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KYBERNETIKA — VOLUME 29 (1993), NUMBER 3, PAGES 222-230

ON PSEUDOPARABOLIC OPTIMAL
CONTROL PROBLEMS

Icor Bock AND JAN LoviSEK

An optimal control problem for a pseudoparabolic equation is considered. Control pa-
rameters appear in coefficients of operators of a state equation. The existence theorem, the
conditions for the uniqueness and the sensitivity analysis are presented.

1. OPTIMIZATION IN COEFFICIENTS FOR PSEUDOPARABOLIC
EQUATIONS

We start with some functions spaces. Let T > 0, X be a Banach space with a
norm ||| x. We denote by C(0, T; X) the space of all coniinuous and by C*(0,T; X)
the space of all continuously differentiable functions f : [0,T] — X. L2(0,T; X)
denotes the space of all measurable functions f : (0,T) — X, such that f(-) €
L2(0,T; X). Further, we denote by W4 (0,7;X) the space of all f € Ly(0,7;X)
with a distributive derivative f/ € L3(0,7; X). If X is a Hilbert space with the
inner product (-, -)x, then W}(0,T;X) is the Hilbert space with the inner product
(10012 = J3 (O, 90)x +(F(0, g O)x] AL,

Let V be the Hilbert space with the inner product (+,-) and the norm |||}, v*
its dual space with the duality pairing (-,-) and with the norm || - ||, L(V,V*)
the Banach space of all linear bounded operators from V into V*. Let U be a
reflexive Banach space of control with a norm || - jv and Usa C U be a convex
closed and bounded set od admissible controls. We assume the families of operators
Ait,u): V= V* t€[0,T], u €U, i=0,]1; fulfilling the assumptions

Ao(,u) € C(0,T; L(V,V*)) 1
A1(-,u) € CHO,T; L(V,V*)) 2)
(Ai(t, W)y, 2) = (Ait,w)z,9), i=0,1 3
(A1t w)y, y) > allyl?, e >0 (C)]
([2A0(t, u) — AY(t,w)]y, ¥) 2 eallyll®, e2 >0 (5)
forallt € [0,T), ueU; y, 2€V

tp — u in U weakly = A;(-,un) = Ai(w) (6)

in C(0,T; L(V,V*), i=0,1
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Let f € C(0,T;V*), fo € V*. We shall deal with a following optimal control prob-
lem:

Ar(t, w) gt u) + Ao(t, w) y(t, u) = f(t) M
A1(0,u) y(0,u) = fo (8)
J@) = min J(u), ©)
with
J(u) = ||Dy(T, ) — zal[% +i(v), u€ Vg, (10)

where X is a Hilbert space, 24 € X, D € L(V,X) and j : U — R is a weakly lower
semicontinuous functional.

The state initial value problem (7), (8) can be due to the assumption (4) expressed
as the initial value problem for the first order ordinary differential equation in the
Hilbert space V

y’ + B(t’ u) = g(tl u)7 ¥(0) = go

with
B(t,u) = Al_l(t,u) Ao(t,u), g(t) = Al’l(t,u) (&), g0 =AT'(0,u) £(0).

Using the theory of the ordinary differential equations in Hilbert spaces (see [3])
we obtain the existence and uniqueness of a solution y € C*(0,T; V). The function
y := y(-,u) € CH0,T;V) is simultaneously a unique solution of the state initial
value problem (7), (8). Hence, the cost functional u — J(u) is correctly defined.

The main result of this part is the existence theorem for the control problem
(7)-(10).
Theorem 1. There exists at least one solution @ € Uzq of the Optimal control
problem (7)-(10).

Proof. Let y(:,u) € C'(0,T;V) be a solution to the state problem (7), (8).
Using the assumptions (2}, (3) we obtain

A0, (0,0, 2 W) + (2400t 0) = A4 (6 0ot ), (e, ) =

= 2(f(t), y(t,u)) (11)
We introduce the function ¢ € C'(0, T R) by
p(t) = (At v) y(t, u), y(t,u)), t€[0,T), u€Ua (12)

Further we set

€3 = sup HA:(t, WWleevve) (13)
(t,4)€[0,T)x V.4

Using the assumptions (4), (5) we arrive from (11) at the inequality

¢ () F eae3 p(t) < 2A|F()llecy ()1
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and
’; L et < 2¢71es! OIIH 14
¢t + g ezez p(t) < 2e1 ey eall FOII (14)
for all t € [0,7] and u € Uaa.
The estimate (14) and the initial condition (8) imply
(Ar(t, w) y(t, u), y(t,u)) = o(t) <
t
< e MollZe™ +2¢7 ey Mes / ()13 C=)ds, (15)
o
where )
a= §n2c§1 > 0.
The assumption (4) then implies the estimate
llott, w)ll < 7 ol + 2725 e 265l fllco vy (16)
forallt €[0,T), u € Upq
If we denote

cq = sup [Ho(t, ufllLv,v+),
(t,4)€[0,T]x U

then it follows directly from the equation (7) that

/&, w)l < o5 eallolle + (e + 272 265 2es/ea) Illco vy (17)
forallt €[0,T), u € Uyq

The estimates (16), (17) imply that the set of functions y(-,u) : [0,7] — V is
bounded both in C*(0,T; V) and in W} (0, T; V), which is a Hilbert space. Using the
standard compactness method in Uaq and in W3 (0,T; V) we obtain due to (6) and
the weak lower semicontinuity of the cost functional J the existence of an optimal
control & € Usq, what concludes the proof. s}

Remark 1. The existence of an optimal control can be verified also for other types
of cost functionals (see [1]) and even for the pseudoparabolic variational inequality.
(2D

2. SENSITIVITY ANALYSIS WITH RESPECT TO TIME

In order to perform the sensitivity analysis for the control problem (7)—(10) we add
some differentiability assumptions. We assume that the operators

Ai(t,)) s Usg — L(V,VY), i=0,1;
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are twice differentiable in the sense of Fréchet and their derivatives are estimated by

<g (18)
L(U,L(V,V*)
d2

mA.’(t, u)

<% (19)

l L(UxU,L(V,V*))
forallt € [0,T), u € Usq; i =0, 1.

In order to simplify our considerations we introduce the operators
A(u) € L(CY0,T; V), C(0,T,V*) x V)
by
A(w)y = [Ai(t, v) ¥ + Ao(t, u) y, A1(0,u) ¥(0)].
We define the norm in C(0,T;V*) x V by
IFC), alll = Wflleorive) + lgll
The operator
A Usa = L(CY(0,T; V), C(0,T5V) x V*)
is then twice differentiable in the sense of Fréchet and
[l 4" ()]l < 261 + fo (20)

M@ < 271 + 70 (21)
for every u € U,gq.

Theorem 2. The mapping y(-) : Usa — CH0,T; V) defined by (7), (8) is differ-
entiable in the sense of Fréchet and its derivative fulfils the equation

Ay, (1) v] = ~[A' (u)v] y(u) (22)
for all u € Ugq, v € U.

Proof. Let z € C'(0,T;V) be a unique solution of the equation

A(u) z = —[A (u)v] y(u) (23)

We shall verify that z = ¥, (u)v.
Let us denote

r(v) =ylu+v)—y(u)—2, velU (24)
The function r(v) € C1(0,T; V) is a solution of the equation
A(u) r(v) = ®(v), (25)
where
d(v) = —[A(u+v)— Au) - A'(u)v] y(u + v) (26)

—[A'(w) o] [y(u + v) - y(u)]
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Applying the a priori estimates (16), (17) with respect to r(v) as the solution of (25)

we obtain the estimate

llrllcao,rivy < Mill@(@)lleo,rv)xve,

where
Mi=cit (14 e eq) (1 + 2T1/2c;"2c;/2)

the estimates (19), (20) and the Lagrange theorem imply the estimate
fle()llcerve)xve < (261 + o) ol w(u + v)llero, vy +
+(271 +70) Pollull y(u + v) — (W)l 01wy
The difference y(u + v) — y(u) fulfils the equation
A(w)ly(u +v) - y(u)] = [A(u) — A(w +9)]y(u + v)
In the same way as above we obtain the estimate

[ly(u +v) — y(@llcro,rv) < Malpvllu,
where
My = ME(281 + Bo) (Ifllco,rvey + 1 follve)
Finally, we have from (26), (27), (28) the estimate
Ir(lcio vy < MsllollE,
where
My = MP(1+2n +70)(281 + Bo) (I fllccorvey + 1 follv+)

The estimate (29) implies the relation

. 1y _
"'}11]130 [“"(”)||cx(n,'r;v)||v|lv ] =

Jim y(e+4) =5 = elleromllllg'] = 0

and hence
z =y} (u)v

what completes the proof.

27

(28)

(29)

(30)

u]

Let us assume further that the functional j : U — R is differentiable with a

strongly monotone derivative, i.e.,

(#'() = §'(v), w = v}y 2 N|lu—vlffy, N >0
forallu,velU

(1)

We shall verify that for sufficiently great N there exists a unique optimal control .
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The functional J : Usq — R is due to Theorem 2 differentiable in the sense of
Fréchet and its derivative has the form

(I'(w), o)u = (DY(T, u) = 24, Dyl (u)o) (T))x + (7' (w), v)v
forall u € Ugy, v €U

An optimal control # fulfils then the variational inequality
(J'(@), v—a)y >0 forall v Uy,
or

(Dy(T,5) ~ 24, D[y (u)(v ~ w) (T))x + (@), v~ Tuv 2 0 (32)
for all v € Uaq.

Let %, @y be two optimal controls. Then the inequality (32) implies the inequality

(J'(m) = J'(@), W — W)y <0,

and hence
(J'(@) = §'(82), T — T2y <
< (DY(T, 1) = 20, Dly' (@) (@2 — @) (T))) x +
+ (DY(T, W) — 24, DIy (%) (T1 — @) (1))
Dly

(Dy(T, @) — 24, D[y(T,%2) — y(T, ) ~ “1)(uz—“1)(T)])
— (Dy(T, ) — 24, DY(T, 1) ~ YT, %) — o/ (W) (T — @) (T x —~
~ DT ™)~ u(T, Bl
The estimates (16), (29) and the strong monotonicity (31) then imply the in-

equality
(N = My) @ — |f <0,

where
Mq = 2Ma|Dllav,x) [e7 Mfoll + 2717267 7 26/ Flloqom. vy + lzallx |
The inequality (32) implies

Theorem 3. If N > M,, then there exists a unique solution % to the optimal
control problem (7) -{10).

We proceed with the sensitivity analysis with respect to T.
Let N > M4 and 0 < t; <ty <T. We denote by u; and us solution to the control
problems
Ji(w) = min Ji(v), (33)
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where
Ji(v) = [IDy(ts, v) — zallk +3(v), i=1,2

Optimal controls u, uy fulfil the variational inequalities

(Dy(ts, ws) — za, DI2"(wi)(v — wi) (t)]) x + (3" (wi), v —widu 2 0
for all v € Ugq, i = 1,2

We obtain in the same way as in (32) the estimate

(N = M) llw1 — wallfy <
< zallxIDlloevixy (ylte, wa) — yltn, wll + Nly(te, uz) ~ y(ts, u2)ll) +

+ % 1Dtz wlix ~ IDy(tr, w)lii + 1 Dy(tr, wa)ll = 1Dytz, u2)ll%)
and with respect to the estimate (15)
Ml = walify < Ms [ly(tz, w) = plts, w)ll + [ly(tz, uz) = y(t, w2}, (34)
where
M = (N = Ma)™ I Dlleqv. ) [(1 = IDleev,xllzdllx + %M§'M4]
Using the estimate

flytz, u) — y(t1, W)l < sup |lyi(t, Wll(t2 — t1), u € Vaa
te[0,7]

we obtain, considering (17), the estimate
[luz = walify < 2MsMi [ilfolle + 1 fllco,mvs)] (t2 — 1)

Hence we have verified the following results on the sensitivity analysis.

Theorem 4. Let N > M, and u, be the unique optimal control with respect to
the cost functional

Jr(v) = | Dy(r,v) — zall% + i(v), v € UVaq, 0<7<T.
Then the mapping 7 — u, is Holder continuous and it holds
lluts = welly < Mls~ 1'%, s, t€ (0,T];

where
M = [2My My (|l folls + I flloorvm] -
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Remark 2. Using the previous method it is possible to investigate the behaviour
of the mapping 7 — u, for 7 — oo.

Let the assumptions (1)—(6) hold for every T' > 0 with constants ci, ¢z not
depending on T and moreover

d
—Ai(t,u)
dt L(V,V*)

Jim [ Ao(t,w) — Ao(co, u)llpqvv+) = lim

Jim [15(8) — f(oo)ll. = 0.
Using the a priori estimate (16) we can verify the relation
. o _
Jim [l(t,v) — (o0, W] = 0,
where y(oo, u) fulfils the elliptic equation
Aog(00,u) y(00,u) = foo
If we define the corresponding control problem
Joo(teo) = min Joo(v), Jeo(v) = || Dy(00, v) = zallk + 3(v);
v ad
then it can be verified in the same way as above the relation analogous to (34)
llur = ueallfy < Ms flly(o0, ur) = y(r, ur )l + [l3(00, weo) = y(7, uca)}, 7> 0;
and with respect to (34) we have
Tl_ifgo flur — tos||lu =0

It means that the optimal control u, tends as a function of 7 to the solution of
the corresponding optimal control problem with the elliptic equation as the state
problem.

Remark 3. The whole theory can be applied to the optimal design of a viscoelastic
plate with respect to its variable thickness. The operators A.({,u): V — V* have
the form ([1], [2])

(A (l “ Y,z // ”k{(t) Yiij z,dzydas, r=0,1;

VW), v= g
Lt}

Remark 4. J. Sokolowski ([4], [5]) investigated the differentiability of the mapping
T — u, for the case of a parabolic state problem with control parameters in the
right-hand side.

(Received May 7, 1992.)
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