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K Y B E R N E T I K A - V O L U M E 21 (1985), NU M BER 4 

ON THE BOUNDED INPUT-BOUNDED OUTPUT 
STABILITY OF A SECOND-ORDER LINEAR 
DIFFERENCE EQUATION 

LUDV1K PROUZA 

The problem of transforming a second order linear difference equation in a special system 
of two linear difference equations of the first order and using this system to bounded input-
bounded output (BIBO) stability testing is investigated. 

1. INTRODUCTION 

In [ l ] , bounded input-bounded output (BIBO) stability conditions have been 
constructed for a system of first order linear difference equations with lower-triangular 
system matrix. For an arbitrary linear system, existence of a matrix transform con
verting this system in one with a lower-triangular system matrix is proven indirectly 
but not explicitly shown. 

In this article another proof of stability conditions, based on known Toeplitz 
theorem [3] is given, the matrix transform is explicitly contructed for a system 
of two first order difference equations and especially for a second order difference 
equation. The connection of stability conditions with the known conditions for an 
equation with constant coefficients is shown. Finally, the results of application 
of the method to numerically testing the stability on an example are given. 

2. A SPECIAL SYSTEM OF FIRST-ORDER LINEAR DIFFERENCE 
EQUATIONS AND ITS BIBO STABILITY CONDITIONS 

Let the following system of linear difference equations be given (unless an exception 
is explicitly stated, t = 0, 1 , . . . in what follows): 

(1) yx(t + l)~all(t)yl(i) + x,(t) 

y2(t + 1) = a21(t) yi(t) + a22(t) y2(t) + x2(t) 

y„(t + 1) = anl(t)yi(t) + an2(t)y2(t) + ... + ann(t)yn(t) + xn(t) 
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All occurring sequences can be considered as complex ones. Further, one will suppose 

(2) ati(t) 4=0, . - - . 1 , 2 , . . . , n . 

Given initial conditions 

(3) >-.(0), i = 1 ,2 , . . . , « , 

the system (1) possesses unique solution which can be computed recurrently in an 
obvious way. 

Let us suppose that there exists a finite X > 0 such that 

(4) |x,-(f)| <X , i = 1,2, ...,n 

and a finite A > 0 such that 

(5) \au(t)\ < A, i,j = 1,2, . . . , « . 

Theorem 1 (BIBO stability condition). Let (3) (4), (5) hold. Then the necessary 
and sufficient condition for the existence of a finite Y > 0 such that 

(6) |y,(f)| < Y, i = l , 2 , . . . . n 

is the existence of a finite K > 0 such that 

(7) t tl\au(l)\<K, » = 1,2,. . . ,« 
fc = 0 / = t 

([1].[3])-
Proof. By induction, one obtains for the first of the equations of (1) 

(8) yi(t + 1) = a n ( f ) a n ( t - l f . . a u ( 0 ) y , ( 0 ) + 

+ "ii(t)an(t- l ) . . . a u ( l ) x 1 ( 0 ) ' + a u ( f ) a u ( f - 1) . . . 

••• « n ( 2 ) x i ( l ) + ••• + Oii(0*i(< - 1) + *i(f) 

Let us define 

(9) 3'i(0) = x t ( - l ) , a n ( - l ) = 0 . 

Then, the sequences {yx(t)}, t — 0,1,... and {xt(t)}, t = — 1, 0 , . . . are coupled 
by a matrix transformation 

(io) lh 0 
«n(0), i, 
a n ( l ) a n ( 0 ) , a n ( l ) , 1,1. 

But according to a theorem of Toeplitz (cf. [3]), the necessary and sufficient 
condition for {j'i(t)} to be bounded if {xt(t)} is bounded is the existence of a Kr > 0 
such that for each t 
(11) 

Au(f) = 1 + |a u ( f ) | + |a n ( f ) | | a n ( t - 1)| + ... + | a n ( t ) | . . . | a n ( 0 ) | < K, . 
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Now, one can consider the sum o21(f) yt(t) + x2(t) as a new bounded input 
to the second equation of (l) and repeat the reasoning, then similarly for the third 
equation and so on. Finally, collecting all the conditions together, one gets (7), 
where K - 1 is the maximum of all Kt, i = 1, 2 , . . . , n. 

From (11), one obtains easily 

(12) Atl(t+ 1) = 1 + \att(t+ l ) | A „ ( f ) , 

A11(-l) = l . 

The same relation (a difference equation) holds also for the other Au(t), i = 2, ..., n. 

Further, there is clear from (11) and (2) that for i = 1, 2 , . . . , n 

(13) 1 + M0I + - + M 0 I - -K<o)| = 

= \dH(t)\... k,.(o)| (i + ^ — + . . . + r — 1 , -—) <Kt. a 1 Wl ' WIV k«(o)| M0I-M°)I/ 
Theorem 2. Let there hold (7). Then for each i = 1,2, ...,n there holds 

(14) l im | a ; ; (0 ) | . . . | a , , ( f ) | =0 . 

Proof. Firstly, the sequence in (14) cannot be unbounded. If it were so, then, 
since the expression in the parenthesis in (13) is greater than 1, (13) could not be 
fulfilled, which is impossible. Thus for every subsequence {t}}, j = 1, 2 , . . . , t} -> oo, 
the corresponding subsequence of the sequence in (14) is bounded from above, 
say, by /? > 0. Suppose now that for some subsequence an a > 0 exists so that 

(15) -<M0) | . . . | a„ (» ; ) |< /J , 

Then the expression in the middle of (13) is greater than a(l + n}jfi), where n} -> oo 
with tj -> co. But a(l + n,-//J) -> oo is impossible due to (13). fj 

Let (1) be BIBO stable. According to theorem of Toeplitz (cf. [3]), (14) is then 
necessary and sufficient for the following assertion to hold: For every (x.(f)} converg
ing to 0, the corresponding {j;(f)} is also converging to 0. 

It is useful to note that for equations with constant coefficients (or reducible to this 
case) (13) and (14) are equivalent. 

3. A GENERAL SYSTEM OF TWO DIFFERENCE EQUATIONS 
OF THE FIRST ORDER 

In [1] there has been proven in an indirect way that there is possible to convert 
a genera] system of difference equations of the first order in a system with lower-trian
gular matrix by a matrix transform. Now, such a transform for two difference equa
tions of the first order will be chosen. 
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Let the equations be 

(16) Z,(. + 1) = bti(t) 2,(t) + b12(t) Z2(t) + Vl(t) , 

z2(t + 1) = b2l(t) z,(i) + b22(t) z2(t) + v2(t). 

Let each of the sequences {v^t)}, {v2(t)}, {&.y(t)}> ' = L 2, j = 1, 2 be bounded 
and at least one of {612(f)}, {fr21(t)} possesses only non zero terms. One can write (16) 
in the matrix form 

(17) Z(f + l ) = B ( 0 Z ( f ) + V(f). 

Suppose there exists a nonsingular matrix sequence {G(f)} so that 

(18) Y(f) = G(f)Z(f), 

where Y(f) is given by (l). Using (17) one obtains 

(19) Y(f + 1) = G(f + 1) B(f) G-J(f) Y(f) + G(f + 1) V(f). 

Comparing (19) with (1) it is necessary and sufficient that 

(20) A(f) = G ( f + l ) B ( f ) G - ( f ) 

is lower triangular. But 

(21) G-Yn = —— ( d22^ -9l2^\ 
( 1 ) W |O(0| v-MO. MOT 
where |G(f)| denotes the determinant of G(f). The necessary and sufficient condition 
of lower triangularity obtained by elementary calculations is 

(22) 0 = a J 2 ( f )= - a „ ( t + 1) gn(t) b12(t) + 9ll(t + l) g12(t) bn(t) -

- 9n(t + 1) 9n(t) b22(t) + g12(t + 1) g12(t) b21(t). 

It is seen that this recurrence relation is more complicated than the original equa
tions, but also that some terms of G(f) can be freely chosen. Let us suppose 

(23) G<'H(-;;rw)-
In what follows, gi2(t) = g(t) will be written. 

Then, one gets from (22) a sufficient condition 

(24) g{t + 1)^hM±MhM. 
K ' K ' b22(t) + g(t)b21(t) 

Given the initial condition g(0), the sequence {g(t)} can be constructed provided 
the denominator in (24) differs from zero for every f. 

Now, the matrix A(f) will be found. After some computations 

{5) W ~ V ~b^\ b21(t)g(t) + b22(t)) 
and according to (5) also the boundedness of {g(t)} must be postulated. 
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For the term a^(t) one will find yet another expression. From (22) there follows 

(26) ffWf-MO + b21(t)g(t + 1)) = b12(t) - b22(t)g(t + 1), 
thus 

(27) q 1 1 ( f ) - -MO + MQg( ' j tD , 
ff(0 

this having sense for o(f) 4= 0. 

4. ONE LINEAR DIFFERENCE EQUATION OF THE SECOND ORDER 

Instead of analyzing the general case, we will further simplify the situation con
cerning only one difference equation of second order, which is sufficiently interesting 
per se. 

Thus let the equation 

(28) u(t + 2) = a(t) u(t + 1) + b(t) u(t) + x(t) 

with real bounded coefficients and real bounded {x(t)} be given, let b(t) 4= 0. The 
usual equivalent system to (28) is 

(29) Zl(t+ l) = a(t)Zl(t) + b(t)z2(t) + x(t), 

z2(t+\)-Zl(t), 
by the substitution 

(30) Zl(t) = u(t + 1) , z2(t) = u(t) 

by which also the initial conditions are given 

(31) zi(0)~u(l), z2(0)-u(0). 

There is in (29) 
%i(t), b12(t)\ _ (a(t), b(tf 

(32 ) VMt), MOj" \\, 0 
Thus, one gets from (24) 

(33) . g{t + i) = a(t)+
b^ 

g(t) 
having sense for g(t) + 0. 

Further, one gets from (25), (27) 

a(t)~ g(t+ 1), 0 \ f--®,0 
(34) A(t)-[ = g(t) 

•i , g(t)l \ - i , 9(t)l 

Thus the system of the form (l), corresponding to (28), is (using also (19), (23)) 

(35) }'i{t + l)=~bgf)yiit) ~X{t)' 

y2(t + i ) = ~yi(t) + g(t)y2(t). 

317 



Under the supposition of g(t) + 0 and bounded for every t, the equation (28) 
with (33) determines (35) uniquely. Conversely, (35) and (33) determine (28) uniquely. 
(28) can be expressed with the aid of (34) as 

(36) u(t + 2) = (an(t) + g(t + I)) u(t + 1) - au(t) g(t) u(t) + x(t). 

And the initial conditions are 

(37) u(0) = y2(0) , i«(l) = -yi(0) + fif(Q) y2(0). 

Necessary and sufficient stability conditions (7) are now from (11), (35) 

(38) \g(t)\ + \g(t)\\g(t-l)\ + ...+\g(t)\...\g(0)\<K1, 

(39) 
\b@\ \b(t - 1)1 

kol W ~ 1)1 + ... + ko) < K0 

for every t. 

Let us now consider in more detail the relation (33). One finds the sequence 

HP) 
(40) (1) = „(0) + 

9(0) 

9(2) = a(l) + 
b(ï) 

a(0) + 

fl(3) = a(2) + 
b(2) 

a(l) + 
b(í) 

This is very similar (with only reversed order) to the known continued fraction 
expansion [2]. We will try to express the expansion with the aid of two sequences 
{P(t)}, {Q(t)} so that for every t 

(41) 

From (40) one gets 

(42) Щ т = а(0)Р(о) + Ь(0)й(0), 

Р | ^ = а(1)Р(1) + Ь(1)е(1), 

Thus one may define 

(43) ß(0 = ?(t - i) 
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under the condition P(t) =t= 0 and one gets for P(t) the difference equation 

(44) P(t + 1) = a(t) P(t) + b(t) P(t - 1), 

which is the homogeneous equation corresponding to (28). Then (41) is 

Although this seems to be of little value in practical applications, one can formulate 
from it and (38), (39) immediately an interesting result, namely: 

Let a difference equation (28) be given. Knowing one particular solution {P(t)} 
of the corresponding homogeneous equation such that P(t) +- 0 and bounded 
for all t, one can obtain (with the aid of (45)) the solution of (33) needed in (38),(39). 

An interesting theorem is the following one: 

Theorem 3. Let a(t) > 0, b(t) > 0 or a(t) < 0, b(t) > 0 for all t. Then, a sequence 
in (33) can be found such that g(t) # 0 for all t. 

Proof. For the first case, it suffices to choose g(0) > 0, for the second case g(0) < 
< 0. In both cases the sequences {g(t)} change no sign. • 

5. ONE CONSTANT-COEFFICIENTS LINEAR DIFFERENCE 
EQUATION OF SECOND ORDER 

Since the stability conditions and the character of solutions of a constant coeffi
cients equation are well known, there is interesting to see what is the meaning of 
(33), (38), (39) in this case of constant a, b. 

The equation 

(46) z2 - az - b = 0 

is the characteristic equation and we suppose b #= 0 as in the assumption after (27). 
The case of a = 0 can be also excluded since in this case the difference equation 
of the second order degenerates into two equations of the first order. 

Now, (33) is 

(47) zt + 1 =a+b-

and there can be shown without difficulty that for (46) possessing two distinct real 
roots (47) represents the known recurrent method of finding the root £ with greater 
absolute value. 

Choosing especially z0 = c in (47) and substituting in (38), one sees that (38) is 
fulfilled precisely if |C| < 1 in accordance with the well known result. And [&/£| is 
the smaller absolute value of the remaining root and thus, for the equation with 
constant coefficients, (39) follows from (38). Unhappily, for real roots of the characte-
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ristic equation, the convergence of (47) depends on the choice of z0, for complex 
roots (47) is not convergent. 

For complex roots one obtains with the aid of (45) the formula 

(48) g(t + 1) = Q(COS a + sin a cotg (<p + fa)) 

in which g is the modulus, a is the argument of an arbitrarily chosen root and <p 
depends on the initial conditions of the equation. Note that there is sin a =f= 0 since 
real roots are now excluded. 

From (48) there follows (since g +- 0) 

(49) g(t + 1) = 0 

for 

(50) cotg ( - a ) = cotg (<p + to) , 

thus 
(51) (t + l ) a + <p = kK, fc = 0 , ± l , . . . 

There will be shown on an example that this can occur even in the case of stability. 

Example 1. Let the characteristic equation be 

(52) z2 - z + \ = 0 

For its roots 

(53) Q = l /7 '3 , a = ±TT/6. 

For (50), k in (51) can be chosen arbitrarily. Postulating e.g. g(4) = 0, then choos
ing k = J in (51), one gets 

(54) 47r/6 + <p = 7t, 

thus 

(55) <p = TT/3 . 

Then from (48) 

And 0 occurs in the sequence {g(t)} after ( + 1 = 4 with period 6, since in (51) 
KJa = 6. 

One can check these results using (33), beginning with g(0) = 1. 
Naturally, such a situation can be expected to occur also for equations with 

variable coefficients and it is clear that in this case no system of the form equivalent 
to (28) can be constructed with the aid of (33) (briefly, the "case of nonequivalence"). 
Moreover, practical difficulties can arise also if (51) is only approximately satisfied. 
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6. APPLICATIONS 

If a system (1) of the second order with general coefficients would be given, the 
expressions (7) could be computed at least in some noncomplicated cases. 

However, for the case |a,,(t)| < e < 1 for every i = 1,2,..., n, it is clear that the 
system (1) is stable. But for an equation (28) with general coefficients, (33) is hope
lessly complicated. 

Nevertheless, for an equation with numerically given coefficients, the stability 
can be checked numerically with the aid of a computer, computing successively (33) 
and (38), (39) with the aid of (12). 

This will be shown on an example with known stability boundary, taken from [4]. 

Eliminating the variable v(t) from the equations systems (13), (14) of [4], one gets 

(57) u(2k) = (1 - a) + (1 -
1 - a 

u(2k - 1) - (1 - a) u(2k - 2) 

u(2k + 1) = ( ( I - a) + (1 - ft) — u(2k) - (1 - a) — u(2k - 1) , 
\ 1 — a J 1 - a 

k = 1,2,... 

The meaning of a, /?, a is given in [4]. The stability will be checked here for a = 0,35 
(Fig. 4 in[4]). Only some typical results will be given for a = 0,25 and a = 1. 
For a = 0,25, the values of fi on the elliptical stability boundary are resp. 1,20644 
and 2,59026. 

The results of computing A1,(?) by (12) (and analogously A22(t)) have been arranged 
in successive hundreds by the computer and in each hundred the maximum and mini
mum has been displayed. The results (rounded off) are in the following tables. 

Table 1. a = 0-25 

ß=2 

Л ц A22 

Max min Max min 

32 1-54 180 1-93 2-ć 
35 1-36 275 3-76 8-6 
51 1-16 587 3-76 

293 1-02 4329 3-76 
109 1-11 834 3-76 

12 
8-6 E + 23 

Л22 

min Max min 

2-3 3-67 1-56 
1-2 E + 12 3-67 1-83 

possibly stable 
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For a = 1, /] = 1, the maximum of Au and A22 was 1,7 E + 38 in the first 

hundred showing machine overflow and thus the case od nonequivalence (the equa

tion can be both stable or unstable, in this concrete case it is stable). 

Table 2. a = 1 

0 = 0 0 = 0 - 5 

-^22 ^ 1 1 ^ 2 2 
Mаx min Mаx min ! Mаx min 

A lł 
Mаx min. 

143 3 
286 79 
429 156 , 

571 233 

1 1 i 2-57 1-52 | 1 1 
1 1 i 2-57 1-69 ! 1 1 
1 1 i í 

unstable i well behaved stable 

The cases of clear instability and clear (well behaved) stability and also the case 
of nonequivalence are easily distinguishable. The case (as a = 1, [i = 0), where An 

(or A22) grows steadily in maximum and minimum values, although not too rapidly, 
seems also to pose no difficulty. Only the cases of oscillating behaviour (as a = 0,25, 
jg = 1) are difficult to discern from slow growth and are demanding more observa
tions (due to general difficulty to discern practically slowly convergent and slowly 
divergent series). 

7. CONCLUDING REMARKS 

The described method can be useful in testing stability of numerically given 
linear difference equations of the second order, when more general methods are not 
available (this can occur quite often). 
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