Kybernetika

Ludvík Prouza

Appendix to the article "On a detection method for known finite sequences"

Kybernetika, Vol. 15 (1979), No. 6, (464)--467
Persistent URL: http://dml.cz/dmlcz/125247

Terms of use:

© Institute of Information Theory and Automation AS CR, 1979
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

Appendix to the Article "On a Detection Method for Known Finite Sequences"

Ludvík Prouza

Abstract

Some useful relations for thresholds and detection probabilities are shown for the CFAR quadrature channel detection of finite sequences. Numerical results obtained from the noncentral F-distribution are given for some values of false alarm probability, signal/noise ratio, and inversion filter length.

1. INTRODUCTION

In [1], there has been noted that for the quadrature channel detection scheme, the method described represents a generalization of the Siebert CFAR detector [2].

In this Appendix some useful relations will be given and, applying the formulas of [3], some numerical results of computing the detection probabilities will be shown.

2. SOME FORMULAS

For the quadrature channel detection, there may be shown easily that the expres$\operatorname{sion}(8)$ of $[1]$ is to be replaced by

$$
\begin{equation*}
0 \leqq \frac{\left|C_{T}\right|^{2}}{\sum_{i=0}^{N+h}\left|C_{i}\right|^{2}} \leqq 1 \tag{1}
\end{equation*}
$$

where $\left\{C_{n}\right\}$ is the complex output sequence (signal plus noise) of the inversion filter. There is

$$
\begin{equation*}
\left|C_{n}\right|^{2}=C_{n(1)}^{2}+C_{n(2)}^{2}, \tag{2}
\end{equation*}
$$

where $C_{n(1)}$ and $C_{n(2)}$ are the respective quadrature components (real and imaginary parts).

For "good" finite sequences, there has been stated in [1] that (now with complex terms) the correlation coefficients

$$
\begin{equation*}
\varrho\left(c_{i}, c_{j}\right)=\frac{\bar{a}_{0} a_{j-i}+\bar{a}_{1} a_{j-i+1}+\ldots+\bar{a}_{N-j+i} a_{N}}{\sum_{i=0}^{N}\left|a_{i}\right|^{2}} \tag{3}
\end{equation*}
$$

are $\ll 1$ for $i \neq j,\left\{a_{i}\right\}(i=0, \ldots, N)$ being the weighting sequence of the inversion filter. With this supposition, the numerator in (1) possesses (for the noise alone, supposing that it is Gaussian) approximately the χ^{2} distribution with 2 degrees of freedom and the noncentral χ^{2} with 2 degrees of freedom for the signal plus noise input. Analogous conclusions are true also for the denominator of (1).

For a prescribed false alarm probability $P_{f a}$, the threshold Z for (1) will be computed from

$$
\begin{equation*}
(1-Z)^{N+h}=P_{f a}, \tag{4}
\end{equation*}
$$

where $h+1$ is the number of terms of the transmitted sequence.
For $N+h \gg 1$, there is approximately

$$
\begin{equation*}
Z=\left(2,30 \log \left(1 / P_{f a}\right)\right) /(N+h), \tag{5}
\end{equation*}
$$

where \log is the common logarithm.
Further, the formulas of [3] may be used substituting therein

$$
\begin{equation*}
a=1, \quad b=N+h, \quad \gamma=(\mathrm{S} / N)_{o}, \quad x=Z, \tag{6}
\end{equation*}
$$

where $(S / N)_{o}$ is the signal/noise ratio at the output of the inversion filter. One gets (with (4))

$$
\begin{equation*}
P(Z)=P_{f a} \cdot b x \cdot \mathrm{e}^{-\gamma} \cdot \Phi(b, x, \gamma) \tag{7}
\end{equation*}
$$

where
(8) $\Phi(b, x, \gamma)=1+\frac{1+b}{2} x\left(1+\frac{\gamma}{1!}\right)+\frac{1+b}{2} \cdot \frac{2+b}{3} x^{2}\left(1+\frac{\gamma}{1!}+\frac{\gamma^{2}}{2!}\right)+\ldots$.

Finally, the detection probability is

$$
\begin{equation*}
P_{a a}=1-P(Z) . \tag{9}
\end{equation*}
$$

The signal/noise ratio at the input of the inversion filter is

$$
\begin{equation*}
(S / N)_{i}=\gamma \cdot \frac{\sum_{i=0}^{N}\left|a_{i}\right|^{2}}{c_{T}^{2}} . \tag{10}
\end{equation*}
$$

There is seen by inspection of (5), (7), (8) that for $N+h \gg 1$, there holds approximately

$$
\begin{equation*}
P_{d a}=f\left(P_{f a}, \gamma\right), \tag{11}
\end{equation*}
$$

that is $P_{d a}$ is function of $P_{f a}$ and $(S / N)_{o}$ only.

3. SOME NUMERICAL RESULTS

Often, about 10 detection results are used in a second threshold detector, and for definite decision, $P_{f} \doteq 10^{-6}, P_{d} \doteq 0,9$ are used. The corresponding $P_{f a}$ and $P_{d a}$ are about 0,01 and $0,6-0,8$.

In what follows, some numerical results computed from (7) will be shown

Tab. 1.

$P_{f a}=0.005$				
$N+h$	Z	$(S / N)_{0}(\mathrm{~dB})$		
		6	8	10
10	0.41	$0 \cdot 27$	0.50	0.78
20	0.23	0.33	0.59	0.86
30	$0 \cdot 16$	$0 \cdot 35$	$0 \cdot 62$	0.88
40	$0 \cdot 12$	$0 \cdot 36$	0.63	0.89
50	$0 \cdot 10$	0.37	0.64	0.89
100	0.052	0.38	0.66	0.90
200	0.026	0.39	0.66	0.91
300	0.018	0.39	0.67	0.91

Tab. 2.

$P_{f a}=0.02$				
$N+h$	Z	$(S / N)_{0}(\mathrm{~dB})$		
		6	8	10
10	$0 \cdot 32$	0.48	0.72	0.92
20	$0 \cdot 18$	0.53	0.77	0.95
30	$0 \cdot 12$	0.55	0.79	0.95
40	0.093	0.56	$0 \cdot 80$	0.96
50	0.075	0.56	$0 \cdot 80$	0.96
100	0.038	0.57	0.81	0.96
200	0.019	0.58	0.82	0.96
300	0.013	0.58	0.82	0.96

In both tables, the validity of (5), (11) may be checked.

4. CONCLUDING REMARKS

For $P_{f a}=0.01$ and 0.05 , results analogous to those of preceding tables may be obtained also from charts of the noncentral F-distribution [4], [5]. It is to be noted that " Φ " of these charts is defined as follows

$$
\begin{equation*}
" \Phi "=\sqrt{ }\left(\frac{2}{3} \gamma\right) \tag{12}
\end{equation*}
$$

(γ from (6)).

ACKNOWLEDGEMENT

For a program to compute (7) and for the numerical results in Tables 1, 2, the author is indebted to Ing. J. Beneš, CSc.
(Received February 26, 1979.)
[1] L. Prouza: On a detection method for known finite sequences. Kybernetika 14 (1978), 6, 421-428.
[2] W. M. Siebert: Some applications of detection theory to radar. 1958 IRE Nat. Conv. Rec., N. Y., March 24-27, 1958, Pt 4, 5-14.
[3] G. H. Robertson: Computation of the noncentral F-distribution (CFAR distribution). IEEE Trans. AES-12 (1976), 5, 568-571.
[4] E. S. Pearson, H. O. Hartley: Charts of the power function for analysis of variance tests, derived from the noncentral F-distribution. Biometrika 38 (1951), 112~130.
[5] J. Janko: Statistical Tables. (In Czech.) NČSAV, Prague 1958.
RNDr. Ludvik Prouza, DrSc., Tesla - Ústav pro výzkum radiotechniky (Institute of Radioengineering), Opočinek, 53331 p. Lány na Dûlku. Czechoslovakia.

