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K Y B E R N E T I K A - V O L U M E 22 (1986), N U M B E R 1 

FAST DIAGNOSIS OF SOME SEMIGROUP PROPERTIES 
OF AUTOMATA 

MARIE DEMLOVÁ, VÁCLAV KOUBEK 

The aim of this note is to improve the results of Watanabe and Nakamura. We present algor
ithms which for a given automaton A decide whether the transition semigroup of A contains 
left or right identity, or whether the transition semigroup of A is a left or a right group, or permut
ation group in linear time (i.e. it requires 0(\Q\ • \X\) time where Q is the set of states of A, X 
is the set of inputs of A). Further we give algorithms which for a given automaton A decide 
whether A is quasi-state independent, or state independent and requires 0(|<2|2 • \X\) time. 

A recent paper by T. Watanabe and A. Nakamura, [5], offers several useful 
algorithms with aid of which one can quickly recognize some elementary properties 
of the transition semigroups of automata, such as, for example, the presence of one
sided or both-sided identities, cancellation properties, etc. The transition semigroup 
of an automaton A is given by a family of generators of S(A) usually described 
by the transition function b: Q x X -+ Q of A (specifying the action of inputs X 
on states Q), hence the input data for the algorithms in question may be considered 
as of size Q x X. 

When applying to the algorithms in [5] one of the most common efficiency criterion, 
namely, the asymptotic worst-case time complexity related to the RAM model with 
uniform cost function (without arithmetical operations), one can see almost im
mediately there is a margin left for improvement on Watanabe-Nakamura algorithms, 
what we actually do in the present note. 

An automaton A will be given by two-dimensional \Q x Xl-array 

xo xi xi 

90 <5(<7o> xo) <5(<?o>*i) <5(<?o> •*;) 

<?1 <5(<7i> x0) • <5(<7i> * i ) <5(<7i>л-;) 

4j <5(<7j, x0) <5(<7j, x{) <5(<7;> •*;) 
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A function j from a set Z will be given by one-dimensional |z|-array 

/(z0) j AH) I ••• I /(-.) I ••• 

Thus the values <5(<2j, x{) or j(zt) are computed in one step of computation. 

First let us recall some elementary semigroup notions (see [2]). An element x of a 
semigroup S is called left(or right) identity if for every y e S we have xy = y (or _yx = 
= y, respectively). If x is both left and right identity then it is called identity. A semi
group S is called left-zero (or right-zero) if for every pair x, y of elements of S we have 
xy = x (or xy = j>, respectively). We say that a semigroup S is a left group (or 
a riofrr group) if S is isomorphic to a product of a group and a left-zero (or right-zero, 
respectively) semigroup. A transformation semigroup F on a finite set is said to be 
a permutation group if every transformation in F is a bijection. For an automaton 
A denote by S(A) the transformation semigroup on the set Q generated by {<5( —, x); 
xeX}. We recall that we compose mapping from the left to the right, i.e. j o g(x) = 

The following improves Theorem 4 in [5]: 

Theorem 1. There exists an algorithm deciding for a given automaton A that 
of the following conditions hold: 

a) S(A) has a left identity; 
b) S(A) has a right identity; 
c) S(A) has an identity; 
d) S(A) is a left-zero semigroup; 
e) S(A) is a right-zero semigroup; 
f) S(A) is a left group; 
g) S(A) is a right group; 
h) S(A) is a group; 
i) SVA) is a permutation group, 

and requiring 0(\Q\ . \X\) time. 

The corresponding algorithms in [5] require o(|Q|2 . \X\) time. 
An automaton A is called quasi-state independent if some state qe Q fulfils: 

( + ) for every pairL g of different mappings from S(A) we havej(<2) 4= g(q). 
An automaton is said to be state independent if every state fulfils ( + ). Quasi-state 
independent and state independent automata were investigated in papers [6] and [7]. 
For example, for every finite semigroup S there exists a quasi-state independent 
automaton A such that SVA) and S are isomorphic. On the other hand, if an autom
aton A is state independent, then S(A) is a right group. 

The second result of this note improves Theorems 7 and 8 in [5]. 

Theorem 2. There exists an algorithm deciding whether a given automaton is state 
independent, or quasi-state independent, requiring 0 ( | g | 2 . |X|) time. 
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The corresponding algorithms in [5] require 0(max {|Q|3 \X\, \Q\5}) time for 
quasi-state independent automata, 0(max {\Q\ . \X\2, \Q\2 . \X\, |Q|4}) time for state 
independent automata. 

For a mapping / : Z —> Y, I m / denotes the image of/, K e r / denotes the kernel 
of /(i.e. (x, y) e K e r / iff / (*) = /(>>)). 

The proof of Theorem 1 is based on the following lemmas: 

Lemma 3. a) S(A) has a right identity if and only if there exists xeX such that 
|lm <5( —, x)\ = |lm 8( —, x)2\ and for every y eX, Ker <5( —, x) £ Ker <5( —, y). 

b) S(A) has a left identity if and only if there exists xeX such that [im <5( —, x)\ = 
= |lm <5(—, x)2 | and for every y eX, Im <5( —, x) 3 Im 5{ —, y). 

Proof. For a word veX+ denote by /„ = d( — ,v). Now, assume tha t j ' eS(A ) 
is a right identity of S(A). Then for every g e S(A) we have g af = g and hence Ker / £ 
£ Ker g of = "Ker g. If/ = fXl o fX2 a... o fXn where xi,x2,...,x„eX then evidently 
KerL n £ K e r / £ KerLn . Thus set x = x„, then K e r / , £ Ker / , for every y eX. 
Since Ker/;/n £ Ker/Vn_. 0 L n £ K e r / we have Ker/;/ = K e r / , and hence | l m / ; | = 
= |Im/*|-

On the other hand, if l lm/2] = | lm/ x | then the fineteness of Q implies that there 
exists n such tha t / " is an idempotent and | lm/" | = |lm/,J. Thus Ker/" = Ker/X. 
Since Ker/X £ Ker / , for every y e X we have that Ker/" = Ker/X £ Ker/,, 
for every non-empty word v e X +. The idempotency off" and this fact imply/, oj" = 
= /„ for every veX+ — hence/" is a right identity of S(A). 

The proof of b) is dual. If / = fXi C L , o. . . afXn e S(A) is a left identity of S(A) 
and Xj, x 2 , . . . , xn e X then fXl of = fXi implies Im/ . , £ I m / £ I m L , and hence 
Im/X l = I m / F u r t h e r Im/V l = I m / 3 Im g for every g e S(A) because f o g = g 
for gfeS(A). Moreover I m / £ I m / , , <>L2 £ Im/;/, and therefore | lm/X l | = 
= | lm/ v J . Thus it suffices to set x = xt. 

On the other hand, analogously as above, there exists n with/" an idempotent and 
I m / " = I m L . Hence for every non-empty word veX+ Im/„ £ lmfx = I m / " and 
the idempotency of/" implies / " 0 /„ = /„. Thus / " is a left identity of S(A). D 

Lemma 4. a) S(A) is a right group if and only if for every pair x, y eX, we have 
Im/A. = I m / , and | lm/ x | = |lm/;/|. 

b) S(A) is a left group if and only if for every pair x,yeX we have Ker/X = 
= Ker / , and |lm/»| = |lm/x

2 |. 

Proof. Assume that S(A) is a right group, then there exist a group G, a right-zero 
semigroup S, and an isomorphism (p: G x S -» S(A). For a simplicity we identify 
every pair (a, s) with <p(a, s) (i.e. we assume that S(A) = G x S). Let e be the 
identity of G. Take g e G, seS, then (a - 1 , s) 0 (g, s) = (e, s), (a, s) <, (e, s) = (a, s). 
Hence Im (g, s) £ Im (e, s) £ Im (o, s) and therefore Im (a, s) = Im (e, s). Further 
for s l5 S 2 E S we have (e, sx) 0 (e, s2) = (e, Sj), (e, s2) o (e, sx) = (e, s2) and thus 
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Im (e, sx) = Im (e, s2). As a consequence we have Im (gu s t) = im (g2, s2) for any 
9i 02 6 G, su s2 e S. Hence for every x j e l w e obtain I m / , = Im fy and \lmfx\ = 
= l-m/'J. 

On the other hand suppose that for every x, y e X it holds Im/X = I m / , and 
| l m L | = [lmL2|. Since {fx;xeX} generates S(A) we get I m / = Im g for every 
pair j , a e S(A). Set E = {/e S(A); / = / 2 } , then for every fe S(A), g e E we have 
g°f = f. Therefore E is a right-zero semigroup. For a n y / e S(A), set Sf = {g e S(A); 
Kerg = Ker /} then Sf is a subsemigroup of S(A) with |E n Sy| = 1. Since for 
every g e S(A) there exists n such that g" is an idempotent we get that Sf is a group. 
For every pair e1,e2e E, define <pej>e2: Set -> S„2 as follows: (pei,ei(f) = f°e2. Since 
Ker /o e2 2 Ker e2 and Im f° e2 = Im e2 we obtain by fmiteness of Q that Ker/o e2 = 
= Ker e2 - thus q>et >e2 is a mapping from Sei to Se2. Since ex and e2 are left identities 
of S(A) we conclude that <pei>e2 is a homomorphism and <ye2>ej o (pe,,C2(f) = f, 
Vei.ei ° (Pe2,ei{9) = 9 for a n y / e Sei, g e Se2. Therefore f/>eije2 and (pe2iei are isomor
phisms. Choose e e E. Define i>: E x Se -^ S(A), i//vg,/) = j 0 g for g e E, / e Se. 
Then for g l 5 g2 e E, fuf2 e Se we have \p(gi 0 g2,f1 0f2) = «/(*?.•/i °j2) = ji ° 
°j2 ° 02 = ji ° 0i °j2 o g2 = iA(0i,ji) o t//(02,j2) and hence i// is a homomorphism. 
Further for every g e E, / e Se we have iA(g,/) = 9>e>9(/) and «A(e,j) = j - thus i/̂  
is an isomorphism and S(A) is a right group. 

The proof of b) is dual. If S(A) is a left group. Analogously as above there exist 
a group G and a left-zero semigroup S such that we can identify S(A) with G x S. 
Then for g e G, s, Sj, s2 g S, and the identity e of G, the following equations hold 
(g, s)0(g-1,s) = (e, s), (e, s) „ (g, s) = (g, s), (e, st) „ (e, s2) = (e, s.), (e, s2) „ (e, S l) = 
= (e, s2), and, as a consequence, we obtain Ker(g ) , s 1 ) = Ker (g2 ,s2) for any 
gu g2 6 G, s1: s2 e S. Thus for every pair x, y e l we have K e r L = Ker / , and 
[Im/X

2| = | Im/, | . 

On the other hand assume that for every x, y eX it holds: Ker/,. = Ker / , and 
|lm/x

2 | = | lm/x | . Then for/ , g e S(A) we obtain K e r / = Ker g. Set E = {/e S(A); 
/ 2 = / } . Since f o r / e S(A), g e E we have / o g = / we conclude that E is a left-zero 
semigroup. For / e S ( A ) set Sf = ^ e S ( 4 ) ; Im g = I m / } . Then |E n S ; | = 1 
and Sf is a subsemigroup of S(A). By the same reason as above we obtain that Sf 

is a group. Further, for eu e2 e E, define (pe> ,e2: Sei -» Se2 such that <pej e2(/) = e2 0 / . 
Since Ker e2 = Ker e2 of and Im e2 = Im e2 0f we have that Im e2 = Im e2 af 
(we use the finiteness of Q) and hence (pei,e2(f) e Se2. Since eu e2 are right identities 
of S(A) we have that q>ei e2 is an isomorphism of Sej onto Se2. Choose e e E and define 
tf>: E x Se -> S(A) as follows: fox geE, fe Se set i>(g,j) = g „/ . By a straight-
forwaid calculation - see above — we obtain that i]/ is a homomorphism and 
\j/(g,f) = cpeJJ) for every g e E, / e Se, hence i/r is an isomorphism. fj 

To prove Theorem 1 we need two auxiliary algorithms, the first one is an easy 
exercise, the second one is described in [3] (it is called Algorithm A in that paper). 

Lemma 5. a) There is an algorithm which for a given set E of mappings from Y 

95 



to Z and for a set A c Ycomputes |u { j(A) ; je F}\ and which requires ov|E| ' |^ | ) 
time. 

b) There is an algorithm which for a given set F of mappings from Y to Z constructs 
n { K e r / ; / e E } and which requires o(|E| • | r | ) time. 

P roof of Theo rem 1. Clearly, in o(|6| ' \X\) time we can find n {Ker/X; x e l } , 
|u {Im/X; x e X } | and for every xeX, \lmfx\, | Im/ x | . 

a) By Lemma 3b) it suffices to decide whether there exists xeX such that Ker/X = 
= n {Ker/,,; y eX} and |lmjx | = | lm jx | . Obviously, the inspection of this property 
requires o(|0| • \X\) time. 

b) By Lemma 3a) it suffices to decide whether there exists xeX such that |lm j x | = 
= | l m / x | = |u {Imj,,; v eX} | . Again, the inspection of this property requires 
0(|Q| • \X\) time. 

c) Since 5(4) has an identity iff 5(A) has both a left and a right identity we have 
that c) follows from b) and a). 

f) By Lemma 4b) it suffices to decide whether for every x e l w e have Kerjx = 
= n {Kerj,,; yeX} and |lm jx | = | lm/ 2 | . This requires 0K\Q\ • \X\) time. 

g) By Lemma 4a) it suffices to decide whether for every x e l w e have |lmjx | = 
= |lmjx

2| = \u {lm fy; y eX}\. This requires 0( |Q| - |AT|) time. 

h) A semigroup is a group iff it is both a left and a right group. Thus h) follows 
from f) and g). 

d) A semigroup is left-zero iff it is a left group and each element is an idempotent. 
Hence 5(A) is a left-zero semigroup iff 5(A) is a left group and / x is an idempotent 
for every xeX. The inspection of the second condition requires o(|e| • \X\) time 
and thus d) follows from f). 

e) A semigroup is rigth-zero iff it is a right group and each element is an idempo
tent. Thus 5(A) is a right-zero semigroup iff S(A) is a right group and for every 
x eX,fx is an idempotent. Hence e) follows from d) and g). 

i) Clearly, a n y / e 5(A) is a bijection iff/, is a bijection for every x e X. By finiteness 
of Q, fx is a bijection iff | lm/ x | = |o l . The inspection of this condition requires 
0(\X\ • 16|) time. • 

A point y e Y is a distinguishing element of a transformation semigroup F on Y 
if for every pairj, g of different mappings in F we havej(j>) 4= g(y). Clearly: 

Proposition 6. An automaton A is quasi-state independent if and only if S'KA) has 
a distinguishing element. An automaton A is state independent if and only if every 
element of S(A) is distinguishing. 

The following easy lemma shows the basic scheme of the algorithms in Theorem 2. 

Lemma 7. Let F be a transformation semigroup on a set Y Then for every y e Y, 
\{f(y);fe F}\ g \F\ and y is distinguishing if and only if the equality holds. 
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Proof. Clearly, <p: F -» {f(y);fe F} such that cp(f) = f(y) is an onto mapping, 
thus |E| 2: \{f(y);fe F}\ and <p is a bijection iffy is distinguishing. Hence the second 
statement is proved. • 

To prove Theorem 2 it suffices to solve by Proposition 6 the following tasks: 
Let E be a set of transformation of a set Y to itself. 

a) does the transformation semigroup E generated by E have a distinguishing 
element? 

b) is every point of Y distinguishing in the transformation semigroup on the 
set Y generated by E? 
Lemma 7 offers us an idea for a solution of the tasks. The task a) can be solved by 
the following scheme: 

1. Find a point y such that the set {f(y);fe P} has the greatest number of points; 
2. Decide whether y is distinguishing. 

By Lemma 7, if E has a distinguishing element then necessarily y is distinguishing. 
The task b) can be solved by the following scheme: 

1. Decide whether for every pair x, y of points of Ythe following equality |{/(}'); 
fe P}\ = | { / (x ) ; / e E}| holds. If for some pair the equality does not hold then there 
exists an element of Y which is not distinguishing; 

2. Choose a point y e Y and decide whether y is distinguishing. If the answer is 
yes, then any point of Y is distinguishing. 

Again both statements follow from Lemma 7. 
To solve the first step in both algoiithms it suffices to determine | { / ^ x ) ; / e E } | 

for every x e Y. Consider a directed graph (Y, R) where R = {(x,f\ x)); x e Y/e E}, 
then clearly it holds: 

{f(x)lfe F} = {y; there exists a directed path from x to y in (Y R)} . 

Now, by an easy modification of Tarjan's algorithm for constructing strongly 
connected components of a directed graph — see [1] or [4] — we obtain (let us 
remark that |R | = |E| . |Y | ) : 

Lemma 8. There exists an algorithm which for a given set E of mappings from a set 
Yto itself and for a given element y e Ycomputes \{f(y);fe P}\, where E is the trans
formation semigroup generated by E, and which requires Oy\F\ • \ Y\) time. 

Thus we have 

Corollary 9. A solution of the step 1 in both tasks requires o(|E| • |7|2) time. 

We describe a procedure which for a given set E of mappings from a set Y to itself 
and for an element y e Y decides whether y is a distinguishing element of the trans
formation semigroup E generated by E. 

We shall use two auxiliary subsets of Y — the set 0 of old points, the set If of work
ing points — with Wn O = 0. Moreover, for every xeWuO a mapping gxeP 
with gx(y) ~ x is constructed. 
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Procedure DIST ELEM 

1) SetO*-<D,W*-{y},gy = idy 

2) while W 4= 0 do 
choose z eW, remove z from lYand add z to 0 
for every j e E do 
if f(z) $ Wu Othen 

set gf(z) = f o gz and add / (z) to W 
else check whether a / (z ) — f° gz, if the equality does not hold then y is 

not distinguishing element; 

3) if we have not obtained that y is not distinguishing element 
then y is distinguishing element. 

We have to show the correctness of this procedure and to estimate time needed 
for the procedure. 

If the procedure gives the answer "y is not distinguishing" then there exist gf(z), 
f0gzeP for some feF, zeY such that gf(z)(y) = f(z) = fogz(y) and gf(z) 4= 
4= / o Qz — thus the answer is correct. On the other hand, assume that the answer 
is "y is distinguishing". Then for every / e l we prove that after the end of the 
procedure f(y)eO and / = gf(y). Since jeE there exist fl,f2,...,fneF with 
j = ji 0/2 ° ••• °fn- We prove by induction over i that for / = j , o / , + 1 o . . . oj„ 
we have/ ((j) e O a n d / = gfi(y). Indeed, y e O and thus in some time it held: fn(y) e W 
and fl/„oo = /„. Since after the end of the procedure W = 0 we have that f„(y) e O. 
Assume that the assertion holds for some i, t h e n / , - ! = f^x 0 / and since in some 
time/,(y) e 0 necessary in this time ft-x(y) e o u Wa.ndfi^1 = /,_< o/, = gfi_i(y). 
Since after the procedure W = 0 we obtain fi-i(y) e 0. Since / = / t the proof is 
complete and hence the answer "y is distinguishing" is correct. 

To estimate the time needed for the procedure we remark that the outer cycle 
in the step 2 repeats for every z e Y at most once. Analogously the inner cycle (for 
every / e E do) repeats at most once for every z e Y and / e E. The main command 
in the step 2 (if . . . then ... else ...) requires o(|Y|) time. Hence the procedure re
quires o(Y|2 • |E|) time. 

If we summarize these facts we obtain: 

Proposition 10. There is an algorithm which for a given set E of mappings from 
a set Y to itself decides whether the transformation semigroup generated by E has 
a distinguishing element (or every element of Yis distinguishing) and which requires 
o(|E| • |Y |2) time. 

Theorem 2 is a consequence of Propositions 6 and 10. 

(Received July 11, 1984.) 



R E F E R E N C E S 

[1] A. V. Aho, J. E. Hopcroft and J. D. Ullman: The Design and Analysis of Computer Algo
rithms. Addison-Wesiey, Reading, Mass. 1974. 

[2] A. H. Clifford and G. B. Preston: The Algebraic Theory of Semigroups. AMS Providence, 
Rhode Island 1967. 

[3] M. Demlová, J. Demel and V. Koubek: On subdirectly irreducible automata. RAIRO — 
Inform. Théor. 15 (1981), 23-46. 

[4] R. E. Tarjan: Depth first search and linear graph algorithms. SIAM J. Comput. 1 (1971), 
146-160. 

[5] T. Watanabe and A. Nakamura: On the transformation semigroups of finite automata. J. 
Comp. System Sci. 26 (1983), 107-138. 

[6] T. Watanabe and S. Noguchi: The amalgamation of automata. J. Comp. System Sci. 15 
(1977), 1-16. 

[7] T. Watanabe and S. Noguchi: Quasi-state independent automata. I.E.C.E. Japan. Trans. 
60-D (1977), 177-179. 

RNDr. Marie Demlová, CSc, katedra matematiky elektrotechnické fakulty ČVUT (Department 
of Mathematics, Faculty of Electrical Engineering — Czech Technical University), Suchbatdrova 
2, 166 27 Praha 6. Czechoslovakia. 
RNDr. Václav Koubek, CSc, Výpočetní centrum Karlovy University (Computing Centre of 
Charles University), Malostranské nám, 25, 118 00 Praha 1. Czechoslovakia. 

99 


		webmaster@dml.cz
	2012-06-05T15:38:54+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




