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The Continuous Dynamic 
Robbins-Monro Procedure 

VÁCLAV DUPAČ 

The proving methods developed in the book by Nevel'son and Has'minskij [4] are utilized 
to prove the asymptotic normality of the multidimensional continuous dynamic Robbins-Monro 
procedure, under assumptions similar to those usually made in the theory of stochastic approxim­
ation. 

1. Suppose the zero point of a regression function is a time-varying parameter, 
its evolution law being known to certain extent; the Robbins-Monro stochastic 
approximation procedure can be then adapted to track this moving point. We shall 
consider the continuous-time case (investigated already by Cypkin [1] from the view­
point of adaptive systems theory). Exploiting the proving methods developed (for 
the non-dynamic case) in Nevel'son and Has'minskij [3], [4], we obtain results 
concerning mean-square convergence, the rate of a.s. convergence, and asymptotic 
normality of the procedure. 

2. We shall make the following assumptions: 

(i) R°(t, x), a°(t, x), 1 :£ r ^ k, are continuous mappings of [t0, +co) x E, 

into Et; t0 > 0. 

(ii) For every bounded region D c [f0, + co) x £,, there is a KD > 0 such that 

\R°(t, x) - R% y)\ + i\o?(t, x) - c?(t, y)\ g KD\x - y\ ' 

everywhere in D. 

(iii) x = 0 is the unique zero point of R°(t, x) for all t ^ t0. 

(iv) There is a positive definite matrix C and a 2 > 0 such that (CR°(t, x), x) g 
S -?{Cx, x), for all x eE„ t > t0. 



(v) £ \a°r(t, x)\ = K(\ + |x|), for all x e E„ t = t0, and some K > 0. 
r = l 

(vi) £,r(t), 1 = r = k, are independent (standard) Wiener processes, consistent 
with a non-decreasing family {J^r, / = t0} of c-fields of events. 

(vii) Q(t) and q(t), 0(t) are matrix-valued and vector-valued functions, respectively; 
Q, q continuous, 9 differentiable, satisfying 

d8(t)/dt = Q(t) 6(t) + q(t), t = t0; 

Q is known, R°, ar, q, 6 are unknown in general, 

(viii) R(t, x) = R°(t, x - 6(t)), ar(t, x) = a°r(t, x - 0(t)), 1 £ r = k. 

(ix) a(t) is a (given) positive function, t = t0. 

(x) Xx(t) is the regular solution of the stochastic differential equation 

dX(t) = Q(t) X(t) df + a(t) (R(t, X(t)) dt + £ar(t, X(t)) dQr(t)), t = t0 , 

with the initial condition X(t0) = x, x 6 Et. 
This is the dynamic Robbins-Monro procedure for tracking 6(t), corresponding 

to a situation, when at time t, the values of R(f, x) are observable with experimental 
A; 

errors £ ar(t, x) £r(t); the term Q(t) X(t) dt is a correction for trend in 9(t). 
r= ! 

Theorem 1. Under the assumptions (i) — (x) and 

[" a(t)dt = +co , \Q(t)\ = o(a(t)), \q(t)\ = o(a(t)) for t-*co', 
J to 

we have 

Xx(t) - 0(t) -> 0 for f -> oo , 

in the mean square. 

Further assume: 

(xi) a(t) = a\f, a > 0,1/2 < « < 1. 

(xii) |e(0| = O(inKt)| = O( l / r 3 n t -^ 
(xiii) R°(f, x) = Bx + c5(f, x), j<5(r, x)| = o(\x\) for x -* 0, uniformly in t e 

e [f0, + co); B is a matrix such that all its eigenvalues have negative real parts. 

(xiv) lim a°r(t, x) = s, exists. 
( ->oc,x-»0 

(xv) lim t3*/2q(t) = qx exists (with aw = 0 if \q(t)\ = o(t~3:t/1)). 



Theorem 2. Under the assumptions (i)-(xii), we have for any y, 0 g; y < a - 1/2, 

f(Xx(t) - 0(f)) -» 0 a.s. for t -> oo . 

Theorem 3. Unter the assumptions (i) — (xv), the asymptotic distribution of 
fa/2(X*(f) - 0(f)) for f -*• oo is normal with mean value a~lB~lqyD and covariance 

fee fc 
matrix a efl'SeBTt' dv, with S = £ srsj. 

Jo r - l 

Remark. The conditions (vii), (xii), (xv) are satisfied especially if 0(f) = btQ + c 
(Q a known matrix of constants, b, c unknown vectors) and a = 2/3. The differential 
equation (vii) then becomes d0/df = Qt~l 0(f) - Qct~\ i.e., Q(t) = Qt~\ q(t) -
= ~Qct~l, qa, = -Qc. If Q = I, we have the linear trend in 0 : 0(f) = bt + c. 

3. P roof of T h e o r e m 1, Subtract d0(f) from both sides of the equation (x); 
using (vii) and denoting Z(t) = X(t) - 0(f), z = x - 0(fo), we get 

(1) dZ(f) = Q(f)Z(f)df - q(t)dt + a(t)(R°(t,Z(t))dt + £ O0
t(t, Z(i)) d'J(t)), t k f0 

r= 1 

Z(f0) = z . 

Let Lbe the differential operator corresponding to (1): 

(2) L = djdt + (Q(t) z - fl(f) + a(t) R°(t, z), djdz) + (1/2) a2(t) £ (o?(t, z), djdz)2 . 
r= 1 

Putting V(z) = (Cz, z), C that of (iv), we have 

(3) L V(z) = 2a(t) (CR°(t, z), z) + 2(CQ(t) z, z) - 2(Cq(f), z) + a2(f) £ (Co*, tr?) . 
r= 1 

The first term on the right is less than —22 a(f) V(z), according to (iv); all the other 
terms are bounded by ft(t)(l + V(z)), with b(t) = o(a(f)), which follows from 
\Q\ = o(a(f)), \q\ = o(a(t)), from (v) and from the inequality |z| i5 1 + \z\2. Hence, 

L V(z) S - A a(t) V(z) + b(t) , f£tx, 

P a(t) df = + co , Z>(f) = o(a(f)), V(z) ^ K(z, z) . 
J (o 

(Here, as well as in the sequel, K with or without subscript will denote positive 
constants, possibly of different values in different formulas.) 

According to Lemma 1.2 in Nevel'son, Has'minskij [3], the assertion of Theorem I 
follows. 



Proof of T h e o r e m 2. The first term on the right hand side of (3) is now less than 
— 2Xat~~V(z), the second one is bounded by e(t) t~~ V(z) with s(t) \ 0, and the 
fourth one by Kt~2a(\ + V(z)); we have used (xi) and (xii). Using the inequality 

(4) \z\ < S-'r'12 + 5fl2\z\2, 5 > 0 , 

and (xii), we obtain a bound for the third term: 

2\(Cq(t),z)\<Kir
2~ + 6K2r~V(z), 

K2 independent of <5; choosing <5 sufficiently small, we get 

(5) L V(z) <, -Xat~~ V(z) + K3r
2~, t ^ f, . 

Now put V!(f, z) = t2'1 V(z) + t~~ where 

(6) 0 < y < a - 1/2 , 0 < e < 2(a - \ - y). 

Obviously, 

L Vt(t, z) = t2'LV(z) + 2yt2'"1 V(z) - ef'"1 ; 

inserting (5) for L V(z), we have 

LV!(f, z) < -Xat2';-~ V(z) + K3t
2y-2~ + 2yt2':"1 V(z) - e/~£"] . 

The sum of terms containing V(z) is negative for t ~% tu since (xi) implies 2y — a > 
> 2y - 1, and so is the sum of the remaining two terms, since (6) implies — e — 1 > 
> 2y - 2a. Hence, LVx(t, z) <Q,t~> t2. 

According to Nevel'son Has'minskij [4], Corollary 3.8.1., {Vx(t, Z(t)), 3~',} is 
a nonnegative supermartingale, which implies the a.s. existence of finite lim Vx(t, Z(t)), 

t - oo 

i.e., of finite lim t2': V(Z(t)). Hence, f2l'|Z(/)|2 -> 0 a.s., which entails the assertion 

of Theorem 2. 

Proof of Theo rem 3. Owing to the uniformity condition in (xiii), there are 
e > 0 and K > 0 such that |R°(f, z)\ <; K for all z[ g e and t ^ t0. Let e be chosen 
in such a way that also \ar(t, z)\ S Kt for all \z g e and t >. t0; this can be done 
owing to (i) and (xiv). With this e, define (for t > f0) 

,R° ( f , z ) , \z\<B, 

(7) «M-< 
x R°(t, ez/[z|) |z|/e , \z\ < e ; 

/ o°r(t, z) \z\^e, 
dr(t,-)= < I < r < k; 

\crr
0(f,ez/|z|), | z | > e , 



418 S(t, z) = R(t, z)-Bz. 

Together with (l), consider the auxiliary equation 

(8) dZ(r) = Q(t) Z(t) dt - q(t) dt + at-(R(t, Z(t)) dt + £ ar(t, Z(t)) d£ r(.)), 
r= 1 

t ^s(^t0), 

with the initial condition Z(s) = (, C being a #"s-measurable random variable, 
E|C|2 < +co. The corresponding differential operator is 

L = djdt + (Q(t) z - q(t) + at~x R~(t, z), djdz) + (1/2) a2t~2x £ (dr(t, z), d/dz)2. 
r= 1 

Put V(z) = (Cz, z); we have as in (5) 

LV(z) ^ -Xa V(z) + Kt~2x, t* fc t. ; 

hence (see Nevel'son, Has'minskij [4], formula 3.5.5, which is valid here, owing 
to the definition of R, ar) 

- E V(Zl(t)) = EL V(2\t)) ^ -Aflf-E V(Z?(f)) + Kr2x, t* s . 
dt 

From this differential inequality, we get (see Lemmas 1, 2. 3 in Dupac [2]) 

(9) E |Z^) | 2 SKlt-*. 

Denoting Y(t) = f/z Zc(f), we obtain from (8) the equation 

dY = (\alt~1 + aBrx)Ydt + Q(t) Zf/2 dt - q(i) f/2 dt + 

+ arx/2 b(t, Z) df + at~x/2 £ ar(t, Z) d|r(f) , t £ s , 

Y(s) = s ^ f . 

Its solution is 

f(t) = f'2 exp {A(1 - a ) " 1 B(t^x - s1-*)} £ + 

(10) + f'(t/«)a/2 exp {a(l - a)" 1 B(tl~x - ul'x)} . 

. [(Q(u) Z(u) ux/2 - q(u) ux/2 + a 8(u, Z) u'x/2) du + au~x/2 | &r(u, 2)"d^(«)] . 

Disclosing the brackets, the integral in (10) splits into four ones; the first of them 
tends to zero in the mean and hence also in probability: 

(П) P(í/M)*/2 exp {fl(l - a ) - ' B(tl~a - w1-*)} QŽM*/2 duj g 



g J'( f/ur2 |exp{.}||Q||zK2du^ 

= X J exp{-A1(f1-° [ - u ' - a )}e (u )u - a dM, A. > 0 , e ( u ) \ 0 , 

where we have utilized the properties of the matrix B and Q ((xiii) and (xii)) and the 
inequality (9); after the substitution t1'* - u1'* = v , the last line of (11) is trans­
formed into 

җi-«)-•£'' e--'" в«l - c / í 1 " ^ ' " - " ' ) ^ 

which tends to 0 for f -» GO. 
The second integral can be written (in view of (xv)) as 

- ľ( í/u)* / 2 exp {.} (q^ + 8 l ( ы ) ) и - a d и , Є l(м) ч 0 ; 

the same substitution changes it into 

- (1 - a ) " 1 I"' (1 - „/,---)-«/<---«) exp {a(l - a ) " 1 Bv} . 

. ( ? „ + e.(f(l - B / t 1 - - ) - / ' 1 " * ) ) ^ , 

which tends for t —> oo to 

- fljl - a ) - 1 I exp {«(1 - a)-1jBu}du = - q ^ a - 1 I e B w dw = 
Jo Jo 

= d 0 0 a - 1 B - 1 . 

The third integral, a |''(f/u)a/2 exp {.} du'"12 du, can be again shown to tend to 0 
in probability (cf. Lemma 6 in Dupac [2]), as well as the integral 

a[\tjur2cxp{.}u-^i(&r(u,Z) - sr)dir(u) 

(cf. the same paper, formulas (13), (14)). 

As the first term in (10), f'2 exp {.} £, tends obviously to 0 owing to the properties 
of B, we get thus that the distribution of f(t) — qo0a-1B~l is asymptotically equi­
valent to the distribution of 

a r(./u)*/2exp{a(l - a)"1 B(tl~* - u1'*)} u'*'2 £ srdt;r(u), 



which is, however, a Gaussian process with zero mean and a covariance matrix, 
which can be calculated in a straightforward way, using the same substitution as 
above, and shown to tend to a f<f eBoS eBT° dv, for t -» oo. The rest of the proof 
consists in proving the asymptotic equivalence of distributions of 

fl\x\t) - 8{t)) = f12 Z\t) and of f(t) = f'2Z'\i) 

for properly related z and £; it is exactly the same as the end of the proof of the 
Theorem in Dupac [2]. 

It should be pointed out, that the proofs in the present paper as well as in the paper 
Dupac [2] more or less follow the pattern of proofs in Nevel'son, Has'minskij [4], 
Chapt. 6. 

(Received May 12, 1976.) 
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