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K Y B E R N E T I K A — VOLUME 30 (1994) , NUMBER 3, PAGES 301 - 3 0 6 

ON BATHER'S STOCHASTIC APPROXIMATION 
ALGORITHM 

R A I N E R S C H W A B E 

Stochastic approximation procedures provide a useful technique for detecting the root of 
an unknown regression function. Based on the idea of averaging Bather (1989) proposed a 
new stochastic approximation algorithm at the Fourth Prague Symposium on Asymptotic 
Statistics. For this algorithm some results will be presented on the rate of convergence as 
well as on the behaviour for small to moderate sample sizes. 

1. INTRODUCTION 

Recursion formulae are frequently used for detecting characteristics of a function 
like roots or extrema which cannot be determined analytically. In particular, in the 
present note we will consider the problem of estimating the root 9 of a real valued 
function / on R, i .e. f(9) = 0, when only noisy observations of / are available. 

For this situation Robbins and Monro [8] proposed the recursive scheme 

^ n + i = Xn — anYn (1) 

where Yn = f(Xn) + Un is an observation of / at Xn disturbed by some random 
noise Un. Thus after n initial observations the next observation is to be taken at the 
setting equal to the est imate 9n = Xn+\ for 9. Typically steplengths an = an~a, 
a < 1, will be considered. 

Blum [2] proved almost sure (a.s.) consistency of the procedure, while results 
on the asymptotic normality were derived by Chung [3], Sacks [12], and Fabian [4]: 
n~al2(Xn— 9) is asymptotically normal for a < 1 and in case of harmonic steplengths 
(a = 1) if additionally 2af'(9) > 1. In particular, minimal variance <7Q = f'(9)~2a2 

is achieved for an = (nf'(9))~l. 

In the following period methods taken over from the stability theory of ordinary 
differential equations (o. d. e. methods) have turned out to be of great use for prov­
ing the stability of stochastic approximation schemes (Ljung [6]). These methods 
also helped to establish that the recursive stochastic approximation procedures can 
essentially be represented by weighted averages of the error terms Un under mild 
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regularity conditions (Kersting [5], Ruppert [9]). With this representation asympto­
tic results carry over directly from the weighted averages of the noise to the stochastic 
approximation schemes. 

The performance of the Robbins-Monro procedure with harmonic steplengths, 
however, heavily depends on the unknown system parameter f'(0), which may result 
in an unsatisfactory asymptotic behaviour, in particular, if '2af'(0) < 1. 

A first solution to overcome this problem has been proposed by Venter [15] who 
recommended to replace the unknown slope f'(0) adaptively by an estimate f'(0). 
In this procedure the outcome of the recursion formula Xn+\ = Xn — (nf'(0))~xYn 

remains to be the estimate of 0, while the observations are to be taken at different 
design points Xn ± 6n. 

In a more recent approach Polyak [7] and Ruppert [10] independently suggested 
to improve the asymptotic behaviour by means of averaging. The settings Xn for 
the observations are determined according to the Robbins-Monro procedure (1), but 
0 is estimated by the average 0n = Xn+\ = (n + 1)_ 1 5~£i] X^. This procedure 
proved to be asymptotically optimal, i.e. y/n(0n — 0) is asymptotically normal with 
minimal variance <TQ, in case of larger steplengths (^ < a < 1). 

For both procedures representations can be found in terms of weighted averages 
of the noise (cf. Schwabe [13, 14]). For further readings we refer to the recent survey 
articles by Ruppert [11] and Walk [16]. 

2. THE ALGORITHM 

Alternatively Bather [1] skipped the original scheme (1) and formulated a recursion 
in terms of the averages 

xn+i = Xn~ nanYn (2) 

where Vn = n - 1 Y^k-i ^* = n~* .CL-_i f(Xk) + Un is the average of the observations. 
Similarly to the the averaging procedures due to Polyak [7] and Ruppert [10] the 
observations are to be taken at the settings Xn and the root 0 is estimated by the 
averages 0n = Xn+i. 

Taking into account that (n + \)Xn+\ = nXn + xn+i we obtain a recursion 
formula for the averages 

.Xn+i = Xn ~ ^-f'nYn (3) 

which can be identified as an analogue to the Robbins-Monro procedure (1) with 
the design points replaced by their averages. 

Similar considerations lead to 

Xn+X =Xn- anYn + n~'cn (Xn - X ^ (4) 

where c.n = a~\x(nan — (n— l)a n_i) , n > 2, c\ = 0. In case of harmonic steplengths 
we obtain cn = 0 and (2) coincides with the original Robbins-Monro procedure (1) 
(cf. Bather [1]) which produces a sub-optimal sequence of estimates 0n = Xn+\- For 
the more interesting case of larger steplengths an = an"**, a < 1, c,n tends to i — or. 
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In any case n~lcn = o(an) and the influence of the averages xn_i on the choice of 
the design point xn+i is dominated by the last observation Yn. 

In the next section we are going to illustrate the behaviour of Bather's [1] se­
quences 9n = Xn+\ and Xn in case of an underlying linear regression function / . In 
Section 4 we will consider a more general case. Details will be given elsewhere. 

3. LINEAR REGRESSION FUNCTIONS 

To illustrate the performance of the algorithm (2) we start with the situation of 
an underlying linear function, i.e. f(x) = X(x — (9), with positive slope A > 0 (cf. 
Schwabe [14]). In this case the recursion formula for the averages (3) can be written 
as Xn+\ — 9 = (1 — X-~-an)(Xn — 9) — n^r-anUn. For simplicity we assume that 
Aan < 1 for all n. Hence 

dn(Xn+l -9) = dn_x(Xn -6)- ^-andnUn , (5) 

where dn is defined by dn = I~[/fc=iO — ^F+Ta^)_ 1 — (I — ^n
Jb\an)~1dn-\. Iterative 

evaluation of (5) yields 

Xn~~~=O + d;i\Xl-0)-Zn , (6) 

where Zn = d~l __.£_. --|--a.rf.U, = d~l YH=\ Uk E L * i+t a i^' i s a w e i g n t e d average 
of the error terms Un. In an analogous way we introduce the weighting sequence 
dn = n £ = i O ~ ^ak)~l = (1 — Aan)_1fI.n_i associated with the recursion formula (4) 
for the design points Xn. The sequences dn and dn are asymptotically equivalent 
up to a multiplicative constant, i.e. dn/dn -^c>\. 

The asymptotic behaviour of the weighted averages Zn+\ = d~l __^=1 a^dkUk 
plays an important role in stability considerations (see Ljung [6], Ruppert [10], and 
Walk [16], cf. also the Theorem in Section 4). 

The sequence Zn is close to the arithmetic means Un in the following sense: 

Proposi t ion . Let a < 1. If if Zn —> 0 a.s., then 

Zn =A-1!7n + o(7r7- ( 1- a )) a.s. 

In many practical'applications the requirement n1 Zn ->0a . s . is satisfied for every 
7 < | . Hence, for a < 1, the estimate 9n = xn+i can essentially be represented by 
the average of the error terms 

l v^" rт. . „ л . - ł - c ^ + T = i E L i ^ + ^ " H ) as-> (7) 
for some e > 0, and the asymptotic behaviour of A_ 1(/n carries over to 9n.^ In 
particular, \/n(9n —9) is asymptotically normal with minimal variance <TQ, i.e. 9n = 
Xn+\ is asymptotically optimal. 
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For the design points Xn we obtain Xn+\ — 9 = (1 — Xnan)(Xn ~ 9) — nanTJ^, 
which shows that xn+i and Xn tend to lie on opposite sides of the root 9. This is 
a behaviour which is advantageous from the design point of view. 

Furthermore, Xn can also be represented by a weighted average of the error terms 

n /k-\ \ 

X„+i =9- Xnandn J2 Y, i+Tai^ Uk + Rn (8) 
k=\ \i=\ / 

and the remainder term Rn is of order o(n~^aAr£^2) a.s., for some e > 0, under 
some additional regularity conditions on the error terms. From this formula the 
asymptotic normality of n~al2(Xn — 9) can be derived which has been conjectured 
by Bather [1]. 

4. THE GENERAL CASE 

In most applications the underlying regression function / will not be linear. In 
this case, however, some regularity conditions have to be satisfied: / is continuous, 
f(x)(x — 9) > 0 for all x ^ 9, f is linearly bounded, i.e. \f(x)\ < c.\ + c.2\x — 9\, 
and A = f (9) > 0. Additionally we assume that / is two times continuously 
differentiable in a neighbourhood of 9. 

We can now present a result based on the behaviour of the weighted averages Zn 

of the error terms defined in the previous section: 

Theo rem. Let ^ < a < l. If Xn is bounded and na(l~6M2Zn —> 0 a.s., for some 
6 < min(l — a, a — i ) , then 

Xn+l = 9-Zn+1+o(n-%-£) a . s . , 

n 

Xn+\ = 0- njr-r)YlU^^0(n~^~£) a- s-> 
k-\ 

for some e > 0. 

The p r o o f is based on a refinement of the arguments given by Ljung [6] and 
Ruppert [9]. For the estimates 9n = xn+i and the design points Xn asymptotic 
results can directly be derived from the corresponding results of the averages of the 
error terms by means of the present Theorem. In particular, asymptotic normality 
and convergence rates of the iterated logarithm type can be obtained. 

5! CONCLUSIONS 

The algorithm (2) proposed by Bather [1] yields an asymptotically optimal sequence 
of estimates 9n = Xn+\ for the root 9 of the unknown underlying regression function 
/ . We note that for the general case the boundedness of Xn has still to be established 
which might be achieved by truncation arguments. 
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For even larger steplengths an = an~~a, a < | , a substantial bias may arise from 
the nonlinearity of / , which can be seen as follows: Starting from the recursion 
formula (2) a Taylor expansion of / gives 

n 

Xn+t = 0 + (1 - nanf'(d))(X: -0)- nanU~ - \an £ f"(Sk)(Xk - d)2 

k-\ 

for some £t between Xk and 9. Even if Xk tends to 0 as k~al2 and, hence, f"($,k) —* 
f"(0), the remainder term | a n XJSUI f"(£k)(Xk — #)2 does not vanish sufficiently 
fast for curved functions / with / " ( # ) ^ 0. 

In Bather 's [1] algorithm (2) the influence of inappropriate starting points de­
creases like d~l (see (6)) and, hence, substantially faster than n - 1 , which is the 
corresponding rate in the Robbins-Monro procedure with optimal steplengths and 
in the averaging procedures by Polyak [7] and Ruppert [10], at least in the linear 
case. In particular, for small to moderate sample sizes 7i this fact results in a better 
performance of Bather 's [1] algorithm. 
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