} & 0 \\
0 & z^{-1}\left(1-2 z^{-1}\right)
\end{array}\right]
\end{aligned}
$$

over \Re and solve problem (6.50) for the reference input sequence

$$
w=\frac{\left[\begin{array}{l}
1 \\
1
\end{array}\right]}{1-z^{-1}}
$$

We first solve equations (6.42) and (6.43). They are

$$
\begin{aligned}
& {\left[\begin{array}{ll}
z^{-1} & 0 \\
z^{-1} & z^{-1}\left(1-2 z^{-1}\right)
\end{array}\right] M_{1}+N_{1}\left[\begin{array}{rl}
1-z^{-1} & 0 \\
-1+z^{-1} & 1-z^{-1}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{lll}
1-z^{-1} & 0 \\
0 & 1-z^{-1}
\end{array}\right]}
\end{aligned}
$$

and

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1-z^{-1} & 0 \\
0 & 1-z^{-1}
\end{array}\right] M_{1}=M_{2}\left[\begin{array}{ll}
1-z^{-1} & 0 \\
-1+z^{-1} & 1-z^{-1}
\end{array}\right]} \\
& {\left[\begin{array}{lll}
z^{-1} & 0 & \\
z^{-1} & z^{-1}\left(1-2 z^{-1}\right)
\end{array}\right] N_{2}=N_{1}\left[\begin{array}{ll}
z^{-1} & 0 \\
0 & z^{-1}\left(1-2 z^{-1}\right)
\end{array}\right]}
\end{aligned}
$$

and they have the solutions
(6.62)

$$
\begin{aligned}
& \boldsymbol{M}_{1}=\left[\begin{array}{lr}
1+\left(1-z^{-1}\right)\left(\boldsymbol{t}_{11}-\boldsymbol{t}_{12}\right) & \left(1-z^{-1}\right) \boldsymbol{t}_{12} \\
1+\left(1-z^{-1}\right)\left(\boldsymbol{t}_{21}-\boldsymbol{t}_{22}\right) & -1+\left(1-z^{-1}\right) \boldsymbol{t}_{11}
\end{array}\right] \\
& \boldsymbol{N}_{1}=\left[\begin{array}{ll}
1-z^{-1} \boldsymbol{t}_{11} & -z^{-1} \boldsymbol{t}_{12} \\
1-z^{-1} \boldsymbol{t}_{11}-z^{-1}\left(1-2 z^{-1}\right) \boldsymbol{t}_{21} & 1+2 z^{-1}-z^{-1} \boldsymbol{t}_{12}-z^{-1}\left(1-2 z^{-1}\right) \boldsymbol{t}_{22}
\end{array}\right] \\
& \boldsymbol{N}_{2}=\left[\begin{array}{ll}
1-z^{-1} \boldsymbol{t}_{11} & -z^{-1}\left(1-2 z^{-1}\right) \boldsymbol{t}_{12} \\
-z^{-1} \boldsymbol{t}_{21} & 1+2 z^{-1}-z^{-1}\left(1-2 z^{-1}\right) \boldsymbol{t}_{22}
\end{array}\right] \\
& \boldsymbol{M}_{2}=\left[\begin{array}{rr}
1+\left(1-z^{-1}\right) \boldsymbol{t}_{11} & \left(1-z^{-1}\right) \boldsymbol{t}_{12} \\
\left(1-z^{-1}\right) \boldsymbol{t}_{21} & -1+\left(1-z^{-1}\right) \boldsymbol{t}_{22}
\end{array}\right] \\
& \text { for arbitrary } \boldsymbol{t}_{i j} \in \mathfrak{R}^{+}\left\{z^{-1}\right\} .
\end{aligned}
$$

Since

$$
\begin{array}{rlr}
\operatorname{adj} B_{11}=\left[\begin{array}{ll}
z^{-1}\left(1-2 z^{-1}\right) & 0 \\
-z^{-1} & z^{-1}
\end{array}\right], & \operatorname{adj} A_{1}=\left[\begin{array}{ll}
1-z^{-1} 0 \\
1-z^{-1} 1-z^{-1}
\end{array}\right], \\
b_{11} & =b_{12}=z^{-1}, & a_{11}=a_{12}=1-z^{-1}, \\
b_{01} & =b_{02}=z^{-1}\left(1-2 z^{-1}\right), & a_{01}=a_{02}=1-z^{-1},
\end{array}
$$

equation (6.44) becomes

$$
\left[\begin{array}{ll}
z^{-1}\left(1-2 z^{-1}\right) & 0 \\
0 & z^{-1}\left(1-2 z^{-1}\right)
\end{array}\right] D_{1}+D_{2}\left[\begin{array}{ll}
1-z^{-1} & 0 \\
0 & 1-z^{-1}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

and the solution is

$$
\begin{gathered}
\boldsymbol{D}_{1}=\left[\begin{array}{cl}
-1+\left(1-z^{-1}\right) t_{1} & 0 \\
0 & -1+\left(1-z^{-1}\right) t_{2}
\end{array}\right] \\
\boldsymbol{D}_{2}=\left[\begin{array}{ll}
1+2 z^{-1}-z^{-1}\left(1-2 z^{-1}\right) t_{1} & 0 \\
0 & 1+2 z^{-1}-z^{-1}\left(1-2 z^{-1}\right) t_{2}
\end{array}\right]
\end{gathered}
$$

for any $t_{1}, t_{2} \in \mathfrak{\Re}^{+}\left\{z^{-1}\right\}$. Equations (6.45) then yield

$$
\begin{array}{ll}
\boldsymbol{t}_{11}=-2+\left(1-2 z^{-1}\right) \boldsymbol{t}_{1}, & t_{12}=0 \tag{6.63}\\
\boldsymbol{t}_{21}=\boldsymbol{t}_{2}-\boldsymbol{t}_{1}, & t_{22}=\boldsymbol{t}_{2}
\end{array}
$$

Thus all decoupling controllers are given as minimal realizations of (6.46), where the matrices involved satisfy (6.62) and (6.63).

To solve the control problem, we shall solve the equations (6.60)

$$
z^{-1}\left(1-2 z^{-1}\right) x_{i}+\left(1-z^{-1}\right) y_{i}=z^{-1}-2, \quad i=1,2 .
$$

We obtain

$$
\begin{aligned}
& x_{i}=1+\left(1-z^{-1}\right) u_{i} \\
& y_{i}=-2-2 z^{-1}-z^{-1}\left(1-2 z^{-1}\right) u_{i}, \quad i=1,2,
\end{aligned}
$$

and the solution x_{i}^{0}, y_{i}^{0} satisfying $\partial y_{i}^{0}<2$ becomes

$$
x_{i}^{0}=1, \quad y_{i}^{0}=-2-2 z^{-1}
$$

on setting $u_{i}=0, i=1,2$. Then relations (6.61) gives

$$
\frac{-1+\left(1-z^{-1}\right) t_{i}}{1+2 z^{-1}-z^{-1}\left(1-2 z^{-1}\right) t_{i}}=\frac{1}{-2-2 z^{-1}}, \quad i=1,2
$$

that is,

$$
t_{i}=\frac{1}{2-z^{-1}}, \quad i=1,2
$$

Therefore, the optimal controller is unique and it is given as a minimal realization of (6.46), where

$$
\begin{aligned}
& M_{1}=\left[\begin{array}{ll}
1-3 \frac{1-z^{-1}}{2-z^{-1}} & 0 \\
1-\frac{1-z^{-1}}{2-z^{-1}} & -1+\frac{1-z^{-1}}{2-z^{-1}}
\end{array}\right] \\
& N_{1}=\left[\begin{array}{ll}
1+3 \frac{z^{-1}}{2-z^{-1}} & 0 \\
1+3 \frac{z^{-1}}{2-z^{-1}} & 1+2 z^{-1}-\frac{z^{-1}\left(1-2 z^{-1}\right)}{2-z^{-1}}
\end{array}\right] \\
& N_{2}=\left[\begin{array}{ll}
1+3 \frac{z^{-1}}{2-z^{-1}} & 0 \\
0 & 1+2 z^{-1}-\frac{z^{-1}\left(1-2 z^{-1}\right)}{2-z^{-1}}
\end{array}\right] \\
& \boldsymbol{M}_{2}=\left[\begin{array}{ll}
1-3 \frac{1-z^{-1}}{2-z^{-1}} & 0 \\
0 & -1+\frac{1-z^{-1}}{2-z^{-1}}
\end{array}\right]
\end{aligned}
$$

The resulting control is

$$
U=M_{2} A_{1} \frac{Q}{p}=\frac{\left[\begin{array}{l}
1-2 z^{-1} \\
0
\end{array}\right]}{z^{-1}-2}
$$

and the associated error

$$
E=\frac{\left[\begin{array}{c}
-2-2 z^{-1} \\
-2-2 z^{-1}
\end{array}\right]}{z^{-1}-2}, \quad\left\|e_{1}\right\|_{\min }^{2}=\left\|e_{2}\right\|_{\min }^{2}=4
$$

The reader can verify that the (coupled) least squares control is generated by a minimal realization of (6.46), where the matrices involved are given by (6.62) with $t_{11}=0, t_{21}=0$. The resulting control and error are

$$
U=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad E=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad\left\|e_{1}\right\|_{\min }^{2}=\left\|e_{2}\right\|_{\min }^{2}=1
$$

To conclude, it can be said that the decoupled optimal control is nonsuperior to the (coupled) optimal control. Otherwise speaking, the optimal control system cannot always be made diagonal, i.e. the coupling in the closed-loop system may be essential for attaining the optimal performance.

7. CONCLUSIONS

This work has provided a new algebraic theory of discrete linear control for multivariable systems. Unlike the common approaches, the algebraic method is based exclusively on polynomial algebra. This makes it possible to reduce the synthesis procedure for all optimal control problems to solving Diophantine equations in polynomials, thus unifying the procedure and making it as simple as possible.

The present publication together with a series of papers on single-variable systems $[30 ; 31 ; 32 ; 33 ; 34 ; 35]$ forms a compact theory of discrete linear control which is fairly general and computationally attractive.
We have discussed the open-loop control strategy, where all signals are known in advance and, hence, the only problem is to ensure the optimality, as well as the closed-loop control strategy, where optimality subject to stability of the closed-loop system is required. Therefore, a whole chapter has been devoted to problems of stability in closed-loop systems and the results contained there are of central importance.
Although the algebraic method has been developed for deterministic control problems, it can equally well be applied to stochastic control problems. This will be done in future publications.

