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KYBERNETIKA-VOLUME 22 (1986), NUMBER 3 

SPECTRAL DECOMPOSITION OF LOCALLY 
STATIONARY RANDOM PROCESSES 

JI&I MICHALEK 

This paper deals with locally stationary random processes introduced by Silverman in [1]. 
The spectral representation of such processes is obtained; the results generalize those of Silverman. 

The notion of a locally stationary process is introduced by Silverman in [ l j . 
This is a new kind of a random process generalizing the notion of a weakly station­
ary process. Let {x(t)}, teR1bsa random process, generally complex, with vanishing 
mean value and finite covariance function R(s, t) = E{x(s) x(r)} on Wj x Mu where 
x(t) is the complex conjugate to x(r). The author of [ l j says that the random process 
{x(t)}, telRi, is locally stationary in the wide sense, or has a locally stationary 
covariance, if its covariance can be written as 

R(s, t) = R! ( — T - ) Rz(s ~ 0 f o r e v e r v P a i r s> f e Ri > 

where R, 2: 0 and R2 is a stationary covariance function. We can put Ri(0) = 1, 
R2(0) = 1 without loss of generality. In case Rj = const #= 0 we obtain a weakly 
stationary covariance function. Some examples of locally stationary processes are 
exhibited in [ l j , too. 

We need the following facts about the harmonic analysis of nonstationary random 
processes. Following [2j, we say that x(t) is harmonizable if x(f) can be expressed 
in the form 

x( ř)= f+"ewdf(A), 

where the integral is meant in the quadratic mean and £(X) is a second order random 
process with zero mean value and covariance function y% /j) = E{ (̂A) |(/x)} of 
bounded variation on R1 x R,. It is proved in [2] that x(t) is harmonizable if and 
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only if its covariance function R(s, t) has the spectral representation 

R(s,t) « I" j X em~"')ddy(X,fi) 

where y(X, H) is a covariance function of bounded variation on Rt x Rv The last 

integral is understood in the Riemann-Stieltjes sense. In such a case we shall say 

that R(s, t) is harmonizable, too. When 

ddy(A, n) = /(A, w) dA du , 

then j(A, «) is called the spectral density function of x(t). If x(t) is locally statioAary 

and harmonizable with spectral density function then, as it is proved in [ l ] , its 

covariance function has a spectral representation 

R(s,t)= p " f " ^ " " " / ( A ^ d A d / . , 

where j(A, w) is a locally stationary covariance, too, i.e. 

f(x,»)=fj*±Ey2{x-v), 

f1 = 0 and j 2 is a stationary covariance. 

This relation can be understood as a generalization of the famous Wiener-Khint-

chine relation for the case of locally stationary random process. 

The following Theorem 1 and Theorem 2 are opposite assertions with respect 

to the generalized Wiener-Khintchine relation. 

Theorem 1. Let x(t) be a harmonizable random process with the spectral density 

function f(X, fi) of the form 

ДA,,i)=/f^p)/2(A-^1 

wherej! ^ 0 a n d / 2 is a stationary covariance function. Then x(t) is a locally station­

ary random process. 

Proof. We assume that x(t) is harmonizable having a spectral density, i.e. its 

covariance function R(s, t) has representation 

(1) % o = Ґ " Ґ " ei(sл- •">/! (~Afлџ - џ) åx dџ, 

where J + " / ! « |/,((A + n)\2)f2{k - p)\ dX dH exists. 

Let us consider the transformation T(X, p) = (u,»), where u = (A + /i)/2, u = 

= A — fi. Using this transformation, the integral (1) can be expressed as 

R(s, t) = e ' " ^ " 0 e V 2 J/.(tt)/ 2 (") du du , 
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hence 

where 

R(s, t) = Ä, (~^\ R2(s - î) 

Rí(x)=\ eiuxf2(u)du, R2(y)=\ eivyfi(v) do. 

As ji = 0, R2 is a stationary covariance and as j 2 is a stationary covariance, it is 
R! ^ 0. It means that R(s, t) is a locally stationary covariance function. • 

We need the following Lemma 1 and Lemma 2 for proofs of further results. 

Lemma 1. Let/, g be complex functions on(—oo, +oo), let £,('),»?(•) be second order 
stochastic processes with E{£(s) fj(t)} — T^(s, t). If J^*jd<J, §t™ g d/j exist in the 
quadratic mean then 

EJP/d^ p9dnj= P C'fgddr^. 
Proof. As J t™ jdt | = l.i.m. fAjd(J it is sufficient to prove Lemma 1 for bounded 

intervals only, i.e. B ^ + S 

El[*f<U;[*gdJj\= f f/gddr.,. 

According to the definition of the stochastic integrals J A jd£ , fA g dt] there exists 
5 > 0 for every e > 0 such that for every subdivisions 3V, 3>2 of [A, B] with the 
norms \9X\ < 5, \\S>2\\ < 8 

Ґ/dÉ - I/(í?) Af(íf) 
J A f 

gdrç-Xa(s*)A.,(s.) 

This fact gives, further, that 

|E{f/d^J/^} -S/(f*)A^)p(sDA^)| = 
< REIP^A^I^V-+(E |f/dd2y /2]e 

for every l?i, ®2 with ||j.?i|| < §, |<? 2 | < <5. That proves firstly the existence of the 
Riemann-Stieltjes integral JA j*A j# ddE?r/ and secondly the equality 

- | fV d̂  f g dnl = fB ?fg ddrin. D 

Lemma 2. Let £(f) be a second order stochastic process having the derivative <T 
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in the quadratic mean with continuous covariance function. If J * " j d ^ exists in 
the quadratic mean then 

^f(t)dф)=pf(t)ţ'(t)dt. 

Proof. Let E be the covariance function of £(•). The existence of £'(•) implies 
the existence of the second derivative d2T(s, t)jds dt because E{<f(s) <f(r)} = 
= d2r(s, t)jdsdt. Now, let )l™fd£ exist. Then the integral $±% J -S/ jddT exists 
as the limit of JA ^ffddF when A -» — co, B -> -i oo. This integral can be approxi­
mated by sums of the form 

ZIjK)j(t/>Ar(s;,0) 
• J 

where s; g s* ^ s ; + 1 , r; g r* ^ fy+1. The existence and continuity of d2T(s, t)jds dt 
yield that AAT(s;, t]) = (c2T(s, t)Jds dfL=s. + 9lAs.) As; A/, with 0 < 0j < 1, 0 < 92 < 1. 

|f = rj + 92Atj 

That proves the existence of the integral 

J A 5s3f 

and at the same time the equality 

r I A / ( S ) / ( / ) ddr(s' ° = r f/mt) d~^rds dt • 
As d2r(s, t)jds dt is the covariance function of £' the existence of 

1 , , , 7 / , 52E(s, t) A . 
f(s)f(t) ^ - y d s d r 

os dt 
insures the existence of the stochastic integral jA j ( t ) <T(t) dr. It remains to prove 
the equality JA/(f) di(t) = JA/(r) f (r) dr. Let us prove that E | r j / d£ - J*/? ' |2 = 0. 
We have 

1l>-|>fHI//ddr-E{JM> 
^JJ /žт , 

в лв 

According to Lemma 1 

E {Lfd"\y}=jA
Dj/(s)/(/)E{d^)f(ř)d/}= 

B / ( s ) j ( t ) a 2 7 ^ ds dr because E{£(a) «*(*)} = ^ ^ . 
<3s<9í 
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In this way we obtained that \\f d£ = /*/<!;'. This equality holding for every bounded 
interval [A, B] gives immediately that / _£ / ( / ) df(f) = / _ " / ( / ) <_'(/) d/. D 

Theorem 2. Let x(t) be a harmonizable random process with spectral density 
function /(A, /z) of the form 

/ ( M = / i / ^ ) / з ( A - A t ) 

where /, is continuous and nonnegative, / 2 is a continuous stationary covariance. 
Then x(t) has the following spectral representation 

f+OO 

x(ŕ) = e i , я z[X) dX , 

where z(A) is a locally stationary random process, too. 

Proof. Theorem 1 says that x(t) is locally stationary. Being harmonizable x(t) 
can be expressed as 

x(ř)= ґ "e l "dІ(A) , 

where <J(A) is a second order random process with covariance function y(X, //). We 
assume the existence of spectral density function of x(t), i.e. 

(2) ddy(A, ix) = f(X, n) dX d/_ = /. ( ~ _ ! A f2(X - fi) dX d/i. 

It follows from the existence of J _ ^ J_™ |/(A, /i)\ dX dfi that 

r(A,At)=r r fl(~~Af2{u-V)dudv. 

Let us prove that £(A) has the derivative in the quadratic mean. As familiarly known, 
such a derivative exists if and only if y(X, fi) has the generalized second derivative 
on the diagonal (A, A) 

AhAh.y(X, X) .. 1 fi+* fA+* , / « + t>\ . , . . . 
hm h'\ >-= hm — / . ( - — — /2(M - » ) d« do . 
o,A'->o nn ;i->o,/r->o hh J x JA \ 2 / 
s assumed to be continuous there exists the quadratic 
and its covariance function 

(3) ^'(x)m=h(^~)f2(i-ti 

is, as we see, locally stationary. Now, we can apply L< 
obtain 

(4) X0-J*"-"** ' ( * )<-* • 

As j ! is assumed to be continuous there exists the quadratic mean derivative £'(A) 
of £(A) and its covariance function 

is, as we see, locally stationary. Now, we can apply Lemma 2 and we immediately 
obtain 
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The following Theorem 3 expresses the inverse formula to the formula (4). 

Theorem 3. Let z(X) be a locally stationary random process with the continuous 
-.variance function /(A, p) = /.((A + ju)/2)/2(A - n). If J ! _ J_S |/(A, __*)) < °o 
then there exists 

(5) x(0 = [ °° e i ( A zU) dA 

in the quadratic mean sense and x(t) is locally stationary, too. If ("_" f_™ |^{x(s). 
. x(r)}| dsdf < oo then 

-(A) = l J + t 0 e - ш x ( ř ) d í . 

Proof. The integral (5) exists if and only if the integral J ! ^ J_£ e i ( s^ , f l )/(A, /u). 
. dA d/i exists, where /(A, _t) is the covariance function of _(•), As we assume the 
existence of J_ ™ J_™ |/(A, ju)| dA d/i and |eir;i| _S 1 then the integral (5) exists in the 
quadratic mean sense. It follows that x(t) is harmonizable with covariance function 

R(s, t) = f+" P _«*-«"/_ (-—£)/-(* - r-) ̂  dM 

according to Lemma 1. By use of transformation T(A, /i) = (u, v), u = (A + A<)/2, 
u = A — î we can write 

R(s'J) = I + " f 0 0 ei(s"~""/i(w) ' ^ ' 1 - ^ J y = Rl (^T) R2[S " ° • 
Surely, Rx _; 0 and R2 is a stationary covariance. It means that x(t) is a locally 
stationary process, too. We have proved that 

Ä_(*) = Ґ " W a ( » ) d, , ___(,) = Ґ " e^/Л") dt, . 

The integral 

w ^ - 1 - f + V u , x ( O d t 
2nJ_c0 

exists in the quadratic mean sense because according to Lemma 1 

E{w(A) w(n)} = - i - P f+" e ' i s A e'1" E{*(s) x(r)} ds df = 

= _____ f+C° r°°e-i(ri-.rip l£___A_J_(_ - t)dsdt = 
(2n)2J_j_0O

 x i 2 ; 
t r+oo /.+ «, . / _ _ i ^ 

= __L_ t-w-fi* R(u) e "I 2 ; K2(») d« d. = 
( 2 K ) 2 J _ J _ M 

= 1 J+V^)-*l(M)du±J+V<^> **(»)*> =j1(^)/2(A - „) 
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exists for every pair (A, /u). Now, we must prove that w(X) = z(X) for every XeRv 

For this reason we estimate 

<A)-ij+V'<*x(<)d* 

Surely, z(A) — l.i.m. (l//i) J_+* z(u) dM, where the integral is understood in the 
A-.0 

quadratic mean sense. The integral J^+ A z(u) du exists in the quadratic mean because 

the process z(-) has the continuous covariance function and therefore the integral 

j r " J A ^ E{Z(U) Z(V)} du dv exists. We can express • 

Nl r;-+'' I2) fll PA + , ! l21 

E | - j ^ z (u)du-za) | | = E | | i j ^ [_(«) - z(A)] du J = 
; + л Cl+Л 

E{[z(м)-2(A)].[.(t;)-_(A)]}dмd. 

according to Lemma 1. The continuity of E{z(u) z(u)} at the point (A, 2) implies 

that lim E|(l/h) Jj.+'1 z(u) du - z(A)|2 = 0. With respect to the inverse formula 
ft-»0 

for harmonizable processes 

1 f+' e-K*+*>*_ 
l.i.m. — 
r-oo 2 r r J _ t if 

for /J > 0 and every X e R±. Then it is possible to write 

EJiJ""z(M)d M l j + >^)d 

x(t) dř = z(м) du 

= limE í l Г* _____>ľ 
І2яJ_ t" -is 

^ x(S) d s i r \^X(t)dt 
sh 2n J _ _, 

1 C + Z Í-+CO - i i s / - l s A i X 
- lim — {- -l e U ( E{x(_) S(í)} ds dř = 

.-«> 4TI2 J__ J _ „ - i s h 

_1_ 

4TÜ2 

+ 00 - U s / „ - i s Л 
— - ) eu< Ri f — ) R2(s - f) ds dř 

- i s h V 2 

because |(e- i s " - l)/(-i-ft)| _{ 1 and J ! * J + ™ |R(s, t)|dsd* exists. Now, we use 
the triangular inequality 

/ I 1 p+00 2V1/2 

(6) ( E | 2 ( A ) _ 2 ^ j e~U'X^dt ) = 
/ 1 /*A + A 2X1/2 / U fA + A 1 f+co 2X1/2 s ( E K * l Z(")d"|) +(E |1[ *)*- sj./--«(«*) 

which holds for every /i > 0. The first term in (6) tends to zero for h -» 0, the second 
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term can be calculated by aim of Lemma 1 as follows 

fll TA+" 1 f+m l21 1 Cx+h Cx+h (u + v\ 

f l ^"-iir'MhU, 1 '•(—>*- °)d-d-
+ _i_ p- r - e_,w_rt, R i t_+_\ Rz(s _ f) ds d, _ 

- ESir f c z ( M ) d M

2^r> i a^ ) d f} - *&&'**** *r*u)*v 
= ^ f+" f+i/i

 ( T ) / 2 ( U " "^"^+/l(A)/2(0) •" 

- — f+°° r + < 0 e- '-^ e """~i_ eu< __. f^±_?\ R2(s - I) ds d. -

As |(e i s" - l)/(is/z)| g 1 and lim (e i s" - l)/(is/i) = 1, it is 

fi-»0 

(11 Cx+h 1 f+0° I2. 
lim E \ \-\ z(u) du e ~ i a x(t) d. 1 = 0 , 
*-° lilt J_ 27tJ_0O I J 

which proves that 

Z(Я) = i - Г " e - ш x(í) d. . D 

We have so far assumed the existence of the spectral density function of x(t). 
At this moment we omit this assumption and let x(t) be generally locally stationary 
and harmonizable. It means that there exists a spectral decomposition 

X(t)=rv^), 
, fi) and y(X, fl) is a cov< 
.variance function of xi 

(7) R(s, t) = f " f+" e««*- « ddV(A, /_) = _., ( i ± ^ R2(s - .) 

0 and R2 is a stationary covariance function. When we pu 
(s) . R2(0) =-./_._ /_:_ e

i s ( A-" ' ddy(A, fi), similarly when s = 

R Q, - ^ •* Xi(0) *_(_) = P P e " ^ ddy(A, AI) . 

where E{df(2) d<!(ju)} = ddy(A, fi) and y(A, ^) is a covariance function with bounded 
variation on _?. x _?_*_. The covariance function of x(z) R(s, f) can be expressed as 

where _.t ^ 0 and R2 is a stationary covariance function. When we put s = t, then 
R(s, s) - __.(_) . R2(0) = J_£ /_:_ e

i s ( A-" ' ddy(l, p), similarly when s = - . , then 
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These relations imply that 

\R,(U-V) = R ( - , 

2 2 / V 2 2 
R(u,v) = Rt(Ң^j R2(u - v) = RЃ-

for every pair (u, v). Now, we shall put 

s + t 
= X , s — t = y 

2 
into (7). Then s = x + yj2, t = x - yj2 and 

Rt(x)R2(y) = P p e ^ P e - ^ - ^ d d y ^ , / . ) = 

f+CO f+CO . /1 + J1\ 

e M*-rt e ' H T - ) ddy(/l, ^ . 

We again apply the transformation T: u = (k + /i)/2, i> = k — n which implies 
a new measure r(«, t>) in if. x Rl by the relation 

E x f T - l ( E x F ) 

where £ x F is a measurable rectangle in Rt x ff... In terms of r(u, v) we obtain 

If we put y = 0 then 

where 

similarly for x = 0 we get 

where 

But it means, together, that 

ľ ľ d d r ( и , t . ) = ľľddy(Д,Ať), 

E x Ғ Г - Ҷ E x Ғ ) 

)le rectangle in Rt x Rt. In te 

Ri(x)R2(y)= ľ C ° ľ e I w e , ' " d < Ц и , D ) . 

R,(x) = I e i x " ddr(н, t>) = [ e i x" dr2(u) 

p+a, 
dr2(v) = ddr(и, v), 

R2(У)= ľ V d r ^ t t ) 

^+CO 

dr^(и) = ddr(и, t>) . 

ľ " e i x" dr2(u) ľ " êyu dr.(и) = I e^+y-> ddr(u, ») 

which yields that 
ddr(u, v) = drt(t>) dr2(u) . 
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The process x(t) is locally stationary, it means that R, ^ 0 and R2 is a stationary 
covariance; hence R2 can be written as 

ЫУ)= ҐV"dFД«), 

where Ft is a probability distribution function because we put R2(0) = 1. 
This fact implies that 

drL(u) = dF.(u). 

As Rj ^ 0 and hence Rj is real, then 

Rt(x) = | * + V B d r 2 ( i ; ) = R.(x) = p " e" i C T dr2(v) = f e ^ d r ^ - y ) ; 

It gives dr2(v) = d?2( — v), which means that d Re r 2(-) is symmetric, i.e., 

j d Re r2(v) = | d Re r2(t>) 
J A J -B 

and d Im r2(y) is antisymmetric, i.e., 

d Im r2(v) = — d Im r2(u) . 

Summarizing these facts we obtain conclusion that the transformation T associated 
with definition of locally stationary processes decomposes the induced measure 
r(u, v) into two independent parts rt(v), r2(v), where rt(-) is a probability distribution 
function and the Fourier transform of r2(v) is nonnegative. On the contrary, if £(X) is 
a random process whose covariance function y(l, ix) has bounded variation on R1 x ttt 

and if under the transformation T the induced measure yT~x; i.e. 

ddyT~\u, v) = ddr(u,v) , 

is decomposable into two independent parts 

ddr(u, v) = drt(v) dr2(w) 

where rL(v) is a probability distribution function and the Fourier transform of r2(ii) 
is nonnegative, then the Fourier transform of £(X) (in the quadratic mean sense) 

f Vad£oi) 

is a locally stationary random process. 
The following Theorem 4 gives the answer when a locally stationary random 

process is harmonizable. 

Theorem 4. Let x(t) be a locally stationary random process such that 

*i(*)"- rv*dF2(A), 
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where F2 is generally a complex measure with bounded variation. Then x(t) is 
harmonizable. 

Proof. We know that E{x(s)x(t)} = Rt((s + t)\2) R2{s - t) = R(s, t) where 
Ri(y) = J - S e'^dE^w) with a probability distribution function F1. This yields 

R(s,t) = pei(^);'dE2(A) P V ^ ' d F ^ ) = 

f+co c+oo / A\ / A\ 

Now, let us consider the transformation S: u = pL + A/2, t> = /* — A/2. Then R(s, f) = 
= J i ^ JJ!" e'^"-'"'ddy(w, u) where >>(«, u) is induced from F1(fi)F2(X) by the 
transformation S. As the function e1(SH-"° is continuous we can assume that y(u, v) 
is normalized as usually assumed in the harmonic analysis. At this moment we 
must prove that y(u, v) is covariance function belonging to a random process <J(M). 
Ft((i) F2(X) is of bounded variation so y(u, v) has bounded variation, too. It is 
easy to prove that at every point (u, v) and for every pair h, h' > 0 there exists 
the limit 

f+I f+T e - ' ^ e - ' " 1 - \\e + iu"(eish' - W 
Jim J (C /^VV^ L ) *Md tds 

equal to AhAh,y(u, v). Using this fact we immediately see that the sequence 

" + z „-iuf/„-i/if r r + * e - i и t ( e ~ ш - l ) , . Ì 

T^CO 

is fundamental in the quadratic mean and hence there exists a random variable 

J
+ T ~iut( -ith _ I \ 

- — { - — y x(o d< 
- i t 

(for every « e Rj and every h > 0). Surely, 

E{zft(«) zh.(u')} = AhAh,y(u, «') . 

From the assumption of bounded variation of y(u, v) it is possible to put 
y(— oo, — oo) = 0. Formula (8) gives by elementary calculation the additive property 
of zh(u) in the following sense 

/ \ v̂  / \ < , u + t u + t . * 
zu+t\ — t) = 2. zh\uj) where —t<u, h = , Uj = j ; 

j = o n n 
the last equality holds for every subdivision of [— f, A). Let us prove that there exists 
the limit 

l.i.m. zu+/-t) = £(u); 
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it follows from that 

E{\ztt+t(-t) - ztt+v+t(-(t + r))|2} = E{\zt(~(t + r))|2} = 

= AvAty(-(t + T), ~(t + T)) -» 0 as f -»• oo for every t > 0 . 

The continuity of scalar product with respect to convergence in the quadratic mean 
yields that 

cov ({(«), £(»)) = E{£(M) f(p)} = lim E{ztt+t(-t) zv+!(-t)} = 

= lim A„+tAv+ty(-t, -t) = y(u, v) . 

This assertion says that y(u, v) must be a covariance function. Using the theory 
of harmonizable random processes presented in [2] we obtain from these facts 
that x(t) is harmonizable and hence x(t) has a representation of the form 

x(t)= f "e""df(«) . D 

(Received May 31, 1985.) 
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