## Kybernetika

## Miloš Boček

Conjugate gradient algorithm for optimal control problems with parameters

Kybernetika, Vol. 16 (1980), No. 5, (454)--461
Persistent URL: http://dml.cz/dmlcz/125174

## Terms of use:

© Institute of Information Theory and Automation AS CR, 1980
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

# Conjugate Gradient Algorithm for Optimal Control Problems with Parameters 

Miloš Boček

This paper presents an extension of a conjugate gradient algorithm for the solution of non-linear optimal control problems with parameters. Several numerical examples are treated to study the properties of the proposed algorithm.

## 1. INTRODUCTION

The basic conjugate gradient method for unconstrained optimal control problems was proposed by Lasdon et al. in [1]. The penalty function approach to the solution of inequality constrained optimal control problems has been considered in [2] and the clipping-off technique that solves optimal control problems with magnitude constraint on the control inputs is described in $[3,4]$. The proposed algorithm is more simple and easier to apply than an alternative sequential conjugate-gradientrestoration algorithm of [5]. On the other hand, the algorithm of [5] need not to use penalty function to deal with optimal control problems with terminal constraints. Also the robust conjugate-gradient algorithm in [6] can compute optimal controls, however without parameter optimization.

## 2. OPTIMAL CONTROL PROBLEM

The aim is to minimize the cost functional

$$
\begin{equation*}
J=\varphi[x, \pi]_{t_{\mathrm{t}}}+\int_{t_{0}}^{t_{\mathrm{f}}} L(x, u, \pi, t) \mathrm{d} t \tag{1}
\end{equation*}
$$

subject to the differential equation constraint

$$
\begin{equation*}
\dot{x}(t)=f(x, u, \pi, t), \quad x\left(t_{0}\right)=x_{0} \tag{2}
\end{equation*}
$$

magnitude constraints imposed on the control inputs

$$
\begin{equation*}
a_{j} \leqq u_{j}(t) \leqq b_{j}, \quad j=1,2, \ldots, r, \tag{3}
\end{equation*}
$$

and on the parameters

$$
\begin{equation*}
c_{k} \leqq \pi_{k} \leqq d_{k}, \quad k=1,2, \ldots, q \tag{4}
\end{equation*}
$$

Here $f$ denotes a non-linear $n$-dimensional vector function of $n$-dimensional state vector $x, r$-dimensional control input vector $u$, and $q$-dimensional parameter vector $\pi$. Further $t_{0}$ is the given initial time, $t_{\mathrm{r}}$ is the terminal time, which is assumed to be given, and $\varphi$ and $L$ are scalar functions. It is assumed that, given a control $\boldsymbol{u}$, a parameter $\pi$, (2) can be solved for a unique $x=x(u, \pi)$. Thus $J=J(u, \pi)$ is a unique function of $u$ and $\pi$. Finally, it is assumed the existence of the gradient of $J(u, \pi)$ and that $J(u, \pi)$ is bounded below.

As usual (see [7]), let $H$ denote the Hamiltonian function given by

$$
\begin{equation*}
H(x, \lambda, u, \pi, t)=\lambda^{\mathrm{T}} f(x, u, \pi, t)+L(x, u, \pi, t) \tag{5}
\end{equation*}
$$

where $\lambda(t)$ is an $n$-dimensional vector function, T denotes the transposition. Then necessary optimality conditions are for the case without magnitude constraints (3), (4) as follows - see for instance [3] and [8],

$$
\begin{equation*}
\dot{\lambda}=-\frac{\partial H}{\partial x} \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\lambda\left(t_{\mathbf{f}}\right)-\left(\frac{\partial \varphi}{\partial x}\right)_{t=t_{\mathbf{f}}}=0 \tag{7}
\end{equation*}
$$

$$
\begin{gather*}
\frac{\partial H}{\partial u}=0  \tag{8}\\
\left(\frac{\partial \varphi}{\partial \pi}\right)_{t=t_{\mathrm{f}}}+\int_{t_{0}}^{t_{\mathrm{t}}} \frac{\partial H}{\partial \pi} \mathrm{~d} t=0 \tag{9}
\end{gather*}
$$

It is assumed that $\partial H / \partial u$ is continuous in $u$ and $\partial H / \partial \pi$ and $\partial \varphi / \partial \pi$ in $\pi$. All expressions are evaluated along the optimal solution $x^{*}, u^{*}$ and $\pi^{*}$. All vectors, including also gradient of various functions, are supposed to be column-vectors.

Conditions (8), (9) yield (see for instance [9]), that the variations per unit gradient stepsize of $u$ and $\pi$ can be taken as

$$
\begin{equation*}
g(t)=\frac{\partial H}{\partial u} \tag{10}
\end{equation*}
$$

456 and

$$
\begin{equation*}
h=\left(\frac{\partial \varphi}{\partial \pi}\right)_{t=t_{r}}+\int_{t_{0}}^{t_{r}} \frac{\partial H}{\partial \pi} \mathrm{~d} t . \tag{11}
\end{equation*}
$$

## 3. CONJUGATE GRADIENT ALGORITHM

For the sake of simplicity in the explanations that follows, a scalar control input and parameter will be considered only. The extension to multi-control inputs and multi-parameters is rather straightforward.

The conjugate gradient method computes the direction of search in the $i$-th iteration as follows: the conjugate gradient direction of $u$ is determined by

$$
\begin{equation*}
p^{i}(t)=-g^{i}(t)+\beta^{i} p^{i-1}(t), \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta^{i}=\frac{\int_{t_{0}}^{t_{f}} g^{i}(t) g^{i}(t) \mathrm{d} t}{\int_{t_{0}}^{t_{r}} g^{i-1}(t) g^{i-1}(t) \mathrm{d} t} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
g^{i}(t)=\left.\frac{\partial H}{\partial u}\right|_{i}, \tag{14}
\end{equation*}
$$

provided that $\int_{t_{0}}^{t_{\mathrm{F}}} g^{i-1}(t) g^{i-1}(t) \mathrm{d} t \neq 0$ and $\beta^{0}=0$, the conjugate gradient direction of $\pi$ is determined by

$$
\begin{equation*}
q^{i}=-h^{i}+\gamma^{i} q^{i-1}, \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma^{i}=\frac{h^{i} h^{i}}{h^{i-1} h^{i-1}}, \tag{16}
\end{equation*}
$$

and
(17)

$$
h^{i}=\left.\left(\frac{\partial \varphi}{\partial \pi}\right)_{t=t_{\mathrm{t}}}\right|_{i}+\left.\int_{t_{0}}^{t_{\mathrm{f}}} \frac{\partial H}{\partial \pi}\right|_{i} \mathrm{~d} t,
$$

provided that $h^{i-1} h^{i-1} \neq 0$ and $\gamma^{0}=0$.
The new estimate of $u(t)$ is then

$$
\begin{equation*}
u^{i+1}(t)=u^{i}(t)+\alpha^{i} p^{i}(t) \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
\pi^{i+1}=\pi^{i}+\alpha^{i} q^{i}, \tag{19}
\end{equation*}
$$

where $\alpha^{i}$ is determined by one-dimensional search so as to minimize

$$
\begin{equation*}
J\left(u^{i+1}, \pi^{i+1}\right)=\min _{\alpha^{i}} J\left(u^{i}+\alpha^{i} p^{i}, \pi^{i}+\alpha^{i} q^{i}\right) \tag{20}
\end{equation*}
$$

The proof of the convergence of the algorithm can be performed analogously as in [1].

## 4. CONSTRAINTS TREATMENT

Let us consider the case in which there is a control variable $u(t)$ and a parameter $\pi$ which must satisfy magnitude saturation constraints. Generalization to more than one control variable and one parameter is straightforward. The necessary optimality conditions (8), (9) are replaced (see [8], [10], by

$$
\begin{gather*}
H\left(x^{*}, \lambda, u^{*}, \pi^{*}, t\right)=\min _{u \in U} H\left(x^{*}, \lambda, u^{*}, \pi^{*}, t\right)  \tag{21}\\
{\left[\left(\frac{\partial \varphi}{\partial \pi}\right)_{t=t_{\mathbf{r}}}+\int_{t_{0}}^{t_{\mathrm{f}}} \frac{\partial H}{\partial \pi} \mathrm{~d} t\right]^{\mathrm{T}} \delta \pi \geqq 0} \tag{22}
\end{gather*}
$$

where $x^{*}, u^{*}, \pi^{*}$ are optimal solutions, $U$ denotes the admissible control region see (3), $\delta \pi$ is any feasible parameter change.
Before $J\left(u^{i+1}, \pi^{i+1}\right)$ is computed in each trial of the $\alpha$-search, $u^{i+1}(t)$ and $\pi^{i+1}$ are truncated according to the upper and lower bounds (see [3]) in the following way:

$$
\begin{array}{cl}
u^{i+1}(t)=\frac{u^{i}(t)+\alpha^{i} p^{i}(t),}{} \begin{array}{ll}
\text { if } & a \leqq u^{i+1}(t) \leqq b, \\
b, & \text { if } \\
u^{i+1}(t)<a, \\
& \text { if } \\
u^{i+1}(t)>b, \\
\pi^{i+1}=\frac{\pi^{i}+\alpha^{i} q^{i},}{} \quad & \text { if } c \leqq \pi^{i+1} \leqq d, \\
d, & \text { if } \\
\pi^{i+1}<c \\
& \text { if } \\
\pi^{i+1}>c .
\end{array} \tag{23}
\end{array}
$$

## 5. SUMMARY OF ALGORITHM

STEP 1. Set $i=0$ and select the initial estimates $u^{0}$ and $\pi^{0}$.
STEP 2. Solve the state equations (2) forwards with $u=u^{i}, \pi=\pi^{i}$, and the adjoint equations (6), (7) backwards, and then compute $p^{i}$ and $q^{i}$ from (12), (15).

$$
\begin{gathered}
u^{i+1}(t)=u^{i}(t)+\alpha^{i} p^{i}(t) \text { and } \\
\pi^{i+1}=\pi^{i}+\alpha^{i} q^{i} .
\end{gathered}
$$

Before $J\left(u^{i+1}, \pi^{i+1}\right)$ is computed, $u^{i+1}(t)$ and $\pi^{i+1}$ are truncated, if necessary, according to (23). Choose $\alpha^{i}$ to minimize (20).

STEP 4. Repeat steps 2 and 3 until

$$
\left|J\left(u^{i+1}, \pi^{i+1}\right)-J\left(u^{i}, \pi^{i}\right)\right|<\delta\left|J\left(u^{i}, \pi^{i}\right)\right|
$$

where $\delta$ is a specified positive number (here $\delta=10^{-4}$ ).

## 6. EXAMPLES

The described algorithm was implemented on the IBM 370/135 computer in singleprecision arithmetic and was programmed in $\mathrm{PL} / 1$. The integration was performed using the IBM DERE subroutine. The definite integrals were computed using IBM QSF subroutine.

Example 1. Minimize the cost functional

$$
J=1 / 2\left[x_{1}^{2}\right]_{1.5}+1 / 2 \int_{0}^{1.5} u^{2} \mathrm{~d} t
$$

subject to the differential constraints

$$
\begin{array}{ll}
\dot{x}_{1}=x_{2}, & x_{1}(0)=\pi, \\
\dot{x}_{2}=-x_{1}+u+x_{2}\left(1-x_{1}^{2}\right), & x_{2}(0)=1 .
\end{array}
$$

To obtain the problem with fixed initial state, as required in (2), let us perform the substitution

$$
y_{1}=x_{1}-\pi, \quad y_{2}=x_{2} .
$$

In this way we obtain the following problem

$$
\begin{gathered}
J=1 / 2\left[\left(y_{1}+\pi\right)^{2}\right]_{1.5}+1 / 2 \int_{0}^{1.5} u^{2} \mathrm{~d} t, \\
\dot{y}_{1}=y_{2}, \\
y_{1}(0)=0, \\
\dot{y}_{2}=-\left(y_{1}+\pi\right)+u+y_{2}\left[1-\left(y_{1}+\pi\right)^{2}\right], \\
y_{2}(0)=1 .
\end{gathered}
$$

The initial estimates were chosen as $u=0, \pi=0$. The interval of integration was divided into 50 steps. The algorithm has converged in 3 iterations to the $J=0 \cdot 30323$, $\pi=1.03902$. The converged solution for the Example 1 is given in Table 1.

Table 1.

| $t$ | $y_{1}$ | $y_{2}$ | $u$ |
| :---: | :---: | :---: | :---: |
| 0.00 | $0 \cdot 00000 \mathrm{E}+00$ | $1 \cdot 00000 \mathrm{E}+00$ | $-6.26581 \mathrm{E}-01$ |
| $0 \cdot 15$ | $1 \cdot 28989 \mathrm{E}-01$ | $7 \cdot 12482 \mathrm{E}-01$ | -6.10498E-01 |
| $0 \cdot 30$ | $2 \cdot 12591 \mathrm{E}-01$ | $4 \cdot 01632 \mathrm{E}-01$ | $-5.81324 \mathrm{E}-01$ |
| $0 \cdot 45$ | $2 \cdot 50107 \mathrm{E}-01$ | $1.02659 \mathrm{E}-01$ | $-5.39093 \mathrm{E}-01$ |
| 0.60 | $2 \cdot 44980 \mathrm{E}-01$ | $-1.65173 \mathrm{E}-01$ | $-4.83889 \mathrm{E}-01$ |
| 0.75 | $2.02314 \mathrm{E}-01$ | $-3.98320 \mathrm{E}-01$ | -4.16408E-01 |
| 0.90 | $1 \cdot 26911 \mathrm{E}-01$ | $-6.03270 \mathrm{E}-01$ | -3.38439E-01 |
| $1 \cdot 05$ | $2 \cdot 22014 \mathrm{E}-02$ | $-7.91139 \mathrm{E}-01$ | $-2.53152 \mathrm{E}-01$ |
| $1 \cdot 20$ | $-1.10193 \mathrm{E}-01$ | $-9.74541 \mathrm{E}-01$ | $-1.64951 \mathrm{E}-01$ |
| $1 \cdot 35$ | $-2.70563 \mathrm{E}-01$ | $-1.16624 \mathrm{E}+00$ | $-7.89282 \mathrm{E}-02$ |
| $1 \cdot 50$ | $-4.61071 \mathrm{E}-01$ | $-1.37820 \mathrm{E}+00$ | $0 \cdot 00000 \mathrm{E}+00$ |

In [11] the values $J=0.30549$ and $\pi=1.03820$ were reached within 7 iterations by the method of [12]. Comparing these results one observes faster convergence of the proposed algorithm for the solution of this type of problem.
With the control and the parameter constraints $u \geqq-0 \cdot 4, \pi \leqq 1$ was reached within 3 iterations $J=0.31655, \pi=1$. The converged solution for the Example 1 with constraints is given in Table 2.

Table 2.

| $t$ | $y_{1}$ | $y_{2}$ | $\boldsymbol{u}$ |
| :---: | :---: | :---: | :---: |
| $0 \cdot 00$ | $0 \cdot 00000 \mathrm{E}+00$ | $1 \cdot 00000 \mathrm{E}+00$ | $-4 \cdot 00000 \mathrm{E}-01$ |
| $0 \cdot 15$ | $1 \cdot 32744 \mathrm{E}-01$ | $7 \cdot 61194 \mathrm{E}-01$ | $-4.00000 \mathrm{E}-01$ |
| $0 \cdot 30$ | $2 \cdot 26583 \mathrm{E}-01$ | $4 \cdot 86913 \mathrm{E}-01$ | $-4 \cdot 00000 \mathrm{E}-01$ |
| 0.45 | $2.78648 \mathrm{E}-01$ | $2 \cdot 08859 \mathrm{E}-01$ | $-4 \cdot 00000 \mathrm{E}-01$ |
| 0.60 | $2.90137 \mathrm{E}-01$ | $-5.17519 \mathrm{E}-02$ | $-4 \cdot 00000 \mathrm{E}-01$ |
| 0.75 | $2.64383 \mathrm{E}-01$ | $-2.87520 \mathrm{E}-01$ | $-4 \cdot 00000 \mathrm{E}-01$ |
| 0.90 | $2.04958 \mathrm{E}-01$ | $-5.01941 \mathrm{E}-01$ | $-4 \cdot 00000 \mathrm{E}-01$ |
| $1 \cdot 05$ | $1 \cdot 14440 \mathrm{E}-01$ | $-7.02937 \mathrm{E}-01$ | $-3.46228 \mathrm{E}-01$ |
| $1 \cdot 20$ | $-5.43584 \mathrm{E}-03$ | $-8.94921 \mathrm{E}-01$ | $-2.62924 \mathrm{E}-01$ |
| 1.35 | $-1.54115 \mathrm{E}-01$ | $-1.08830 \mathrm{E}+00$ | $-1.38924 \mathrm{E}-01$ |
| 1.50 | $-3.32345 \mathrm{E}-01$ | $-1.29047 \mathrm{E}+00$ | $0.00000 \mathrm{E}+.00$ |

Example 2. Minimize the cost functional

$$
J=\int_{0}^{1}(x+\pi)^{2} u^{2} \mathrm{~d} t-2 \ln (x(1)+\pi),
$$

subject to the differential constraint

$$
\dot{x}=(x+\pi)^{2} u, \quad x(0)=0,
$$

and parameter constraint $\pi \leqq 1$.
The initial estimates were chosen as $u=1, \pi=0$ and the interval of integration was divided into 100 steps. The algorithm has converged in 6 iterations with $J=$ $=-1.00333$ and $\pi=1$. The converged solution for Example 2 is given in Table 3.

Table 3.

| $t$ | $\boldsymbol{x}$ | $u$ |
| :---: | :---: | :---: |
| $0 \cdot 0$ | $0 \cdot 00000 \mathrm{E}+00$ | 8.29442E-01 |
| $0 \cdot 1$ | $8.92603 \mathrm{E}-02$ | $8.06543 \mathrm{E}-01$ |
| $0 \cdot 2$ | $1.92482 \mathrm{E}-01$ | $7.79291 \mathrm{E}-01$ |
| $0 \cdot 3$ | $3 \cdot 12204 \mathrm{E}-01$ | $7.46683 \mathrm{E}-01$ |
| 0.4 | $4 \cdot 51148 \mathrm{E}-01$ | $7.07574 \mathrm{E}-01$ |
| 0.5 | $6 \cdot 11884 \mathrm{E}-01$ | $6.60717 \mathrm{E}-01$ |
| 0.6 | $7.96141 \mathrm{E}-01$ | $6.05053 \mathrm{E}-01$ |
| 0.7 | $1.00365 \mathrm{E}+00$ | $5 \cdot 40226 \mathrm{E}-01$ |
| 0.8 | $1 \cdot 23073 \mathrm{E}+00$ | $4.67572 \mathrm{E}-01$ |
| 0.9 | $1.46941 \mathrm{E}+00$ | 3.91381E-01 |
| 1.0 | $1.70911 \mathrm{E}+00$ | $3 \cdot 19592 \mathrm{E}-01$ |

The result is in a very good agreement with the analytical solution $J=-1$, $\pi=1, x=\mathrm{e}^{t}-1, u=\mathrm{e}^{-t}$.

## 7. CONCLUSIONS

The conjugate gradient algorithm for the solution of optimal control problems with parameters has been presented in this paper. The solved numerical examples show traditionally good convergence properties of conjugate gradient algorithms.
(Received January 21, 1980.)

## REFERENCES

[1] L. S. Lasdon, S. K. Mitter, A. D. Waren: The conjugate gradient method for optimal control problems. IEEE Trans. Automatic Control AC-12 (1967), 2, 132-138.
[2] L. S. Lasdon, A. D. Waren, R. K. Rice: An interior penalty method for inequality constrained optimal control problems. IEEE Trans. Automatic Control AC-12 (1967), 4, 388-395.
[3] B. Pagurek, C. M. Woodside: The conjugate gradient method for optimal control problems with bounded control variables. Automatica 4 (1968), 5/6, 337-349.
[4] V. H. Quintana, E. J. Davison: Clipping-off gradient algorithms to compute optimal controls with constrained magnitude. Int. J. Control 20 (1974), 2, 243-255.
[5] J. C. Heideman, A. V. Levy: Sequential conjugate-gradient-restoration algorithm for optimal control problems. J. Optimiz. Theory Appl. 15 (1975), 2, 203-244.
[6] H. N. Koivo, R. V. Mayorga: A robust conjugate-gradient algorithm for optimal control problems. Preprints of 7th Congress of IFAC, Helsinki 1978, Vol. 2, 1093-1100. Pergamon Press, Oxford 1978.
[7] D. A. Pierre: Optimization Theory with Applications. Wiley, New York 1969.
[8] N. U. Ahmed, N. D. Georganas: On optimal parameter selection. IEEE Trans. Automatic Control $A C-18$ (1973), 4, 313-314.
[9] A. Miele, J. N. Damoulakis: Modifications and extensions of the sequential gradientrestoration algorithm for optimal control theory. Journal of The Franklin Institute 294 (1972), 1, 23-42.
[10] J. Doležal: Optimal parameter estimation in two-player zero - sum differential games. Trans. of the Eight Prague Conference of Information Theory,..., Vol. A. Academia, Prague 1978, 143-156.
[II] J. Fidler, J. Doležal: On the solution of optimal control problems with general boundary conditions. Research Report ÚTIA ČSAV, No. 956, Prague 1979 (in Czech).
[12] A. Miele, R. E. Pritchard, J. N. Damoulakis: Sequential gradient-restoration algorithm for optimal control problems, J. Optimiz. Theory and Appl. 5 (1970), 4, 235-282.

Ing. Miloš Boček, Ústav teorie informace a automatizace ČSAV (Institute of Information Theory and Automation - Czechoslovak Academy of Sciences), Pod vodárenskou věží 4, 18208 Praha 8. Czechoslovakia.

