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K Y B E R N E T I K A — VOLUME 32 (1996) , NUMBER 1, PAGES 6 3 - 8 0 

RINGS OF SKEW POLYNOMIALS IN ALGEBRAICAL 
A P P R O A C H TO CONTROL THEORY 

J A N J E Z E K 1 

The paper aims at building a mathematical device, generalizing the polynomial ap­
proach in the control theory from time invariant systems to time varying ones. For that 
purpose, the algebraical rings are equipped with some operations more: the shift, the 
difference or the derivation. Based on that, the skew polynomials are defined which are 
non-commutative but satisfy a commutation equation. 

1. INTRODUCTION 

The polynomial approach [3] proved to be a very powerful tool for analysis and 
synthesis of control systems. It considers linear time invariant sytems with input 
and output signals u(t), y(t) satisfying the equation 

A(q)y = B(q)u, (1) 

where A(q), B(q) are polynomials in the derivative or the delay operator q: 

n 

A(q) = J2A*«k> (2) 
fc=0 

the coefficients Ak being real numbers or matrices of them. 
It appears tha t the most important properties of operators are algebraical: they 

form a ring with addition (parallel connection) and multiplication (series connec­
tion). The properties of divisibility, common divisors, coprimeness etc. play a sig­
nificant role. The synthesis of control systems is performed by means of polynomial 
equations. 

This paper aims at building a mathematical device, which makes possible to 
generalize this approach to time varying systems. It is made in a unified way both for 
continuous-time and for discrete-time systems, both for single-input-single-output 
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(SISO) and for multiple-input-multiple-output (MIMO) ones. The coefficients Ak 
are no more constant but functions of time. Some more operations on coefficients are 
necessary, tha t is why the original structure of two rings (the ring 7Z of coefficients, 
the ring V of polynomials over 7Z) must be modified. New operations of shift (delay 
or advance), difference or derivation are defined in 7Z. By means of them, the 
ring V of skew polynomials over 7Z is constructed, generalizing that of polynomials 
from constant coefficients to varying ones. It is interesting to note that V is non-
commutative even for SISO systems but a special commutation equation holds. 

The paper deals not with the control theory itself but with mathematics needed 
for it. So it begins not with time signals and operators acting on them, but with 
abstract algebraical structures. It defines the skew polynomials not as those having 
certain time functions in coefficients but as those satisfying some axioms. This is the 
way how the rings have been defined in mathematics (summarized in Section 2), as 
well as the polynomials over them (in Section 3). Analogically to that , the rings with 
shift and difference are defined in Section 4 and their properties investigated. The 
skew polynomials over them are treated in Section 5. Some special cases: rings with 
shift only and rings with derivation are investigated in Section 6 as well as the skew 
polynomials over them. The proofs are omitted or only the main ideas of them are 
presented, as they are lengthy but straightforward. Afterwards, Section 7 contains 
the use of the mathematical device just developed in the system and control theory. 

The theory of skew polynomials was originated by 0 r e [4]. The rings with deri­
vation were introduced by Raudenbush [5] and are mentioned in various algebra 
books, e.g. [2],[1]. The unified approach for the continuous-time systems and the 
discrete-time ones is new here. 

2. RINGS 

In this section, a well-known material from mathematics is summarized. 

Def in i t ion 1. A ring 7Z (associative, with the identity element) is a set where for 
a, b G 7Z, the operations a + 6 G 7Z, —a £7Z, ab &7Z and the elements 0 G 7Z, 1 G 7Z 
are defined satisfying the following axioms: 

(a + 6) + c = a + (6 + c), (3) 

a + 6 = 6 +a , (4) 

a + 0 = a, (5) 

a + (-a) = 0, (6) 

(ab)c = a(6c), (7) 

a • 1 = 1 • a = a, (8) 

(a + 6)c = ac + 6c, (9) 

a(6 + c) = a6 + ac. (10) 

If moreover 

a6 = 6a (11) 
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holds, the ring is called commutative. 

Example 1. Real numbers, N x N matrices of real numbers. 

Definition 2. A mapping ()* : 1Z —> 1Z' where 1Z, 1Z' are rings is called the mor-
phism if it satisfies 

(a + b)<t> = a* + b*, (12) 

(ah)* = a+b*, (13) 

1* = 1. (14) 

When , , , , , , v 

(ah)* = b^a* (15) 

holds instead of (13), the mapping is called the antimorphism. 

Properties of composed mappings: 

morphism • morphism = morphism, (16) 

morphism • antimorphism = antimorphism, (17) 

antimorphism • morphism = antimorphism, (18) 

antimorphism • antimorphism = morphism. (19) 

3. POLYNOMIALS 

Like the previous sections, this one also summarizes a well-known mathematical 
material. 

Definition 3 . Let 1Z be a ring. A ring V is called the ring of polynomials over 1Z 
if it satisfies the following axioms: 

• There is an injective morphism ()p : 1Z —> V. A convention for simpler writing: 
image 7ZP will be denoted by 1Z, its elements Xp by A. 

• V contains a basis element x which commutes with all X E7Z: Xx = xX. 

• x is not algebraic over 1Z: for finite number of Â  G 1Z, at least one nonzero, 
it is 

£>*,** #0 (20) 
k 

• x generates V over 1Z: for a G V, ex. finite number of coefficients a^ £lZ such 
that 

a = J2^kXk (21) 
k 
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Proper t i es . (Supposing that some V over 71 exists.) The coefficients ak in (21) 
are unique. With all a £ "P, the basis element commutes: xa = ax, and so does its 
mth power xm. The element X £ 71 (more precisely, Xp £ 7ZP) has coefficients 

Xk = X6k , (22) 

using the Dirac notation 6k = < ''' , ~T _ >. Specially 

0k = 0, h = 6k . (23) 

The basis element x has coefficients 

Xk = 6k-i , (24) 

its power xm has (xm)k = 6k—m- The degree of polynomial is defined: for a ^ 0, 
deg a = highest k such that ak / 0; deg 0 = —oo. 

The operations satisfy: 

deg(a + 6) < max(dega, deg 6), (25) 

deg(-a) = deg a, (26) 

dega6 < deg a + deg 6, (27) 

<•+* = {V ::: e,s-e
<iesa}+{Si ::: f , f e g 6 } . (28) 

( -a)* = - a * , (29) 
min(Jk,deg6) min(fc,dega) 

(a6)fc = 2 J afc_/6/ = ] V a/&*-/ • (30) 
( = m a x ( 0 , i - dego ) 7=max(0,A: —degfc) 

A convention for simpler writing: the coefficients ak are augmented by zeros outside 
the interval 0 < k < deg a and the operations written 

(a + 6)* = ajk+6*, (31) 

(ab)k = ^ak-ib} = ^2aibk~l < (32) 

the sum always having only finite number of nonzero terms. 

Illustration. dega = 3, deg6 = 2, dega6 = 5 

(a6)0 = a06o 
(a6)i = ao6i + ai60 

(a6)2 = a062 + ai6i + a260 

(a6)3 = ai62 + a26i + a360 

(06)4 = a262 + a36i 
(a6)5 = a362 
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Proper t i es . (Continuation.) If 1Z is commutative, so is V. For the absolute term, 
(ab)o — ao&o- For the leading term, (a6)dega+deg6 = adega &deg&- If ft is an integrity 
domain, so is V and it holds deg ab = deg a + deg b. 

Theorem 1. For every ring 1Z, there exists a ring V of polynomials over 1Z. 

P r o o f . By construction. Let V be a set of two-sided sequences a(k) £ 1Z, k — 
. . . — 1 , 0 , 1 , . . . such that a(k) ^ 0 only for k > 0, only for finite number of k's. Define 
the operations and the elements 0,1: 

(a + b)(k) = a(k) + b(k), (33) 

0(k) = 0, (34) 

(-«)(*) = -<-(*), (35) 
oo 

(a6)(*) = ^ a(k-l)b(l), (36) 
/ = —oo 

1(*) = <5jfc , (37) 

following the required properties (31), (32), (29), (23). It can be proved that the 
operations are defined properly, i.e. that the sum in the multiplication formula has 
only finite number of nonzero terms, and that the results of all operations are of 
the required form, i.e. they are nonzero only for finite number of &'s. It can be also 
proved that axioms of ring (3)-(10) are satisfied by these operations. Define the 
mapping ()p : 7Z —> V by (\p)(k) = \bk, following (22); it can be proved that it is 
injective morphism. Define the basis element x £ V by x(k) = 8k-i, following (24). 
Its mth power xm is xm(k) = 8k-m- It can be proved that x is not algebraic over 1Z 
and that it generates V over 1Z, the needed coefficients a* in (21) being ak = a(k).D 

Theorem 2. (The extension of morphism/antimorphism.) Let 1Z,1Z' be rings, 
V,V rings of polynomials over them, ()p : 1Z —> V, ()p> : %' -> V injec­
tive morphisms, ()jfc coefficients in bases x,x'. For any morphism/antimorphism 
()'* :1Z -+1Z', there exists an extension morphism/antimorphism ()^ : V —• V, de­
fined by (a^)k = (a*)^, i.e. coefficients of mapped polynomial are equal to mapped 
coefficients. For A £ 1Z, it is (Xp)^ = (A*)p ' , i.e. the diagram 

Ҡ Л Ҡ! 
PÏ ÏP' 

V _, p/ 
(38) 

commutes. Furthermore, if <j> is bijective, so is ip. 

Theorem 3. Given 1Z, the ring of polynomials over it exists uniquely up to iso­
morphism. 

P r o o f . Let V,V be two rings of polynomials over 1Z. The identity mapping 
()' : 1Z —* TZ is isomorphism and so is its extension ()^ : V —• V. • 
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A question arises naturally whether the basis element is unique or whether some 
other element of V has such a property. It appears that the latter is the case. So 
we have a group of basis transformations in V, similarly to that in linear spaces. 

Theorem 4 . In 71, V with x, let T0,Ti £71 commute with all elements of 71, let 
T_~ exist. Then x' — T0 -\- T\x is also a basis element. All such transformations of 
basis form a group. The powers of x get transformed 

л = _Г 
/=0 

тš-lт[xl 
(39) 

In the new basis, the polynomial a has new coefficients a'k. The coefficients get 
transformed contravariantly to the powers of a;: 

dega 
ak = _£ 

l=k 

rpl—krpk I 
i0 i 1 a, . 

(40) 

Illustration. 

,/з 

a0 

cti 

«2 
= 

. ӣз 

1 1 
T 0 71 
T 2 2T 0 Ti T 2 

T0

3 ЗT0

2Ti ЗToTf2 T 3 

X 

x2 

. x 3 . 

1 T 0 T0

2 T 3 

Ti 2T 0Ti ЗT0

2Ti 
T 2 З T 0 T 2 

T 3 

a'0 

a[ 

a_ 

- a з _ 

The transformation matrix for coefficients is inverse and transposed to that for 
powers of x. 

4. RINGS WITH SHIFT, DIFFERENCE OR DERIVATION 

In this section, a generalization of rings is defined, which is capable of describing 
the varying coefficients, for discrete-time systems. It is made by adding two new 
operations: the shift ()^ and the difference ( ) v . The motivation is in the delay and 
the delayed difference of time functions f(t), t = . . . —2T, —T, 0, T, 2 T . . . : 

fҶt) = f(t-т), 

ґ(t) = m^Џzil 
(41) 

(42) 

T being a sampling period. In (41), (42), the difference can be expressed by the shift 
or vice versa. However, a more elegant formulation can be obtained by ignoring this 
dependance and by defining the both operations axiomatically. 



(a + b)< = a< + b<, 

(ab)< = a<b<, 

0< is bijective, 

(a + 6)v = a v + 6 v , 

(a6)v = a v 6 + a<6v = av6< + a6 v 

(a<)v = (av)<. 
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Definition 4 . A ring 1Z is called the ring with shift and difference if it is equipped 
by two operations more: for a £ 1Z, the shift â  E 1Z and the difference a v E 1Z, 
satisfying: 

(43) 

(44) 

(45) 

(46) 

(47) 

(48) 

Example 2 . Two-sided sequences a(t) of real numbers, t = ... —IT, —T, 0, T, 2 T . . . 
with pointwise addition and multiplication and with (41), (42). 

Example 3. Similarly, finite sequences a(t), t = 0, T... (N-1) T, but in (41), (42) 
with t — T replaced by t — T mod NT. Equivalently: periodic sequences with the 
period NT. 

Proper t ies . 0̂  = 0, 1̂  = 1, n< = n for natural n, (—a)< = —a<, (a-1)< = (a<)-1 

if a-1 exists, the m-times iterated shift a< has also properties of shift. 0V = 0, l v = 
0, nv = 0 for natural n, ( - a ) v = - a v , ( a " 1 )* = -(a^a^a'1 = -a~1av(a<)-1 

if a - 1 exists. It holds a v (6 — 6 )̂ = (a — a^)6v. The higher shifts commute with the 
higher differences: ( a v )< = (a< ) v . The higher differences satisfy: 

(a + t ) v ™ = a v m + a v " , (49) 

W V " - £ . ( « ) «V"""C"»V" = £ ( ™ ) av"-"6v"<-". (50) 
n=0 ^ ' n=0 ^ ' 

(proof by induction). The inverse of the delay shift ()< is the advance shift ()z, it 
satisfies (az)< = a, (a<)z = a. The delayed difference ( ) v gives raise to the advanced 
difference ( ) A by aA = azV'. The couple of operators ( ) A , 0 2 has the same properties 
as the couple ( ) v , ()<. This is the duality of the theory: every theorem remains valid 
when exchanging the delayed operators with the advanced ones. 

Definition 5. A mapping ()* : 1Z —• 1Z' where 7^,7^' are rings with shift and 
difference, is called the morphism if it satisfies (12)-(14) and 

(51) 

(52) 

(а<f = (аф)<, 

( a v ) * = (а*f. 

When (15) holds instead of (13) and 

(а<f = ІЃY* 
(аV)ф = -(«ФЃ 

(53) 

(54) 

instead of (51), (52), the mapping is called the antimorphism. Note that it changes 
the sign of difference and exchanges the delayed operators with the advanced ones. 
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Theorem 5. Let T0, Ti 6 1Z commute with all elements of 1Z, let T0
C = T0, Tx

c = 
Ti, T v = 0, T v = 0. Then ( ) v \ defined by a v ' = T0(a - a<) + T l Q

v is also a 
difference in 1Z, compatible with the shift ()c . 

5. SKEW POLYNOMIALS 

In this section, the skew polynomials are constructed over a ring with shift and dif­
ference. The way is analogous to constructing the polynomials over a ring, described 
in Section 3. 

Definition 6. Let 1Z be a ring with shift and difference. A ring V is called the 
ring of skew polynomials over 1Z, if it satisfies the following axioms: 

• There is an injective morphism Q p : 1Z —> V. A convention for simpler writing 
like that in Definition 3. 

• V contains a basis element x which satisfies a commutation equation 

xX = Av + Xcx (55) 

with all X £ 1Z 
• x*> = x 

• xv = 0 
• x is not right algebraic over 1Z: for finite number of Xk E 1Z, at least one 

nonzero, it is 

X>**/0 (56) 
k 

• x right generates V over 1Z: for a £ V, ex. finite number of left coefficients 
ak G 1Z such that 

a = ^2akx
k. (57) 

k 

Proper t ies . (Supposing that some V over 1Z exists.) The left coefficients (57) are 
unique. The commutation equation can be also written in the form 

Ax = - A A + x A 2 . (58) 

With all a £ V, the basis element also satisfies the commutation equations 

xa — a + a c x , (59) 

ax - -aA + xaz. (60) 

Its mth power xm satisfies the higher comutation equations 
m / 

m *m" = E „ K"""cv, (61> 
n=0 ^ ' 

axm = $ 3 ( T ) ( - l ) m ~ n z n a A m " n " n - (62) 

(proof by induction). 

n 
n = 0 x 
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Illustration. 

a = a 
xa = a v + a*>x 

x2a = a y 2 + 2av<x + a? x2 

x3a = a v 3 + 3av^x + 3 a v < V + 

a = a 
,A ax = — a + xa 

ax2 = aA2 - 2xaAz + 

(63) 

(64) 

iA + ЗxaA z - Зx2aAz + x3az 

Properties. (Continuation.) The basis element is neither left algebraic over 7Z: 
for finite number of /ifc 6 7Z, at least one nonzero, it is Y^k xkfik ^ 0. It also left 
generates V over 71: for a E V, ex. finite number of [a]fc 6 72- (n'gnt coefficients) 
such that a = ]Cfc.c

fc[a]fc. Notation: the left coefficients ()k, the right ones [] fc. 
Element A £ 72. has coefficients (A)fc = [A]fc = A<$fc. Specially (0)fc = [0]fc = 0, (l)fc = 
[l]fc = 8k- The basis element x has coefficients (x)k = [x]k = fa-i, its power 
xm has (xm)fc = [xm]k = Sk-m- The degree of a skew polynomial is defined: for 
a ^ 0, dega = highest k such that (a)fc ^ 0 (equivalently, [a]fc ^ 0); degO = —oo. 
Conversions between the left and right coefficients are: 

w* = £ í П (-i)'~*(W0 
ř=гJЬ ^ ' 

м» - E(0 ( [ a ] í ) v г _ f c c f c -

(65) 

(66) 

For the leading coefficients: 

(a)dega = ([a]dega)C a e S a- (68) 

[a]dega = ((a)dega)^ "* , (67) 
» d e g a 

Illustration, deg a = 3 

[a]o = (a)o - ( ( a ) i ) Л + ( W 2 ) Л 2 - ((a)з) Л 

[a]i = (Шz - 2 ( ( a ) 2 ) Л г + 3 ( ( a ) з ) л 2 г 

[a]2 = (Шz2 - 3((a)з) Л ' 2 

[a]з = ((а)зf 

(a)o = [a]o + ( H i ) V + (W 2)V 2 + (Nз) v 3 

(a) i = ([a]i)C + 2([a]2)V C + 3(Wз)v2c 

(a) 2 = (ШC + 3([a]з)V c 2 

(a)з = ([a]з)ç3 

(69) 

(70) 
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Properties . (Continuation.) The operations satisfy 

deg(a + 6) < max(deg a, deg 6), 

deg(-a) = deg a, 

dega6 < deg a + deg 6, 

dega^ = deg a, 

deg a* = deg a, 

dega v < deg a, 

degaA < deg a, 

(a + 6)fc = | (a)fc 
0 

k < deg a 
else + 

(b)k 
0 

k < deg 6 
else 

(-a) fc = -(a)fc , 
min(fc,dega) deg a 

(•»)* £ £ 
m=max(0,fc — degfc) J=m 

(Aa)fc = A(a)fc , 

(a<)fc = ((a)k)C, 

(az)k = ((a)k)z, 

(aV)fc = ((a)fc)
V, 

(aA)fc = ((a)k)
A , 

I 
m (a)i((b)k-mУ 

[a + 6]fc = •W Щk 
0 

/ 
m (-l) '- m ([a])*-mУ 

[a]fc . . . k < deg 
0 . . . else 

[-a]fc = -[a] f c , 
min(A;,deg6) deg b 

M* £ £ 
m=max(0,ifc —dega) l=m 

[aA]fc = [a]fcA , 

[a% = ([a]k)C, 

[az]k = ([a]k)z, 

[aV]fc = ([a]fc)V, 

[aA]fc = ([a]fc)A. 

A convention for simpler notation, like that for polynomials: 

(a + 6)fc = (a)fc + (6)fc , 

(a6)fc = x:E(m)(aM(6H-)v"m< 

m / ^ ' 

[a + 6]fc = [a]fc + [6]fc , 

k < deg 6 
else 

(71) 

(72) 

(73) 

(74) 

(75) 

(76) 

(77) 

(78) 

(79) 

(80) 

(81) 

(82) 

(83) 

(84) 

(85) 

(86) 

(87) 

[b]i, (88) 

(89) 

(90) 

(91) 

(92) 

(93) 

(94) 

(95) 

(96) 
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[•»]. = £ £ 
m I 

(-1)'-"ҶW*-, . Д ' 
'Иi 

the sums always having only finite number of nonzero terms. 

Illustration, dega = 3, deg6 = 2, dega6 = 5 

(a6)0 = (a)o(6)0 + (a)i(6) v + (a) 2 (6)f + Из(6)Г 

(aб)i = (a)0(6)i + (a)i(6) v + (a) 2 (6)f + 

+ (a)i(6)C + 2(a)2(6)V C + 3 

(a6)2 = (a)0(6)2 + (a)i(6)ľ + (a) 2 (6)f + 

+ (a)i(6)C + 2(a)2(6)VC + 3 

+ И2(6)C

0

2 + 3 

(a)!(6)C + 2(a)2(6)V C + 3 

+ (o)2(6)íЯ + 3 

+ 

(a6)3 = 

(a6)4 = 

(a6)5 = 

Шь)ï + з 
+ 

a)з(6)? 

o «)з(6)ГC 

o)з(6)f 

«)з(6)fC 

a^з^б)^2 

«)з(6)f C 

«)з(6)ГC2 

«)з(6)Co3 

o)з(6)V c 2 

«)з(6)f 

Wз(6)í 

[o6]o = WoHo - [a]f[6]i + [a]f [6]2 

[a6]i = [a]iHo - Wf[6] i + [a]f2[6]2 

+ WSHl - 2[а]0

Лг[6]2 

[a6]2 = [a]2[6]0 - [a]f[6]i + [a]f2[6]2 

+ WíWi - 2[a]f*H2 

+ Wš2[6]2 

[a6]3 = [а]зИо - [a]3

A[6]i + [а]3

Д2[6]2 

+ WSHl - 2[а]2

Лг[6]2 

+ Wf[6] 2 

[a6]4 = 

[a6]5 = 

WзИi - 2[a]3

Лг[6]2 

+ WY2Щ2 

WIЭИ2 

(97) 



74 J. JEZEK 

P r o p e r t i e s . (Continuation.) Ring V is not generally commutative, even if 1Z is. 
For the leading term: 

(a/f)dega+deg6 = (a)dega((&)deg&)C , (98) 

[a6]dega+deg6 = ([a]deSaY [b]degb- (99) 

If 1Z is an integrity domain, so is V and it holds deg ab = deg a + deg b. Note however 
that in Examples 2,3, 1Z is not an integrity domain, neither is V. 

T h e o r e m 6. For every ring 1Z with shift and difference, there exists a ring V of 

skew polynomials over it. 

P r o o f . By construction, like in proof of Theorem 1, but with modifications: 

(ab)(k) = E E f D ^ ^ - ^ ' T (100) 

a<(k) = (a(k))<:, (101) 

av(k) = (a(k))v. (102) 

When proving the axioms of ring, (43)- (48) must be also proved. For mapping 
()p : 1Z -> V, (51), (52) must be also proved. • 

T h e o r e m 7. (The extension of morphism.) Let TZ,1Z' be rings with shift and 
difference, V ,V rings of skew polynomials over them, ()p : 7£ —> p, ()p .IZ'^V 
injective morphisms, ()k left, []k right coefficients in bases x,x'. For any morphism 
()^ : 1Z —> 1Z', there exists an extension morphism ()^ : V —• V, defined by 
(d^)k = ((a)k)^, i.e. the left coefficients of the mapped skew polynomial are equal 
to the mapped left coefficients. It is (\p)^ = (A^) , i. e. the diagram (38) commutes. 
An equivalent definition of ()^ is [a^]k = ([a]k)^, i-e. the right coefficients of the 
mapped skew polynomial are equal to the mapped right coefficients. Furthermore, 
if ()* is bijective, so is ()*. 

T h e o r e m 8 . (The extension of antimorphism.) With the assumptions of Theorem 
7, for any antimorphism ()^ : 1Z —* 1Z', there exists an extension antimorphism 
Qi> . V -+ V', defined by [a^]k = ((a)k)^, i.e. the right coefficients of the mapped 
skew polynomial are equal to the mapped left coefficients. It is (A p )^ = (A^y . 
the diagram (38) commutes. An equivalent definition of ()^ is (a^)k = ([a]k)^, 
the left coefficients of the mapped skew polynomial are equal to the mapped right 
coefficients. Furthermore, if Q^ is bijective, so is ( )^ . 

T h e o r e m 9 . Given 1Z, the ring of skew polynomials over it exists uniquely up to 
isomorphism. 

P r o o f . Like tha t of Theorem 3. 

It appears tha t the ring V of skew polynomials over 1Z has the basis transforma­
tion property, similar to that of the ring of polynomials (see Theorem 4). However, 
in these transformations, the operation of difference ( ) v in 1Z gets also transformed. 

ì . e . 

i .e. 
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Theorem 10. In 7Z,V with x, let Tb,Ti £ TZ commute with all elements of 1Z, let 
T\ exist, let T0 = To, Tf = 31, T0

V = 0, T v = 0. Then x' = To + Tix is also a basis 
element, when a new difference ( ) v is used in 1Z, defined by Av = To(A —A )̂ + TiAv 

(see Theorem 5). All such transformations of basis form a group. The powers of x 
get transformed by (39), the left and right coefficients of a skew polynomial by (40). 

6. SPECIAL CASES 

The first special case is a ring 1Z with shift and difference, where a v = 0 for every a. 
The axioms of difference (46), (47), (48) are satisfied but the difference plays no role 
in this case. The ring 1Z is with shift only, defined by the axioms (43), (44), (45). 
The Examples 2,3 with (41) are of this case. The morphism/antimorphism of such 
rings is defined by (12), (13), (14), (51) or by (12), (15), (14), (53). 

The ring V is also with shift only, the commutation equations (59), (60) being 

xa = a^x, (103) 

ax = xaz, (104) 

the higher commutation equations (61), (62) 

xma = a^xm, (105) 

axm = xmazm. (106) 

The conversions between left and right coefficients (65), (66) are 

W* = ((a)kYk, (107) 

(a)k = ([a]kf, (108) 

the formulae for multiplication (95), (97) 

(ab)k = X>),((*)4-0C\ (109) 

[ab]k = £>]*- . )* ' [% (HO) 

(ab)0 = (a)o(b)0 

(aб)i = (a)o(b)i + ШЬ)Í 
(ab% = WoWa + (a)i(b)ì + (ah(b)Ç 
(ab)3 = Шb)i + (ah(b){2 + ШЬ)Ì 
(ab)4 = Шb)Ç + (a)з(b)í 
(ab)5 = (a)з(b)î 

[ab]0 = WoWo 
[ab]г = WSWi + WiWo 
[ab]2 = Wo3W2 

+ WíWi + W2W0 
И з = WťWя + W5Wi + WзWo 
[ab]4 = wťw. + WšWi 
[ab]s = wŕw. 
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The second special case is a ring TZ with shift and difference, where a^ = a for 
every a. The axioms of shift (43), (44), (45), (48) are satisfied but the shift plays no 
role in this case. The ring TZ is with difference only, which is called derivation and 
denoted ()p. A ring with derivation is defined by the following axioms 

(a + b)p = ap + bp, (111) 

(ab)p = apb + abp. (112) 

It is motivated by a derivative of time function f(t), t real, —oo < t < oo: 

fp(t)=±M. (113) 

E x a m p l e 4 . Functions f(t) of real variable —oo < t < oo, having derivatives of 
all order, with pointwise addition and multiplication and with (113). 

E x a m p l e 5. Similarly, functions f(t) ofO<t<L with constraints d m / ( 0 ) / d t m = 
dm f(L)/dtm for all m. Equivalently: functions on a circular manifold, once more 
equivalently: periodic function with the period L. 

* 

The properties of higher derivations (49), (50) are 

(a + b)pm = aP
m+bpГП, (114) 

m / \ 

W" = E ľ к >"• (И5) n 
n=0 ч 

The morphism/antimorphism of rings with derivation is defined by (12), (13), (14) 
and 

(ap)* = (a*)p, (116) 

or by (12), (15), (14) and 
K hK , K ' (ap)* =-(a*)p. (117) 

The ring V is also with derivation, the commutation equations (59), (60) being 

xa = ap + ax, (118) 

ax = —ap + xa, (119) 

the higher ones (61), (62) 

xma = EfTV"1 '̂ ( 1 2 °) 
n=0 ^ ' 

= E ( ^)(-l)m-n^p m""- (121) ax 
n 

n=0 
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The conversions (65), (66) are 

[а k E(ł

k)ы)'-Ч(а)òP'~k, (122) 
ř=jfe 

deg а 

k 
l-k 

the formulae for multiplication (95), (97) 

и * = E ( l )(Шpl'k, (123) 

(*b)k = E S ( m ) ( a M W * - m ) p , " m , (124) 

[«&]* = E E ( m ) ( - 1 ) / " m ( W * - m ) p " m M / - (125) 
m ; 

(a6)0 = (a)o(6)0 + (a)i(6)? + (a)2(6)S2 + (a)3(6)S3 

(a6)x = (a)o(6)i + (a)!(6)Ç + (a)2(6)f + (a)3(6)f 
+ (a)i(6)0 + 2(a)2(6)S + 3(a)3(6)S2 

(a6)2 = (a)0(6)2 + (a)i(6)? + (a)2(6)S2 + (a)3(6)S3 

+ (a)i(6)i + 2(a)2(b){ + 3(a)3(6)f 
+ (a)2(6)o + 3(a)3(6)S 

(a6)3 = (a)1(6)2 + 2(a)2(6)S + 3(a)3(6)S2 

+ (a)2(6)i + 3(a)3(6)? 
+ (a)3(6)o 

3(a)3(6)S 
(ah(b)i 
(«)3(6)2 

(аb)s = (a)а(6)а + 

(a6)5 = 

[a6]0 = = WoMo - WSMi + WS2M2 

[a6]i = = WiMo - WÏMi + Wťfflа 
+ [aloffli - 2[a]5Mа 

[a6]2 = = WаMo - W5Mi + Wťffl-
+ WiMi - 2WJffl2 

+ WoMa 
[a6l3 = [al3[6l0 - WŠMi + Wťffl-

+ Waffli - 2WSM2 
+ WiMa 

[a6]4 = WaMi - 2WSM2 
+ W2M2 

[a6]5 = [a]3[6l2 
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7. APPLICATION IN SYSTEM AND CONTROL THEORY 

In the system and control theory, the rings play a role as rings of operators, act­
ing on signals. The signals (time functions) form a linear space over a field (real 
numbers). In the discrete-time case, the signals are two-sided sequences y(t), t = 
... —IT, —T, 0, T, 2T . . . . The basic operators are that of shift (: 

Cm = y(t - T) (126) 

and that of difference V: 

The time invariant systems are described by the equation (1) where A, B are poly­
nomials in ( or in V, coefficients Ak, Bk being real numbers. 

For time varying systems, the coefficients are functions of time Ak(t), Bk(t), t = 
... —IT, —T, 0, T, 2T . . .. They form a (commutative) ring with shift (p and differ­
ence ( ) v , given by (41), (42). The operators A, B form the ring V of skew polyno­
mials over 71, the role of the element x played by the operator V. For a coefficient 
a(t), the equality of signals 

V[a(t)y(t)} = a*(t)y(t) + a<(t)Vy(t) (128) 

means the equality of operators 

Va(t) = av(t) + ac(t)V. (129) 

Now it is clear that V does not commute with a(t) but satisfies the commutation 
equation (59). 

Alternatively, the operators A, B can be thought as skew polynomials of the 
element x', whose role is played by the operator (. From (126), (127), we have 
C = 1 — TV, i.e. in the language of Theorem 10, x1 = 1 — Tx. So the corresponding 
new difference V is zero, the ring is with shift only. For a coefficient a(t), the 
equality of signals 

([a(t)y(t)} = a<(t)(y(t) (130) 

means the equality of operators 

(a(t) = a<(t)(, (131) 

with accord to the commutation equation (103). 
The transformations (39) between the powers of ( and V are 

<* = E ( /V- T V ) ' ' (-32) 

V* = ^ F E O )(-<)', (133) 
/=0 v J 
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the transformations (40) between the left/right coefficients a^ in V and a'k in £ are 

dega f v 

«* = (-T)* E ( J ) a<> (134) 
dega / v 

•i = ( - D ' E l i l w - <135) 
Note tha t our general approach in Sections 4,5 can cover a case of nonuniform 
sampling (T ^ const) as well. 

In the continuous-time case, the signals are functions of real variable y(t), —oo < 
t < oo of some class, say, piecewise continuously differentiable of all orders, where the 
Dirac impulses <!>(m) are also allowed in the discontinuity points. The basic operator 
is tha t of (distributive) derivative p: 

py(t) = dj§- (136) 

For t ime varying systems, the coefficients are functions of real variable A(t), B(t), 
—oo < t < oo, say, continuously differentiable of all orders. They form a (com­
mutative) ring with derivation ()p given by (113). The operators A, B are skew 
polynomials in p. For a coefficient a(t), the equality of signals 

p[a(t) y(t)] = ap(t) y(t) + a(t) p y(t) (137) 

yields the equality of operators 

pa(t) = ap(t) + a(t)p (138) 

explaining the commutation equation (118). 
The transformations in Theorems 5,10 having To = 0 are p' = T\p, ap = 

Tia p .They correspond to transformations of time: given a function t(t'), monotonic 
anJ differentiable of all orders, it is -£- = 4p- • 4-, i .e. T\ = -sp-. 

A comment is necessary in this place. The signals and operators are considered 
here in the two-sided infinite horizon —oo < t < oo. For a one-sided one 0 < t < oo 
or for a finite one 0 < t < L, further modifications of rings and polynomials are 
necessary. 

For LQ control problems, the adjoint operator a* plays an important role. It is 
defined a*(() = a ( £ - 1 ) or a*(p) = a(—p). The operation ()* is an antimorphism 
(15) in the ring of operators. This is why the antimorphisms have been treated in 
this paper. 

(Received November 16, 1994.) 
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