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K Y B E R N E T I K A - V O L U M E 21 (1985), N U M B E R 3 

OPTIMAL CONTROL CHARACTERISTICS 
OF A QUEUEING SYSTEM 
WITH BATCH SERVICES 

VILIAM MAKIS 

A batch service queueing system with a finite and infinite service capacity and Poisson input 
is considered. Costs are charged for serving the customers and for holding them in the system. 
Two variants of this model are examined. In variant 1, the waiting cost is charged for all the 
customers in the system and in variant 2, the waiting cost is charged only for the customers 
waiting in the queue. Although it is well known that the optimal policy for this system is a con­
trol limit policy, the explicit results concerning the optimal control limits, cc-discounted costs 
and the long-run average costs per unit time are known only in some special cases. The objective 
is to find the explicit formulae for these costs under any /-policy, (serve if and only if there are 
at least i customers waiting in the queue), examine their properties and derive inequalities for 
finding the optimal control limits in the general case. 

1. INTRODUCTION 

We consider a batch service queueing system with Poisson input, service times are 
independent random variables with the same distribution B(-) independent of the 
batch size. The cost of serving i customers is K + ex where K and c are any nonnega-
tive constants. This cost is charged at the beginning of a service. The waiting cost 
of i customers per unit time is h(i) where h(-) is any nonnegative real function. 
The system is reviewed at the times when either a service has just been completed 
or the server is free and a customer arrives. At each of the review times one of the 
following actions is taken: (a) no customers are served, or (b) a batch consisting 
of all or a portion of the waiting customers is served and the next service can be 
initiated only when the server becomes available, i.e., after the completion of the 
previous service. Thus each batch size and its time of service are subject to control 
and the number of customers served in a batch cannot exceed service capacity 
Q S +oo. 

A wide range of applicability and relative simplicity of the foregoing model 
attracted attention of many researchers (see e.g. [1], [3], [4], [6], [8] p. 164 and 
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[9]). The serving of people by elevators, shuttles and other mass transportation 
systems, charter airline flights, the accumulation of freight cars for a given destination 
in a marshalling yard until there are enough to constitute a train, transhipment 
of mail and military supplies, the processing of computer programs and the deterior­
ation models are some of the practical applications (see the references for other 
application areas). We examine two variants of this model. In variant 1, the waiting 
cost is charged for all the customers in the system and in variant 2, the waiting cost 
is charged only for the customers waiting in the queue. Variant 2 is useful in some 
transportation applications like the serving of people by shuttles and other mass 
transportation systems where it is natural to charge the waiting cost only for the 
customers waiting in the queue (cf. also [2] and [9]). 

Deb and Serfozo [1] proved that the optimal control policy for variant 1 is a control 
limit policy, i.e., if i denotes the number of customers waiting in the queue then 
service begings if and only if the server is free and i 2; i* where i* is some control 
limit. The optimal batch size is min {i, Q). It can be expected that the optimal 
policy for variant 2 is again a control limit policy. This result for the discounted 
cost case is stated in Theorem 1 and for the average cost case in Theorem 2 of this 
paper. 

Although the form of the optimal control policy is well known, the computational 
results concerning this model were obtained only in some special cases. Deb and 
Serfozo [1] were able to find the explicit results only in case of the linear waiting 
cost and exponential service times. Their computational method of a-discounted 
cost cannot be used in the general case. In the average cost case, they found the most 
general case intractable (see [1], p. 356). For the system with zero service times, 
Ross [7] derived the explicit expression for a-discounted cost in case the initial 
number of waiting customers is zero. Finally, for variant 2 and an infinite capacity 
server, the average cost case was treated by Weiss [9] for the linear waiting cost 
and by this author [4] for the general cost structure. 

The aim of this paper is to find in the general case the explicit formulae for a-dis­
counted cost and for the long-run average cost per unit time under any i-policy, 
(serve if an only if there are at least i customers in the system), examine the proper­
ties of these costs and find the optimal control limits for both variants. In Section 2, 
we give some preliminaries. Results for the discounted cost case are presented 
in Section 3 and for the average cost case in Section 4. It is shown that in the class 
of i-policies both costs are unimodal functions in i and the optimal control limits 
can be computed easily from the derived inequalities. 
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2. PRELIMINARIES 

Let the input process {X„ t ^ 0} be a Poisson process with intensity X > 0, N 
be the set of all nonnegative integers and K, c, «(•), B(-), Q as in Section 1. Denote 

a = Xl(a + X), b = \ t dB(t), bx = \ e - " 6B(t), 
Jo Jo 

A = r - < t t + A > g e — dH(0 , , * ) = - ^ e - , 
Jo «! »! 

fl(») = «(n)/(a + A) , X(R) = Zpt£aJ H(n + j) 
i = l J = 0 

for all ( I E W . Suppose that h(-) satisfies for variant 1 

(2+) h(n + I) - h(n)> ab;\c + y) 

and for variant 2 

(2.2) h(n + 1) - h(n) > a(c + y) 

for all n e N, a > 0, y is a positive real number if Q = + co and y = KJQ if g < + oo. 
For variant 1, the dynamic programming equation for the optimal a-discounted 

cost is of the form 

(2.3) V(M)(n) = min | E |~f e - « h(n) dt + e~*T V(aA)(n + 1 ) 1 

min E K + cm + e~" h(n + Xt) dt + VM)(n + X„ - m) e"'"3 I 
ogmg„AQ L Jo JJ 

for all n e N, n A Q = min {n, Q}. The first set of brackets contains the cost of not 
serving and holding the n waiting customers for a time T until the next arrival. The 
second set of brackets contains the cost of serving m customers and holding the 
customers in the system during a service time B after which another action is taken 
with the system in state n + XB — m. It was proved in [ l ] that under assumption 
(2.1) the expected value of the cost function in the second set of brackets in (2.3) 
is strictly decreasing in m for a fixed n. Hence, after some computations, (2.3) can 
be written as 

(2.4) V(*,i>(») = mi" {H(n) + a V(a>1)(n + 1), K + c(n A Q) + 

+ x(n) + fak
Pk V(M)(R -n A Q + k)} 

Jc = 0 

for all n e N. It is easy to see that for variant 2 under assumption (2.2) 

(2.5) V(a.2)(") = min {H(n) + a V(_,2)(n + 1), K + c(n A Q) + 
+ 00 

+ x(n - n A Q) + X akpk V(_,2)(n - n A Q + k)} 
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for all n e N. In case both terms in brackets are equal we write Va(n) = H(n) + 
+ a Vx(n + 1) for both variants. Similarly to Proposition 3.4 and Lemma 3.6 in [1] 
one can prove the following lemmas. 

Lemma 1. Let (2.2) hold. Then for all n e N 

(2-6) V(a,2)(n + 1) - V(a>2)(n) ^ c . 

Lemma 2. Let Q < + oo and (2.2) hold. Then for all n > Q 

(2.7) V(a,2)(n) = K + cQ + x(n - Q) ++fak
Pk V(a>2)(/i - Q + k). 

/i = o 

The structure of optimal policies for the discounted cost case is given by the 

following theorem. 

Theorem 1. Let (2.2) hold. Then the optimal discounted cost policy for variant 2 
is a control limit policy and the optimal control limit f*(a) is given by 

+ 00 

(2.8) /1(a) = min {n e N: K + en + x(0) + £ akpk V(xa)(k) < 
k = 0 

< H(n) + a VimJn + 1)} 
for any a > 0. 

Proof. The proof of this theorem is based on Lemma 1 and Lemma 2 and is 
the same as the proof of Theorem 3+ in [1]. • 

If (2.1) holds then the optimal control limit for variant 1 is given by (cf. [1]) 

(2.9) i*(a) = min {n eN:K + en + x(n) + £ akpk V(xA)(k) < 
t = o 

< H(n) + a V(a>1)(n + 1)} . 

The structure of the optimal average cost policies is given for both variants 
by Theorem 5.3 in [1] which we state here as Theorem 2. 

Theorem 2. Let Xb < Q and for some 5 > 0 

h(n + 1) - h(n) > d for all neJV. 

Then the optimal average cost policies for both variants are control limit policies. 
Both optimal control limits are finite and, in case Q < +oo, do not exceed Q. 

In the next section, we examine the discounted case. 
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3. OPTIMAL CONTROL LIMITS IN THE DISCOUNTED COST CASE 

Throughout this section we suppose that service capacity Q = +00 and /.(•) 
satisfies condition (2.1) for variant 1 and condition (2.2) for variant 2. We shall 
find explicit formulae for a-discounted costs V(al)(i, n) and V(a,2)(', n) for any 
/-policy and any initial state neN. Denote x A y = min {x, y}, x v y = max {x, y}. 

Consider variant 1. Let f be the time of the beginning of the first service and 
{Tt, k >. 1} the length of the /cth period, i.e. the length of time between the beginning 
of the /cth and the (k + l)st service. Further let {Bk, k 5: 1} denote service times 
and {Xs, s >j 0} be a Poisson process with intensity X > 0. Let {X's, s 2: 0} be another 
Poisson process with the same intensity X, independent of {Xs, s >j 0}. Define 

(3.1) Zj = cxp(-aTJ)(K + cM,j) 

(3.2) Yj = exp ( - attj) I f '+' exp ( - as) h(Mr. + X's) ds + 

(•TJ + 1 - B / - H •) 

+ exp (~aBJ + 1) exp ( - a s ) fc(X^+1 + Xs) dsl 

for ./' >j 1 where M, is a Poisson random variable with parameter Xt independent 
of {Xs, s >. 0} and {X's, s ^ 0}. The random variable Z,./exp( —aT,-) denotes the 
service cost incurred in the (j + l)st period and Yj/exp ( - at,-) is the discounted 
waiting cost in that period. Note that under any /-policy, random variables {T^, k 2: 1} 
have the same distribution and this holds also for {Zk, k >j 1} and [Yk, k >j 1}. Put 
for any 11 e N, i e N 

(3.3) U(i, n) = j e~as h(n + Xs) ds + e~" (K + c{i v n)) + 
Jo 

+ e - " J e~" h(i v n + X's) ds + exp ( -aB x ) . 

. j ' e_ a s h(X'Bl + Xs) d s l . 

Obviously, U(i, n) is the total discounted cost under /-policy incurred in the time 

interval <0, ? + Tj) assuming that the initial state was n. 

Let E ( in) denote the expectation under /-policy for any initial state n eN. Put 

u(i, n) = E(;_,0 U(i, n), v(i, n) = E(ii(l) e""1, 

KO = E(.-,«) e x P ( ~ m j ) > z (0 = E(i,«)zr HO = E o » YJ 

for any ieN, neN, j >. 1. Since under any /-policy \XJ,BJ,ZJ, Yj,j >j 1} are 
independent of T, {Yj, Zj} are independent of (T^, k < j} and from the independence 
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of {rk, k _; 1} we get 

(3.4) V(M)(., n) = u(i, n) + v(i, n) (z(i) + y(i)) +f[v(i)f _-
k = 0 

= u(i, n) + (a'- A l ) (z(0 + X0)/(- - KO) 

for all ieN, neN. 
In the following lemmas, we find the form of u(i, n) z(i), y(i) and v(i) for an arbi­

trary function h(-) which satisfies (2.1) and for any service time distribution B(-). 
We use the same notation as in Section 2. Denote for ieN, neN 

(3.5) xiin =fakH(n + k) 

Dn = e -"" h(n + X'u) âu + e ' a J Ì e -"" Һ(X'B + Xu) áu (3.6) 

where T is the length of time between the beginning of two successive services and B 
is the appropriate service time. The following lemma holds. 

Lemma 3. For any initial state neN and any ;-policy 
i - i 

(3.7) u(i, n) = x;_„;„ + (a1'" A 1) {x(i v n) + Y_ akpkx^Kk +K + c(i v n)} 

where we put £_ = 0 for any k _i 1. 
j=o 

Proof. Let {Tk, k ^ 1} be the arrival times in Poisson process {Xs, s ^ 0}, T0 = 0, 
T_„ = Ofor k S_ 1. We have 

(3.8) íM) Г e""" h(n + Xu) âu = E Ґ " " e - "" h(n + Xu) âu = 
Jo Jo 

I - í l - 1 

= X Қn + k) ak(l - a)/ffl = x,--,.. 

Further, conditioning on £ = r, X't = k yields for any m e At 

(3.9) ,D„. = I 

+ E e 

Ł = 0 

Г i - i , 

e-""/7(m +X'u)ău\X't = fe) + 

e - " " я(fc + _Г„) dи qk(t) + 

+ E - ( I e~"" h(m + X'u) dи | X't = k) qЩ áB(t) 

I e-™ /,(,„ + X„) d« ) dB(0 + Z e~"ř ^ ( í ) dB(í) Xi_kk = 
» / * = ° J o 

1 - 1 

= x(m) + Z akpkx^k.k 
k = 0 
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and (3.7) follows from (3.8), (3.9) and from 

(3.10) Ec.,r.)e_"? = a''" A 1 . 

Lemma 4. For any /-policy 

(3.H) -(0 = a'(K + d ) f A + i V + ck) ak
Pk 

k=0 k=i 

(3+2) K0 = fl'Zi>* + E f l V 
k = 0 fc = i 

Proof. For any / ^ 1 and any /-policy 

E(;.,o
z; = f " ^ f «""" E(exp(-aT^,))(X + ci) + 

Jo '' = « 

++i(K + ck)G-"}qk(t)6B(t) = 
k = i 

= f+ X e"a' ( f (* + «) a''"1 + Z V + ck)} qk(t) 6B(t) = 
Jo * = ° "==« 

= (X + c/) a ' f pk + f(K + ck) ak
Pk 

k = 0 >t = / 

and (3.12) can be proved similarly. 

Lemma 5. For any / e N 

(3+3) .v(0 = a ' f A XO + Z «*!>* XlO + «\'0 2>*P**.-M • 
1 = 0 fc = i k = 0 

Proof. Similarly to the proof of Lemma 3, we get 

(3+4) y(i) = Z «'"* e~" aM dB(r) E„. „, D, + 
*=° Jo 

+ 1 E(.-,A f" e"ar «*(0 dB(0 = E«»IV E Pt + Z fl'x E(i,„)^ 
fc=i J 0 t = 0 lt = i 

where DA is defined by (3.6) and (3.13) follows from (3.9) and (3.14). • 

Now we can prove the following theorem. 

Theorem 3. Consider variant 1. For any /-policy and any initial state n EJV, a-dis-
counted cost is given by 

(3.15) VUA)(i, n) = xf_„.„ + (a1'" A I) (K + c(i v n) + x(i v n) + 

+ (1 - V))"1 ( Z Pla\K + ci + x(i)) + a"x;_,,,] + 
k = 0 

+ +fakpk[K + ck + x(k)]}). 
k = i 
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Proof. From Lemma 3 and Lemma 5, we have 

(3.16) u(i, n) + (a''"" A 1) j</)(l - < 0 ) _ 1 = *.---« + («'"" A -) • 
i - 1 

. (x(i v n) + K+ c(i v n) + (1 - v(i)Yl (___ p_(a; *(.) + -."*(__,_) + 
4 = 0 

+ X%y *//<))) 
i t = ; 

and (3.15) follows from (3.4), (3.16) and Lemma 4. • 

Further, we examine variant 2. Put for j 2; 1 

(3.17) Wj = f ' exp ( - as) h(Xs) d_ . 

Denote for /' e N 

KO ='-«,»> ̂ /-
The following lemma holds. 

Lemma 6. For any /-policy 

(3.18) w(i) _. x(0) + i a - p _ x , _ M . 
lc = 0 

Proof. It follows immediately from (3.9). D 

Similarly to (3.4), we can write 

(3.19) V(a.2)(/, n) = E(i)B) P e - a " ft(n + __„) d« + 

+ (_'"- A 1) {K + c(/ v n) + (1 - K/))-1 « i ) + v</))} . 

From (3.8), (3.19), Lemma 4 and Lemma 6, we have the following theorem. 

Theorem 4. Consider variant 2. For any /-policy and any initial state neN 

(3.20) V(~,2)(<, «) = A',-„,„ + (a1"" A 1) {K + c(i v _) + (1 - i^/))"1 . 

. [x(0) + X a^_,-M + a\K + ci)j: Pk + £(K + ck) ak
Pk-]} . 

k = 0 /i = 0 k = i 

Note that for zero service times p0 = 1, _J_ = 0 for k __ 1, V(a,i)(/, «) = V(-,2)('> «) 
and their common value is given by 

(3.21) F(_)0)(i, n) = x,..,,,, + (a''-" A 1) {K + c(i v n) + 

+ (1 - a ' ) " 1 [x i )0 + a'(K + ci)]} . 

Formula (3.21) was obtained for n = 0, c = 0 in [7]. 
Now we examine the properties of a-discounted costs for both variants. It follows 

from (2.8) and (2.9) that the optimal control limits do not depend on the initial state 
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so it suffices to examine the properties of V(al)(i, 0) and V(a,2)(i, 0). We show that 
these costs are unimodal in /. Denote for i e N 

G(i) = X y A H(i + k), d(i) = 1 - +fakpk, 
k=0 k=i 

/ - 1 + eo 

(,({) = K + ci + X Pt(a' *(0 + akxt.ktk) + X a*M*(fc) + c(k ~ 0) • 
k = 0 k= i 

From (3+5), we get 

(3.22) V(aA)(i, 0) = x,,0 + a' x(i) + a> /,(/) (1 - <i)Y-

and 

(3.23) V(e>1)(i + 1,0)- F(((rl)(j, 0) = 8'[(1 - </)) (1 - </ + I))]"1 . 

. {G(0 (1 - v(i + 1))(1 - </)) + a(l - </)) <i(i + 1) - (1 - v(i + 1)) (.(.)} = 

= a''d(i + l ) [ ( l - < i ) ) ( l - < i + l ) ) ] - 1 . 

. [ ( l - < / ) ) ( G ( 0 + a c ) - ( l - a ) f l ( / ) ] . 

We prove the following lemma. 

Lemma 7. Let (2.1) hold. Define for / e At 

(3.24) 9l(i) = (1 - v(i)) (G(i) + ac) - (1 - a)..(.) . 

The function 8l(i) is increasing in /. 

Proof. For any i e At 

(3.25) (x(i + 1) = /,(/) + c d(i + 1) + a; G(i) f P,. 
k = 0 

From (3.24) and (3.25), we get 

9x(i + 1) - 0i(O = (1 - <i + 1)) G(i + 1) - (1 - a) G(/) a! £ Pk ~ 
k = 0 

- (1 - </)) G(/) + ac(v(i) - v(i + 1)) - c(l - a) a*(. + l) = 

= (1 - </ + 1)) [G(/ + 1) - G(i) - c(l - a)] . 

From the definition of G(i) and from (2.1), we have 

G(i + 1) - G(/) = +fakpk(H(i + 1 + k) - H(i + k)) > 
k = 0 

=
 +f akpk(l ~a)(c + y) b~l - (1 - a)(c + y). 

k = 0 

From this, we get 

9l(i + 1) - 9l(i) = (1 - v(i + 1)) [(1 - a) (c + y) - (1 - a) c] = 

= (1 - </ + 1)) y(l - a) > 0 . D 
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The optimal control limit is given by the following theorem. 

Theorem 5. Consider variant 1 and let (2.1) hold. The optimal control limit is given 
by 
(3.26) if (a) = min {i e N: gi(i) ^ 0} 

where gx(i) is defined by (3.24). 

For variant 2, put 

(3.27) t2(i) = K + ci + c+fak pk(k - i) + x(0) + £ akpkx^k . 
k=l k=0 

Then for any i-policy 

(3.28) V(St2)(i, 0) = x„0 + *' t2(i) (1 - v(i))~l 

(3.29) V(a,2)(i + 1, 0) - V(a,2)(i, 0) = a\H(i) + [(l - v(i)) (1 - v(i + l ) ) ] ' 1 . 

.[a(l-v(i))t2(i + l)-(l-v(i+l))t2(i)]}. 

It is easy to see that for any i e N 
t 

(3.30) t2(i + 1) = t2(i) + c d(i + 1) + H(i) a' £ pk 
t = o 

and 

(3.31) a(\ - v(i)) = 1 - v(i + 1) - (1 - a) d(i + 1). 

From (3.29)-(3.31), we have 

(3.32) VM)(i + 1 , 0 ) - Vis>2)(i, 0) = a' d(i + l) [(1 - v(i)). 

• (1 - <i + I))]"1 [(1 ~ <0) (II(0 + «c) - (1 ~ «) M03 • 
Define for i e At 

(3.33) a2(i) = (1 - »(.)) (II(0 + «c) ~ (1 - «) ta(0 • 

Lemma 8. Let (2.2) hold. The function g2(i) is increasing in i. 

Proof. From (3.30) and (3.33), we have for any i eN 

g2(i + 1) - g2(i) = (1 - v(i + 1)) [H(i + 1) - ff(l) - c(\ - a)] 

and from (2.2) 

H(i + 1) - H(i) ^ cc(c + y)/(a + A) = (1 - a) (c + y) 
which yields 

9z(i + 1) - 02(i) k (1 - «(i + 1)) y(l - a) > 0 . . D 

Theorem 6. Consider variant 2 and let (2.2) hold. The optimal control limit is given 
by 

(3.34) j*(«) = min {ieN: g2(i) ^ 0} 

where g2(i) is defined by (3.33). 
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Corollary 1. For zero service times, i*(cc) = i*(a) and their common value i*(a) 
is given by 

(3.35) i*(a) = min {i e JV:£ ak(H(i) - H(k)) = K + ci - c(l - a') A/a} . 
t = o 

Proof. For zero service times, p0 = 1, pk «-. 0 for fe >. 1 and 

r - l 

tl(f) = t2(i) = X + ci + X a" #(fc)> G(i) = tf(i), 1 - v(i) = 1 - a'. 
k = 0 

Hence, we have 

dl(i) = g2(i) = { I X ( t f ( i ) - H(fc)) + c(l - a') Xfa-K- ci} (1 - a) 
k = 0 

so that (3.35) holds. • 

In the last section, we examine the average cost case. 

4. OPTIMAL CONTROL LIMITS IN THE AVERAGE COST CASE 

In this section, we consider both finite and infinite capacity and suppose that the 
assumptions of Theorem 2 are satisfied, i.e., let 

(4.1) kb < Q, b = E(B) 

(4.2) h(n + 1) - h(n) > d for some 5 > 0 and all n e N . 

4.1. The infinite capacity server 

We start with the infinite case (Q = +oo) and use an approach similar to [4]. 
Let Tj be the length of the ;th cycle, i.e., the length of time between the beginning of 
the jth and the (j + l)st service and let C, be the cost of this cycle. Note that {C,, 
j 2: 2} have the same distribution independent of the initial state. It follows from 
renewal theory that under any i-policy, the long run average cost per unit time is 
given by 

(4.3) R(i) = E;C,/E;T, 

for any; ^ 2. Consider variant 1. The cost of the jth cycle for any j >. 2 is 

(4.4) C, = K + cMv.t + I ' h(Mrj_t + X's) ds + P ' h(X'B. + Xs) ds 
Jo Jo 

where we used the same notation as in Section 3. Under any i-policy, the length 
of the jth cycle is 

(4.5) tj = max {£,, TJ 
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where Tt is the arrival time of the ith customer in the j'th cycle. Denote 

__ = [ °° «t(0 dB(0> 5* = f K* + O ds + fT h(X'B + __,) ds , 
Jo Jo Jo 

m - 1 + 0 0 

*m,« = __ ft(" + fc)M> *("0 = Z 9 A , » 
4 = 0 fc=l 

for all m e JV, n e TV. The following lemma holds. 

Lemma 9. For any i-policy and any j = 2 

(4.6) E,C, = £ qfc(K + ci + x(i) + j.,_tJfc) + £ qt(i_ + cfc + x(fc)) 
fc=0 t = i 

(4.7) E,., = . + J (i - fc) qkjk . 
k = 0 

Proof. Similarly to the proof of Lemma 3, conditioning on B} = t, Mt = fc yields 
for any i e N, j _ 2 

(4.8) E,C, . £ &(_, + ci + EA) + _ _ W + ^ + EA) • 
fc = 0 ( c = i 

We have for any meN 

(4.9) E;_5„, = Et ( | h(m+ X's) ds + f / . ( ^ + X,) ds") = 

= 1 -* - f ' " *(* + _-.) ds + f " E f h(m + X's) ds d_t(.) = £ &*,_„ + x(m) 
*=o Jo Jo Jo . *=° 

and (4.6) follows from (4.8) and (4.9). Further, for any j ^ 1 

-1*. = Z P o ^ * - * + 0 -*(0 d*(0 + 1 f " * -»(0 dB(0 = 
*=oJo *='Jo 

= I ( i j ^ f+ " *t(0 dB(/) + f "« dB(t) = E( i - fc) &/A + & • • 

fc-o /I Jo Jo * = ° 

The long run average cost per unit time is given by the following theorem. 

Theorem 7. Consider variant 1. For any i-policy 
(4.10) Rx(i) = [5(i)]-» {K + ZUKi) + * . - M ) + I * * ( * ) ) + l c 

(i = 0 fc = i 

where 

(4.11) -<0^* + I ( < r * ) - ^ -
fc = 0 

The long run average cost for variant 2 was obtained in [4] and is stated here 
in the following theorem. 
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Theorem 8. For variant 2 and any i-policy, the long run average cost per unit 
time is given by 

(4.12) R2(i) = [O(i)]-1 {K + x(0) + ' l ^ - w } + Xc. 
t -o 

Further, we show that if (4.2) holds then both Rt(i) and R2(i) attain their minima 
only once. Denote for i e N 

(4.13) 0, = v(i)f qjh(i +j) - K - Zqk(x(i) + X,_M) -+fqkx(k). 
j=0 k=0 k=i 

We have 

(4.14) v(i + 1) = v(i) + £ qk\X 
k = 0 

(4.15) / ? ; + l = & + S(. + l)+fqk(h(i + ,/c + 1) - /i(i + k)) . 
k = 0 

From (4.10), (4.13)-(4.15), we get 

(4.16) Rt(i + 1) - tf.(.) = [«(.) S(i + l ) ] " 1 A"1 E ^ ; . 
k = 0 

The assumption (4.2) and (4.15) yield that pt is increasing in i and from (4.16) we can 
conclude that Rt(i) attains its minimum only once. 

Theorem 9. Let (4.2) hold. Then both - R i ( 0 and -R2(i) are unimodal functions 
in i and the corresponding optimal control limits are given by 

+ CO 

(4.17) if = min {i e N: Xc + £ qk h(i + k) ^ Rx(i)} 
k = 0 

(4T8) if = min {i e JV: Xc + h(i) ^ R2(i)} 

where R^i) and R2(i) are defined by (4.10) and (4.12) respectively. 

The second part of this theorem concerning variant 2 was proved in [4] . 

Corollary 2. For zero service times, Rj(i) = R2(i) and their common value R(i) 
is given by 

(4.19) R(i) = Xi'l{K + £ h(/c)/A} + Xc . 
k = 0 

In this case, the optimal control limit is 
! - l 

(4.20) i* = min {i e JV: £ (h(i) - n(fc)) ^ AK} . 
it = 0 

4.2. The finite capacity server 

It remains to examine the finite capacity case (Q < + GO). We can use the approach 
in [1]. Consider any i-policy, i ^ Q. Let rj„ denote the time at which the nth service 
is completed, rj0 = 0 and let X„ be the number of customers waiting in the system 
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at time nn. If (4.1) holds then {__„} is a positive recurrent Markov chain and the limit­
ing distribution {\j/n, n e N} is the solution of the following equation (cf. [3], [6]) 

(4.21) i f ' . - E W - + iV.3„-J-+Q. neN. 
;=o , = Q 

The equation (4.21) can be solved e.g. by methods in [5]. Define for / ;£ Q, n e N 

(4.22) „,(i, n) = E(M) { P h(n + X's) ds + V h(i w n + Xs) ds\ + 

+ K + c(i v (n A Q)) = ..,_„,„ + x(i v n) + K + c(i v (n A Q)) 

(4.23) „2(i, n) = E(l>) ^S h(n + X's) ds + f ' h((n - g) v 0 + Xs) dsj + 

+ _C + c(/ v (n A S)) = 5c;_„,„ + x((n - Q) v 0) + i_ + c(/ V(I IA Q)) 

(4.24) .(/, n) = E(,iB)(. + 5 ^ = , + A_1((. - n) v 0) 

where we used the same notation as in Sections 3 and 4.1. Then by the strong law 
of large numbers for semi-Markov processes (cf. [1], [8], pp. 98, 104) the long run 
average costs under any /-policy, i g Q are given by 

(4.25) R,(i) = +f fi.(_, k) i,k\
 +f.(/, k) i>k 

ft=0 fc=0 

(4.26) R2(i) = +f fla(i, fc) ̂ 1 +fv(i, k) h. 
k = 0 k = 0 

We again prove that both — Ri(i) and — j.2(/) are unimodal and obtain inequalities 
for the optimal control limits in a general case. Denote 

0.(0 = Z */('. fe) ̂ . j = 1. 2 . / (0 =+i«(*. fc) **. 
k = 0 *: = 0 

G(0 = i \ Hi + »)M • 
n = 0 

After some algebraic manipulations, we get for variant 1 

(4.27) £.(. + 1) - ^ ( i ) = 

- t/(o/(i +1)]"1 i *_«< + G(O)/(O - Hm 
k = 0 

and for variant 2 

(4.28) R2(t +1) - R2(o = [/(/)/(*• + 1 ) ] - 1 i ^ + »(OM)/(O - u m • 
k = 0 

Put 
/,(/) = (c + 5 (0 ) / ( / ) - ff-(0/A 

/2(/) = (c + h(/)/A)/(0-fi2(0M. 

We prove the following lemma. 
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Lemma 10. Let (4.2) hold. Then/^ i ) and/ 2 (0 are increasing in i, j < Q. 

Proof. For any i < Q 

j1(i + i ) - j i (0= j ( i + i)(S(i + i ) -5(0) 

j2(i + i) - j2(0 = f(i + i) (Mi + i) - tX0)M • 

From (4.2), we get G(i + 1) - G(i) ^ 5/X > 0 and this completes the proof. • 

The optimal control limits are given by the following theorem. 

Theorem 10. Let (4.1), (4.2) hold and Q < +oo. The optimal control limits for 
variant 1 and variant 2 are 

(4.29) l* = min {i < Q: Ac + A G\i) ^ R%(i)} , if Xc + X G(Q - 1) ^ R\(0 - 1) 

= Q otherwise, 

(4.30) if = min {i < Q: Xc + h(i) ^ R2(i)} , if Xc + h(Q - 1) £ R2(Q - 1) 

= Q otherwise 

where Ri(0 and R2(i) are given by (4.25) and (4.26) respectively. 

Corollary 3. For zero service times \j/0 = 1, \\ik = 0 for k >. 1, R\(i) = R2(i) 
and their common value R(i) is given by 

(4.31) R(0 = (Xr1) (K + £ h(_)/A) + Ac for i = Q . 

t = o 

The optimal control limit in this case is 

(4.32) ,_. G_2 

T* = min {i < Q'-ZiK') ~ Kk)) = XK) > if __ (/((e - 1) - l«(fc)) ^ l̂̂  
t = 0 k=0 

= Q otherwise . 

Note that there are some discrepancies in [ l ] on pages 357 and 358. 

(Received June 5, 1984.) 
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