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KYBERNETIKA — VOLUME 29 (1993), NUMBER 3, PAGES 284-290 

NONSMOOTH OPTIMAL DESIGN PROBLEMS 
FOR THE KIRCHHOFF PLATE 
WITH UNILATERAL CONDITIONS 

JAN SOKOLOWSKI1 

The form of directional derivative of the metric projection in the Sobolev space //o(fi) 
onto the convex set K = {/ € Ho{^) I / > '</'} is derived in [14]. 

In the present paper the result is used to obtain the first order optimality conditions for 
a class of nonsmooth optimal design problems for the Kirchhoff plate with an obstacle. 

1. INTRODUCTION 

The paper is concerned with the optimal design problems for the fourth order vari
ational inequalities. Namely, the first order necessary optimality conditions are 
derived for the class of optimization problems under consideration. 

The differential stability of metric projection in the Sobolev space HQ{Q) onto the 
cone of nonnegative elements is considered by Mignot [9]. Mignot derived the form 
of the so-called conical differential of the metric projection. However, the technique 
of proof used by Mignot is based on potential theory in Dirichlet spaces, therefore, 
his argument cannot be directly applied in the Sobolev space H*(Q). 

The differential stability of metric projection in the Sobolev space HQ{Q) onto 
the cone of nonnegative elements is investigated by Rao and Sokolowski [14]. In 
particular, in [14] the sufficient conditions are obtained under which the set K is 
polyhedric at a given point / € A'. The question of polyhedricity is adressed in 
[14] since it implies directional differentiability of the metric projection onto K with 
an explicit form of the differential [5,9], i.e., the so-called conical differential of 
the metric projection onto the cone of nonnegative elements. It follows, we refer 
the reader to [19] for the details, that the conical differential is given as a metric 
projection onto the intersection of a tangent cone with a supporting hyperplane.-

The paper is organized as follows. In Section 2 the necessary optimality conditions 
for an optimal design problem for the Kirchhoff plate with an obstacle are derived. 
In Section 3 the optimal design of an obstacle is considered. 

'Visiting the University of Nancy 1, URA CNRS 750, Project NUMATH INRIA Lorraine. 
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The variational inequality for the KirchhofT model of an elastic plate with an 
obstacle is used in the present paper, however, it seems that similar results can be 
derived as well as for the von Karman plate model. 

We refer the reader to [5,9] for the related results on the. differential stability of 
metric projections in Ililbert space. Some applications of the differential stability 
of metric projection onto convex sets in Sobolev spaces are presented in [l]-[3], 
[6], [12]-[19]. In particular the sensitivity analysis of solutions of constrained opti
mization problems is studied in [16,17]. The applications to optimal design problems 
are given in [1] — [3], [6], [7], [19]. We refer the reader to [4] for general results on vari
ational inequalities. 

2. OPTIMAL DESIGN PROBLEM 

We derive the necessary optimality conditions for an optimal design problem for 
the KirchhofT plate with an obstacle. We refer the reader to [1],[8] where such a 
problem is defined, and to [10], [19] for the related results on nonsmooth optimization 
problems for the linear elliptic systems. Let 

a(h; •, •) : //2(fi) x / / 2 (0 ) -> IR 

be the following bilinear form associated to the Kirchhoff plate [1], [10], fi C IR is 
a smooth domain with the boundary F, 

a(h;y,<p) = jf h\x)bijkl~^j(x) J^L.(x)dx, Vy,^ € H2
0(n) (2.1) 

here we use the summation convention over the repeated indices i, j , k, 1 = 1,2. 
The bilinear form (2.1) is defined in standard way for the following fourth order 

elliptic operator: 

l A \f \ ^ f,3d2w(*U*2)\ , d2 (130
2W(XUX2)\ , 

62 (l3d
2w(xX,Xn)\ 82 [~d2w(xl,X2)\ 

dx\dx2 \ dx\dx2 

where: h : fl —* IR is thickness of the plate, h E LX'(Q), v is Poisson ratio which 
characterizes plate material, v £ (0, 0.5). 

We assume that 

h G Uad = {h e L°°(Q) | 0 < hmin < h(x) < hmax, for a.e. x e fi} (2.2) 

and we recall that the constants bijki, i, j , k, I = 1,2 satisfy the following conditions 

hjki = fyiki = hiij, i, j , k, I = 1,2 

bijkitijZki^ctijtij, c > 0 , 
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for all symmetric matrices [&j]2x2-
We consider a boundary value problem with the homogenous boundary con

ditions. However, there is no additional difficulty to derive the same results for 
the problem with non-homogenous boudary conditions. It follows by our asump-
tions (2.2)-(2.4) that the bilinear form (2.1) is continuous, symmetric, and H2(Q)-
elliptic, i.e., 

a(h;y,y)>a\\y\\2
HHn), a>0, Vt/Gtf0

2(fi). 

Now let us denote 
K = {<pe H$(Q) | <p(x) > il>(x) in 0 } (2.5) 

where ip(-) G H2(Q.) C C(0.) is a given element such that the set (2.5) is non-empty, 
in particular ip(x) < 0 on T = 90 . For a given element h G Uad we denote by 
w = w(h; x), i £ f l , the unique solution of the following variational inequality 

w G K : a(h;w,<p— w) > / f(<p - w)dx, V <p € K 
Jo, 

where / e H~2(Q,), H~2(Q) being the dual of #0
2(fi). 

The solution to the above variational inequality is nothing else but the metric 
projection of an element in the space / / 2 (0 ) onto the convex set K with respect 
to the scalar product defined by the bilinear form (2.1), i.e. w = Pj<(g) for some 
g G H2(£l) which means that 

weK: a(h;w-g,<p-w)>0 y<p£K, 

where g G #0
2(O) : a(h; g,<p)= f f<pdx V<p G H%(fl) 

Jn 

It is shown in [14], that under some assumptions on the support of a Radon measure 
defined for solutions to the variational inequality under consideration, the conical 
differential at a given h G L°°(0) of the metric projection onto the set (2.5) exists 
for any direction. It implies that the mapping 

L°°(n)3h->w(h;-)eH%(n) 

at the given point h G Uad is directionally differentiable, furthermore, the explicit 
form of differential is obtained. This is given in 

Lemma 1. Let /. be the Radon measure defined by 

<pdft = a(h;w,<p)- f<pdx V <p G H2(Q) 

and assume that the support F = spt /. of the measure fi satisfies the following 
condition: 

For any <p G H$(Q), <p = 0 on F = spt /«, it follows that <p G H$(Q, \ F). 

Then for e > 0, e small enough 

Vu G L°°(Q) : w(h + ev) = w(h) + eq(v) + o(e), 



th Optimal Design Problems for the Kirchhoff Plate 287 

where \\o(e)\\H?(ci)/£ ~* 0 with e { 0 and q = q(v) £ H2(Q),v £ L°°(Q), is given as 
the unique solution to the following variational inequality 

qeS: a(h;q,cp-q) + a'v(h;w(h),<p-q)>0 V<p&S, 

where 

<(h\y,<p) = J 3h2(x)v(x)bijk,-^-(x)^--(x)dx, Vy,<pe H2(Q) 

S = {<p e HQ(Q) I <p = 0 on spt/t, <p > 0 on E \ s p t / . } 

S = {x e Q I w(h; x) — i>(x)} is compact. 

R e m a r k 1. The regularity condition required in Lemma 1 on the support F = 
spt/i of the measure /. implies the conical differentiability of the metric projection 
in HQ(Q) onto the convex set A', i.e., if the condition is satisfied then the set K 
is polyhedric [14] at iv(h) = Pi<;(g(h)), where g(h) 6 H2(Q) is given as the unique 
solution to the equation 

a(h;g(h),<p)= f ftp Ax \ftpeH2(Q). 
Jn 

The following notation is introduced 

Uad = UadC\Hs(Q) 

for some s > 0. Let us consider the following optimal design problem for the Kirch

hoff plate, P > 0 is a given constant. 

P rob l em (P) : Find an element h 6 Uad which minimizes the functional 

J(h) = max[w(h;x)] + ^\\h\\H,m 

over the set Uad. 

It is clear that for any fi > 0 there exists an optimal solution h* £ Uad to the above 
problem. In the same way as in Lemma 1 we assume that the following condition is 
satisfied: For any tp £ H2(Q), <p = 0 on F* = spt/(, it follows that tp e H^(Q \ F*), 
where F* denotes the support of the Radon measure /« defined by 

f tpdfi = a(h*; w*, tp)- f ftpdx \/<pe Hl (Q) 

and w* is a solution to (2.5) for h*. 
We cannot assert in general the existence of an optimal solution h £ Uad for 

P = 0. In such a case the notion of a generalized solution of problem (P) can 
be introduced [10]. We derive the necessary optimality conditions for problem (P) 
assuming that (1 > 0 and therefore there exists an optimal solution. The necessary 
optimality conditions of the same type can be obtained for a generalized solution to 
the problem (P) for L3 = 0. 
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T h e o r e m 1. An optimal solution ft* € Uad of the problem (P) satisfies the follow
ing first order optimality conditions 

*en*(A*) 

where 

max sign {w(h*;x)}q(v - h*;x) + ß(h*, v - ft*)я-(n) > 0 VvЄUad, 
-:ÏI*(Һ*) 

fì*(ft) = \x* Є fì|max|u;(ft;x)| = w(h;x*)\ Vft Є Uad. 
y жgП J 

The proof of Theorem 1, follows by an application of Lemma 1 and a standard 
technique. 

Remark 2. • An optimal design problem for the Kirchhoff plate with a finite number 
of pointwise obstacles is considered in [3], The results derived in [3] are not com
parable with our result presented here, since we assume that an obstacle is smooth 
i.e., i/>(.) G H2(Cl). We refer also to [7] for the related results on optimal design of 
elastic plates. 

3. SHAPE OPTIMIZATION OF OBSTACLES 

In this section it is assumed that the thickness of the plate is fixed. Let there be given 
a closed and convex set ^!ad C H2(fl) such that there exist elements a £ # * ( r ) , 
a(x) < a0 < 0 for all x £ T, b £ H^(T), 

' an\l 

The following notation is used 

K$ = {if £ ffo(n)lv > V> in 0,}, 

w = w,p, i> £ ^!ad, is a solution to the variational inequality 

w £lCy : a(h;w,<p-w)> / f(tp-w)Ax V ^ 6 ^ . (3.1) 
jn 

Let us consider the following nonsmooth shape optimization problem [8] 

Problem (P'): Find an element rp* £ $0 ( , which minimizes the functional 

J(tp) = max|u\/p(ft;a;)| 

over the set \Jira0.. 
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Theorem 2. There exists1 an optimal solution ip* £ *,._ to the above problem. 
Assume that the Radon measure v defined by 

I<pc\v-a(h;w^,<p)- I ftp Ax V<p€H$(Q) 

satisfies the following condition: 
For any <p £ i/_ (fi), <p = 0 on F - spt v, it follows that <p £ /__(£_ \ F). 
Then the optimal solution t]>* £ * a ( . satisfies the first order optimality conditions 

max sign {w^(h;x)}p^.^(h;x) > 0, VV-> £ *arf (3.2) 
_en*(.'*) 

where 
Q*(i>) = {X£ Q\J(i>) = uty(A;~)} V V; £ * a d 

and p* = /?,/,_,/,*, V 6 * a d, is given as a unique solution to the following variational 
inequality 

p* £ £,,-.<,. : a(h; p*, <p - p*) > 0 V y € ->-.>* 

The convex cone <$,/,_,/,* takes the following form 

S^,-$* = {<p £ HQ{Q)\<P = i/; — V-1* on spt i/ <p> il> — ij>* on E \ s p t i/}. 

Here 

E={x£n]w^(h;x) = iP*(x)} 

The above theorem can be proved in the following way. Let x £ # 2 ( 0 ) be an 
element such that 

dx . 
X\r = «, - j - = o . 1 on|r 

Then z = iity + \ — V; - I!o(n) is given as a unique solution to the following 
variational inequality 

X < x € !!,?(«) : «(/•; -, V - - ) > / /(»»-*) dx-a (h ; x + ^ , . - - - ) X < <P 6 IIo2(«)-
./n 

Under our assumptions the affine mapping 

/ /- (fi) =, v, _, 2 ( v ,) G / /2 ( i . ) 

is conically differentiable [14], which leads to the first order optimality conditions 
for the optimization problem under consideration. The optimality conditions for the 
composite cost fuctional with max type function are derived in the same way as e.g. 
in [10] for a linear plate model or in [19] in the case of multiple eigenvalues. 

(Received May 7, 1992.) 

1 The existence of an optimal solution for a class of such problems is proved by A. M. Khludnev. 
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