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K Y B E R N E T I K A — V O L U M E 16 (1980), N U M B E R 3 

Statistical Theory of Logical Derivability 

JAN SINDELAR 

A generalization of notions like "theory" in the sense of mathematical logic, "Markov (normal) 
algorithm" etc., is described; the new notion is called "formal system". The generalization of 
notions "validity", and also of notion "provability" of formulas is the notion "derivability". 
Derivability is studied using statistical methods, analogous to the methods used in the statistical 
theory of deducibility testing. 

1.1. STATISTICAL THEORY OF THEOREM PROVING AND VALIDITY 
TESTING 

Statistical theory of theorem proving studies the possibility of using statistical 
methods for provability testing (or for non-provability testing) of theorems of some 
theory ST. Usually it is proceeded as follows: we suppose that the provability of 
some formulas of &~ is known. Then we try to decide (or to estimate), with the help 
of statistical methods, whether some other formulas of 3~ are provable in 2T or not, 
i.e. we know some relation of "partial provability" and try to approximate (with 
the help of statistical methods) the relation "provability". 

Here two mathematical branches meet — mathematical logic and statistics. 
It is possible to divide the papers concerning the statistical theory of theorem proving 
into three groups with respect to use of apparatus of the disciplines mentioned 
above: the first uses mainly the specific properties of particular theories of mathe­
matical logic and only the basic statistical methods, in the other is on the contrary 
specially emphasized the statistical aspect of the problem, in the third both disciplines 
are used in a comparable manner. 

Objects investigated in mathematical logic and statistics as well as methods of 
investigation of these objects are of a substantially different and non-homogeneous 
nature. Hence, it is quite difficult to combine them and completely use the very 
developed modern apparatus and possibilities of both these disciplines in the statistical 
theory of theorem proving. 



1.2. FORMAL SYSTEM 

The effort of the present paper is a relatively general point of view to the questions 
mentioned above. 

As mentioned above, in the statistical theory of theorem proving some formalized 
theory S~ is assumed and the relation of provability of formulas of ZT is investigated. 

The point of view of this paper pretends to generality, hence there are studied more 
general objects than formulas and more general relations than provability. Hence, 
the basic studied structure will not be a theory in the sense of mathematical logic, 
but it will be a more general structure. We shall call this structure "formal system" 
and corresponding relation "derivability relation" (it is why the title of this paper is 
"Statistical Theory of Logical Derivability"). 

Remark. Sometimes it is easier (or reasonable) to study the validity of formulas 
of ST instead of their provability; in many papers is chosen this method (and then the 
concept of "statistical theory of theorem proving" or of "deducibility testing" etc. 
have not been quite right). The point of view of the present paper generalizes both 
these approaches to the problem (cf. Examples 1, 2). 

Definition Dl . The triple F = <B, {op}™=1, V> is called formal system, if 

(I) B =f= 0, B is a finite or countable set; 
(II) V* 0, Vis a class; 

(III) 0 4= op £ B x V for p = 1,2,3, ...; 
(TV) op<=op+1 for p = 1,2,3,.... 

Members of B are called formulas, members ofV assumptions, classes op are called 
partial derivability relations (p = 1, 2, . . . ) . 

Class 

(V) o0={)0p 
P = i 

is called the derivability relation. 

For b £ B, v E V we shall denote 

bopv 

instead of <fc, p> £ op. 

For b £ B, p = 0,1,2,... we shall denote 

V> = {v | bov, veV} . 

Formula b e B is called derivable (in formal system F) if 

b° = V; 

otherwise b is called non-derivable in F. 



The set of derivable formulas will be denoted by T, i.e. 

T = {b e B | b° = V} . 

Formula b e B is called derivable (non-derivable) from v e V, if bo0v holds (does 
not hold). 

Remark. We distinguish "set" and "class"; for understanding of the studied 
problems this distinguishing is not essential. 

The intuitive sense of notions mentioned in Dl can be like this: 
the set B represents formulas investigated for derivability (provability, validity etc.), 
class V represents objects through which derivability is investigated. Relations op 

are relations of partial derivability; they represent the level of our knowledge about 
the actual system in which the relation o0 of derivability is investigated. We suppose 
that (IV) holds, i.e. that with increasing p our knowledge about actual system arises. 

Example 1. Let B be the set of closed formulas of some theory ST, V be the class 
of models of S/~; bo0v holds iff formula b is satisfied (true) in model Vof ST. Relations 
op (p = 1, 2, ...) are chosen to satisfy (III), (IV), (V). Then formula b of F = 
= (B, {op}, V} is derivable in F iff b is true in each model of ST. 

Example 2. Members of set B and class Vare formulas of some theory ZT; for p — 
= 1,2,... bopv holds iff b is provable in if\y\ at most in p steps (i.e. bean be proved 
from v in at most p steps). Then bo0v holds iff b is provable in 2T\y\. 

If b is a theorem of &~, then b is a theorem of ST\v\ for every v e V, hence bo0v 
for every v e V, so b° = V, hence b is derivable in F = (B, {op}, V>. 

If b is derivable in F, then bopv for every veV; let w be a logical axiom. Then bo0w, 
hence boqw for some q e N+ (by (V)), so that b is provable in ^"[w] (and ^"[w] = ST 
because w is logical axiom), hence b is theorem of 2T. 

We have proved that in Example 2 b is derivable in F iff b is theorem of &~. 

Example 3. Let B be a set of principles investigated for validity. Class Vis some 
(countable) class of particular (concrete) situations. If principle b e B is valid in every 
particular situation (from V), then we called it generally valid principle. But we are 
not usually able to verify validity of each principle in every particular situation. So 
we verify the validity of principles b e B only in finite particular situations; in this 
way we obtain relations op (p = 1, 2, 3, . . . ) . We suppose that with the time passing 
by (i.e. with increasing p) our knoweldge about validity of principles in particular 
situations increases (IV). Moreover we suppose that with the time passing by we shall 
be able to verify each principle in every situation (V). 

It can be easily proved that b° = V holds iff b is a generally valid principle. 
Hence, formula b e B is derivable in the formal system F = <B1{oJ,}, V> iff bis a gen­
erally valid principle. 



During this paper two assumptions (A, C) are introduced, which can or need not 
be fulfilled. In the parts of the paper in which Assumption A or Assumption C 
will be supposed to be fulfilled this will be explicitly stated; in other parts validity of 
Assumptions A, C is not supposed. 

Assumption A. Let F = (B, {op}, V} be a formal system. Let V0 £ V be such, 
that: if b e B is not derivable in F, then b is not derivable from any v e V0 (i.e. for all 
b e B - T, v e V0 : ~](bo0v)). 

For every p eN+, op s o0 holds; hence, if Assumption A is in F satisfied, then 
"1 (bopv) holds for every be B — T, v e V0, p e N. 

Example 4. Let B and V consist of formulas of a formalized theory £T. Let bo0v 
holds iff b can be proved from v (i.e. if b is provable in 3"\v\\ cf. Example 2). V0 

contains axioms of ST (or V0 contains some theorems of 2T). In such a case, if v e VQ 

and be Bis non-theorem of &~, then b cannot be proved in 9~\v\\ hence, Assumption 
A is fulfilled. 

Asumption A can be fulfilled in every formal system, if we put V0 = 0. But the 
case V0 4= 0 is essential. 

Assumptions (members) of V0 have an important role. If v e V0 and b e T and 
b' eB — T(i.e. b is derivable and V not derivable), then hold: bo0v and ~](b'o0v)\ 
moreover, for every peN+ holds ~~\(b'opv). 

1.3. RANDOM VARIABLES ON V 

First, we shall study the derivability with respect to one random variable on V. 

Definition D2. Let F = (B, {op}, V) be a formal system. We define 

f = a{b"\beB, p = 1,2,3,. . .} = a{{v\ bopv} \beB, peN+} , 

where a{...} is the smallest cr-algebra over the set { . . .} . 
Let <Q, S, P) be a probability space. By v we denote a -^"-measurable mapping 
v: Q -* V. 

In the following by co an element of Q is denoted. It is obvious that (by (VI)) 

(1) P\v((D)eb']=P\bopv(ojj\ 

holds. The value of P\bop v(co)\ is the probability that b is derivable (with respect 
to op and v). 

Assumption C. Let the Assumption A be satisfied in formal system F = 
= <B, {op}, V). Let V0 e Y and 

(2) 0 < J = P[t,(cO)eVo] 



Assumptions from V0 significantly distinguish derivable and not derivable formulas. 
If Assumption C holds in formal system F then there is a sufficient number of such 
"important" assumptions in F. 

Lemma LI . Let F = <B, {op}, V) be a formal system, v be as in D2. Then 
1°. For p -• oo, bp / b° holds. 
2°. For p -> oo, P[bop v(coj] / P[bo0 v(co)] holds. 
3°. For every derivable b e B, if p -> oo then P[oop u(co)] / 1 holds. 
4°. If Assumption A is satisfied in F and F 0 e f then for every non-derivable b e B 

and p e iV holds P[feop t<co)] < 1 - P[v(co) e V0]. 
5°. If Assumption C is satisfied in F, then for every non-derivable b e B and peN 

P[bop v(co)] S 1 - y < 1 hold. 

Proof. Assertion 1° follows from (IV), (V) of Dl. Assertion 2° follows from 1°, 
(l) and from the continuity of the probability measure. 

If b is derivable (i.e. b e T), then b° = V, hence, by 2°, (l) gives 

P[bop v(co)] /<„ P[bo0 v{co)] = P[v(co) e b°] = P[v(co) e V] = 1 , 

which proves 3°. 
Let b e B — T. If A is satisfied in F and V0 e "V, then for v e bp is bopv and by 

Assumption A is v e V0, hence, bp n V0 = 0, so that t V c 7 _ v0, hence, 

P[oop y(co)] = P[v(co) e bp] ^ P[v(co) e V - V0] = 1 - P[«(co) e V0] , 

which proves 4°. 
Let b eB — T. If C is satisfied in F, then by 4° and (2) it can be easily seen that 

P[bop v(co)] ^ 1 - y < 1 (for every p e N). • 
Items 3° and 5° of LI give a method for distinguishing derivable formulas from 

non-derivable ones (and vice versa) with the help of statistical methods. 

1.4. LOGICAL DERIVABILITY AND STATISTICAL METHODS 

The procedure indicated by LI has been used many times. A formula b eB is 
declared derivable, if b is derivable from a sufficient number of assumptions from V; 
more precisely: we choose some relation op(peN+) and naturals 0 ^ m < n. 
We sample assumptions vu v2, •••,v„e Vindepedently, using a random mechanism. 
If the formula b e B is derivable from more than m assumptions among vu ..., vn, 
we proclaim b to be derivable; otherwise we declare b to be non-derivable. 

Definition D3. Let F = <[B, {op}, V> be a formal system, <[Q, S, P> a probability 
space. Let vu v2, v3, ... be independent random variables from (Q, S, P> to <V, "T} 
with the same probability distribution. Let 0 <. m < n be naturals. 



A formula b e B is declared to be derivable (with respect to op and co e Q) if 

t z ( o o p » i ( f t ) ) ) > m . 
; = i 

A formula b e B is declared to be non-derivable (with respect to o^ and co e Q), if 

tx(bopvlco))Sm. 
i = l 

Let b be a random variable from <0, S, P> to <E, exp. P>, let b, vu v2, v3, ... be 
independent random variables. The first and second type of erorr probabilities are 
defined by the following expressions: 

PEt = P[ U { t X(bop via)) ^ m&b(co) - 6}] 
beT i = l 

PE2 = P [ U { t X(bop vlco)) > m&b(co) = &}] . 
beB-T i=l 

Remark. For every neN+, peN and 0 ^ m < n we should define statistical de­
cision function D : B x V -> {0, 1} as follows: 

D(fc, »!,...,»„) = 0 if t --"(-"Vi) = m 

i = l 

D(b, »1? . . . , »„ )= 1 if t x(b°pvi) > m • 
i = l 

In such case 

PE! = P[D(b(ca), »i(co),..., »„(co)) = 0& b(co) e T] , 

PE2 = P[D(b(o;), »,(«), ..., »„(«)) = 1 & b(co) e B - T] . 

hold (and could be define). 

1.5. BASIC PARAMETERS AND RELATIONS 

Three parameters occur in the presented procedure of statistical derivability: an 
index p of relation op, characterizing the extent of our knowledge about a (concrete) 
formal system studied for derivability; parameter n determines the number of as­
sumptions (from (V)) for which the partial derivability is considered when the 
derivability of formulas from B is tested; parameter m (or the ratio mjn) - a formula 
b e B is declared to be derivable iff the relative frequency of assumptions from which 
is b partially derivable (with respect to op) is greater than mjn. 

In the following we introduce estimations for the probability of declaring a formula 
b eB to be derivable (or non-derivable) with respect to op (p = 0,1,2, ...) and 
estimations of probability errors of both types. We also introduce asymptotical 
characteristics of these four values when some of parameters p, n, m turns to infinity. 



In the following we suppose that m, p,neN and 0 ^ m < n. When the speci- 231 
fication (of values) of parameters p, n, m is necessary in order to avoid misunder­
standing or when it is suitable, we prescribe these parameters as indexed. For example 
we denote the first type of error probability by PEU or PEP, PEp'"'m etc. 

We denote the probability of partial derivability of b e B (with respect to op) 
as Pb, i.e. 

(3) Pp
b'"'m = Pb = P[bopVl(co)] 

the probability of declaring b e B to be non-derivable and derivable (with respect 
to op) as Pbnd and Pbi, i.e. 

(4) PV:r = Pbnd - P [ t X[bop t>.(a>)] ^ m] , 
;=i 

(5) P & - - = P M = P[ £ X[bop Vi(coJ] > m] - 1 - P w , 
; = i 

the probability of sampling a formula b e P for testing to derivability as <xb, i.e. 

(6) ab = P[b(co) = fe] . 

Remark. With the help of statistical decision function D Pbd, Pbnd can be defined as 

Pbi =P[D(b,vl(co),...,vn(co)) = 0] 

Pbnd = P[D(b,Vl(co),...,vn(co))= 1 ] . 

Lemma L2. For p,n, me N + , 0 ^ m < n the following hold: 

(7) J ° « = | o ( " ) ^ ( l - ^ ) " - ^ 

P£. = £ abPш = E aь S ' Pź(l - Pь)"-', 
6єT ЬsГ j = 0\J/ 

PE2 =- s <-»•(-- l5^) = i «* E J I^1 - - v 
beB-T beT j = m+l\J/ 

Lemma L3. If 0 ^ m < n are naturals, then the function 

is continuous and decreasing in <0, l>,j(0) = l , / ( l ) = 0. 

2.1. RESULTS 

In this section a fixed formal system F = <B, {op}, V) is considered, the proba­
bility space <£2, S, P> and random variables b, vu v2,... satisfying conditions of 
Dl, D2. 



Theorem Tl . Let parameters n, p be fixed. If parameter m increases from 0 to 
n — 1, then for every b e B the probability Pbi of declaring b to be derivable is non-
increasing, the probability Pbnd of declaring b to be non-derivable is nondecreasing; 
the probability PEX is nondecreasing, PE2 is nonincreasing. 

Remark. From Tl it can be easily seen, that if the declaration of a derivable formula 
to be non-derivable is the more important error then the contrary error (or if we want 
to do PEX as small as possible), we choose the value of mjn close to 0; in the opposite 
case we take ratio mjn close to 1. 

Proof. The proof of Tl easily turns from L2, L3 and (5). • 

Theorem T2.a. Let parameters m, n be fixed. If parameter p increases, then the 
probabilities Pbd, PE2 are nondecreasing, the probabilities Pbnd, PEX are non-
increasing. 

Remark. Probability of the error PEt (the error caused by declaring derivable 
formulas to be non-derivable) and the probability of declaring b e B as non-derivable 
can be, as T2 shows, made smaller by increasing of parameter p, i.e. by increasing 
of our knowledge about concrete system investigated for derivability. The increasing 
of p is not sufficient to make the probability of error PE2 and the probability of 
declaring b e B as derivable smaller. We will shown (in T6 and in what follows) that 
for decreasing of PE2 and Pbni also the increasing of parameter n is necessary (n deter­
mines the number of assumptions in Ffrom which the partial derivability is considered 
when the derivability of formulas in B is tested.) 

P roo f of T2.a. We shall show that if m, n are fixed then Pbnd is nonincreasing 
in p. The proof of the remaining relations of T2.a. is similar. 

Let m, n be fixed. From (3) and assertion 2° of LI it can be seen, that Pb is non-
decreasing in p. Hence, by L3 and (7) Pbnd is nonincreasing in p. • 

Theorem T2.a. is precised by T2.b, c. 

Theorem T2.b. Let m, n be fixed and b e T Then 

P w - > p l and P t a d - > p 0 

(i.e. probability Pbd of declaring b to be derivable tends to 1 and probability Pbnd 

of declaring b to be non-derivable tends to 0 when p tends to oo). 

Theorem T2.c. Let m, n be fixed. Then PEX ->p 0 (i.e. the first type of error proba­
bility PEX tends to 0, when p tends to oo). 

P roo f of T h e o r e m T2.b, c. 
b. Let b be derivable in F (i.e. b e T), p -> oo. Then by (3) and 3° of LI Pb tends 

to 1. (7), (8) gives 

Pbni=f{Pb), 



hence, by L3 

lim Pbnd = lim f(Pb) = l im/(x) = / ( l ) = 0 , 
p->00 p-»00 X - » l " 

hold, i.e. Pbni tends to 0. By (5) Pbd = 1 - Pta((, hence, P M tends to 1 (when p -> oo). 

c. The set T c 5 0f theorems is finite or countable. By L2 is 

PE! = £ abPbnd 
beT 

hence, 

I.PE.J < £ |«6Pterf| ^ £ |o,| <. £ |a»| = X a6 = 1 < + oo 
beT beT beB beB 

hence, because Phnd ->p 0 for b e T, 

PEt=j:abPbnd^p0. • 
beT 

It can be proved, that the following holds. 

Lemma L4. Let mjn tend to /? when n increases to oo and let e E <0, 1>, fi + e. 
Then the limit value 

L=lim f ( " K ( 1 - e)""J' 

exists and 
L = 0 iff e> p, 

L = 1 iff e < p . 

Theorem T3.a. Let p be fixed. Let us denote 

D = sup {Pb | b e P - T, a„ + 0} 

d = i n f { P b | f o e T , «fc + 0 } . 

Let )3 e <0, 1> be fixed, let mjn -^„ £. Then 

l.a) for p + d: PE, ^n0 iff p < d; 

b) if y3 > d, then liminf PEX > 0; 

2.a) for p + D : P £ 2 -*„ 0 iff j? > D; 

b) if P < D then l iminfPP 2 > 0. 

T3.a. tolds us the following: if we cannot increase the parameter p (i.e. enlarge 
our knowledge about the particular formal system tested to derivability) or if we 
have only one (or only finite number of) particular derivability relation and we want 
to make probabilities of both errors small, we have to choose large n and mjn close 
to p satisfying conditions 

sup {Pb | b e B - T, ab + 0} < p < inf {Pb \ b e B - T, ab + 0} . 



If 
sup {Pb \ b e B - T, ab # 0} > inf {Pb \ b EB - T ab *j> 0} , 

then, having the fixed relation of partial derivability and increasing n, at least one 
of probabilities PEt, PE2 will be greater than some positive (real) number independent 
of n. 

Proof T3.La) By L2 is 

hence 

pE^l^z .)pi(í-pby-j, 
fceT j=0\JJ 

pE1 = YJccbu
n.)pi(i-pbr-j, 

beT i = 0\JJ 
xb±0 

further, if for b e T, a„ #= 0, then ft < d < Pb, hence, by L3 

limQp^(l-P6)"- = 0, 

from which can be easily seen, that PEl ->„ 0. The proof of 2.a) is similar. 
l.b) If j8 > d, then there exists b0 e T such that abo 4= 0 (then abo > 0) and 

p > Pbo. Hence, 

PEl= Ea»z("W-psr^ 
beT j = 0\JJ 

otb*0 

^ . ? J J PL(I - P*OY-J •> 

by L4 the value of the last mentioned expression tends to abo (when n -*• oo), hence, 
lim inf PE! > 0. The proof of 2.b) is similar. • 

Theorem T3.b. Let p be fixed. If the Assumption C is satisfied in a formal system F, 
then 

D = sup {Pb\ b e B - T, ab * 0} <: 1 - y < 1 . 

Proof. T.3.b. immediately follows from 5° of LI and (3). • 
From T3.b. and 2.a) of T3.a. can be easily, seen, that if Assumption C is satisfied 

in F and m\n tends to a number from (1 — y, l) then (with increasing n) the proba­
bility of error PE2 tends to 0 (when p is fixed, i.e. when our possibilities of studying 
of derivability are limited by some relation of partial derivability). 

From T2 and T3 follows, that by increasing only some of parameters m, n, p is 
it possible to reach the convergence of PEU PE2 to 0 only in some special cases. 
Hence, in the following we shall study probabilities of both errors and probabilities 
Pbd> Pbnd when all parameters m, n, p tend to co; in addition we suppose, that 
m\n-*„p, where 0 e <0, 1>. 



Theorem T4.a. Let jS > sup {P"b° | b e B - T, ab * 0} for p0 = 0. Then 
1. There are numbers / e (0, 1), n0 e {l, 2, 3, ...} such that, for every n > n0, 

P = 0 , 1 , 2 , . . . 
PEPin < nf" . 

2. If parameters p,n->oo, then PE2 -» 0. 

Proof. Part 2 is a consequence of part 1. Part 1 can be proved from L2, L4. • 

Theorem T4.b. 

1. If, for some p0eN+, j6 < sup {PPo \ b e B - T, «„ * 0}, holds then 

a) there is H > 0 such that lim inf PEP
2° > H. 

b) there is n0 > 0 such that, for every 

p ^ p0 , n^n0, PEp
2'

n > H . 

2. If, for some p0 e N + , /? > sup {Pp
b° | b eB - T ab =t= 0} holds then, for every 

p = 1,2, . . . , p 0 , PEf•"-»•,,0. 

3. If £ > sup {P£° | b e 5 - T ab * 0} for p0 = 0 then PEP
2'" ->„ 0 uniformly in p 

(i.e. with increasing n tends PE^'" to 0 uniformly in p). 

In T4 are presented detailed conditions under which the second type of error 
probability tends and does not tend to 0, when our knowledge about the actual 
relation of (partial) derivability increases so as the number of assumptions from V 
considered when derivability is investigated (i.e. parameter n) increases too. 

P roo f T4.b. Proof of l.a) is similar to proof of l.b) in T3.a. l.b). l.a) give that 
lim inf PE"2° > H, hence, there is n0 such that, for n ^ n0, PEP

2
0'" > H. By T2.a. PE2 

is nondecreasing in p, hence, for every p ^ p0, n ^ n0, PEP
2" > PEp

2'
no > H. The 

proof of part 2 is similar to that of la) in T3.a. The proof of part 3 follows from 1 
of T4.a. (as the expression n . / " is indepdent on p). • 

Theorem T5. If /? e <0, l), then p, n -• oo implies P £ t -> 0. 

Proof. 1. Let be e > 0. We search n0 and p0 such that for p ;> p0, n ^ n0, 
PEi < s. 

2. By the definition of a, V ab < 1 and ab ^ 0 (for b e T), hence, there is a finite 
beT 

C S T such that £ ab < e/2. 
beT-C 

3. By L2, PE, = £ ab f ( " ) . P!,(l - P,)"-'', (and 0 <. P6 < 1 for b e T), hence, 
6er j = 0\JJ 



P£. < X a6 £ ("•) • n(l - P*)"-J + ! « » • ! = 
6eC j = 0\J/ beT-C 

= I«>l(f)-^(l-IJ>ry + e/2. 
teC j = o\J/ 

4. By 3° in LI and (3), for every b e T P6 ->p 1 hence, for every Z> in finite set C, 
F t -+p 1, hence, there is p0 e N+ such that, for every beC, P£° > p. 

5. Pb° > P holds for every b e C, hence, by L4, for every b e C, 

nm J f"Wy (1-**•)•"•'= 0, 
„^oo j = oVJ/ 

hence, (because C is finite), there is n0 such that for every n 'Si n0 and be C 

£(n).{p?y.(i-p>b°rj<^ 
J=°\J/ 2 

hence, for every n S: n0, 

and by 2. also 

P£Г'<£a *+± 
bєc 2 2 

PEГ'" < 1 . - + - = e . 
2 2 

6. By T2.a. PEt is nonincreasing in p, hence, for every p 3; p0, n ^ n 0 

PE\'n < PE f •" < e . D 

Summarizing the results of T4, T5 we can see, that, to be able to make probabilities 
of both errors smaller than e > 0 by increasing p and n, we have to choose mjn 
close to some number from the interval 

(sup{Pr = 0 | b6B- T, a 6 #0},l); 

it can be proved that it is sufficient to find 5 > 0 such that 

(9) sup {Tr=° \beB-T, <xb^0} + 5<l-d 

and choose mjn between the both sides of (9). 
Let us return to Assumption C. If C is satisfied in a formal system then for every 

p = 0 ,1,2, . . (byT3.b.) 

sup {Pp

b | b e B - T, ab ^ 0} < 1 - y < 1 ; 

from these inequalities and results above can be easily seen that the following 

statement holds. 

Theorem T6. If the Assumption C is satisfied in a formal system F and 1 - y < 

< p < 1 holds, then 

a) if n is fixed, then PE1 -+p 0; 



b) if p is fixed, then PE2 ->„ 0; 237 
c) if p, n -> oo then PEv-> 0 and PE2 -> 0; 

moreover, PE2 -> 0 uniformly in p. 

Proof, a) By 3° of LI for b e T, Pb ->p 1 hence, by L3, f) ( ".) ^ ( 1 - Pb)"~J ->, 0 

(when m, n are fixed), hence, by L2, PE1 ->p 0. 
b) Let p be fixed. Let beB - T; from Assumption C follows, that Pb < 1 — y 

(by 5° of LI and (3)), hence, Pb < fi. Hence, for every b e B - T Piiu, ->„ 0 (by L4 
and (7)), hence, by L2 PE2 ->„ 0. 

The proof of c) follows from T5 and 2 of T4.a. (with the help of 5° of LI and (3)). 

• 
As a conclusion let us introduce two nontraditional examples. 

Continuation of Example 4 (shows the importance of one fundamental formula 
of mathematical logic). 

Let B, Vbe sets of formulas of some theory ST. Let the formula 

(10) b - b 

be true for every formula b of 9~ (or, let every formula in 2T follow from itself, i.e. 
let b -> b be "easily" provable in &~). Hence, let for every b e B, p = 1, 2, 3 , . . . 

(11) bopb 

hold. In addition we assume that for every b eB 

P[b(co) = b] # 0 and P[t>.(t») = b\ ± 0 . 

Let us denote 
ab = P[b(co) = 6] (>0) 

nb =. P[Vl(co) = 6] ( > 0 ) . 

Then for every b e P, p = 0, 1, 2, ... by (11) 

(12) Pb = P[bop ti(a)} = P[b = v^co)] = 7r6 > 0 , 

hence, by L3 and (12) 

(13) P 6 „ d < / ( 0 < 1 , 

(14) P M =l-Pbnd=l-f(nb)>0, 

where/is defined by (8). From L2, (13), (14) can be easily seen that 

(15) P £ 1 = X < x i , . P b „ ( i < Z a 6 . / ( 7 r 6 ) < l 
beT beT 

i.e. 

(16) PEl < 1 

and 
(17) PE2 = £ ab.Pbd= X « . . • ( ! - /(«»)) • 

teB-T IieB-r 



If there is at least one non-derivable formula in B, then by (17) 

(18) PE2 > 0 . 

Consequently, denoting by b, c, d, the following statements 
b) the formula b -» b is true (or "easily" provable) for every formula b of ST 

(i.e. bopb holds for every peN+, b e B); 
c) every formula is choosen to be tested to validity (provability) with positive pro­

bability (i.e. P[b(co) = fo] > 0 for every b e B); 
d) the probability of choosing a formula v of ST as an assumption (when validity 

(probability) of formulas of 3~ is tested) is positive for every v of 9~ (i.e. P[v(co) = 
= v] > 0 for every v e V); 
then (b), (c) and (d) imply that, 

by (14), every formula b of ST is, with a positive probability, proclaimed to be true 
(provable), 

by (13) every formula b of &" is, with a probability less than 1 proclaimed to be not 
true (false, non-provable), 

by (18) is the second type of error probability positive. 
Hence, the relation (10) is quite strong for theories of mathematical logic (cf [2]) 

and the relation (11) is quite strong for formal systems. 

Example 5. If we suppose, that the basis of our reasoning is formed by a certain 
class of principles, whose validity is tested by consistence investigating of every 
principle with other principles (by logical considerations and by confrontation with 
experience and with the environment). 

If we suppose, in addition, that 
a) our conviction (opinion) about validity of every principle increases with the 

number of principles consistent with it, 
b) every principle is consistent with itself, 
c) every principle can be submitted for validity testing (or every principle will be 

eventually taken to be tested), 
d) every pair of principles can be (or will be) tested for consistence, 
e) principle is proclaimed to be valid (true) if it is consistent with the greater part of 

principles; 
then we obtain formal system and (statistical decision) procedure of validity testing 
of principles, described in Example 4. 

Hence, we can say, that under assumptions described above the following hold: 
probability of proclaiming a principle to be valid is positive for every principle; 
probability of declaring principle not to be valid does not reach 1 for every principle; 
the second type of error probability is positive. 



2.2. CONCLUSIONS 

Investigated formal system and procedure of statistical derivability are rather 

general and, at the same time, relatively simple. Hence, the domain of application of 

the presented results may be quite wide. 

An investigation of parameter "the extent of knowledge about concrete system 

tested for derivability", i.e. the study of properties of derivability assuming different 

levels of knowledges about concrete systems, have given some new results. Further 

examples, information and results are in [5]. 

(Received October 3, 1979.) 
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