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KYBERNETIKA — VOLUME 23 (1987), NUMBER 6

RANDOM SEQUENCES .
WITH NORMAL COVARIANCES

JIRf MICHALEK

The main goal of the paper is to introduce the notion of random sequences with normal
covariances, describe the class of normal covariances and give their spectral decomposition.
The motivation is to describe a large class of random sequences, containing weakly stationary
case, that could be useful as mathematical models for real random sequences.

1. LOCALLY STATIONARY COVARIANCES

We shall start with the notion of a locally stationary covariance following Silver-
man who introduced this notion in his paper [1]. He considered the case of random
processes defined on the whole real line only. A random process {Z(1)}, te R,,
is locally stationary if its covariance function R(+, *) can be expressed as a product

® "o ) = &y () s =9,

2

where R,(+) 2 0 and R,(*) is a stationary covariance. In this case we shall say that
the covariance R(, *) is locally stationary too. We assume the expected value
E{Z(1)} is vanishing for every real 1. At the first sight one sees that the product (1)
is not suitable for the definition of local stationarity for random sequences because
the set Z of integers is not closed with respect to division by two. For this reason
we suggest the following

Definition 1. Let {Z(n)}, n € Z, be a (complex) random sequence with finite second
moments and vanishing expected value. We shall say that {Z(n)}, neZ, is locally
stationary, or its covariance function is locally stationary, when its covariance
R(+, *) can be written as

) R(n, m) = Ry(n + m) Rofn — m)

where R,(*) is a stationary covariance.
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In the case of a random process the product (1) immediately implies that R,(+) = 0
in every case for R(s,s) = Ry(s) = E{]Z(s)]*} = 0. On the other hand in the case
of a random sequence we do not demand nonnegativity of Rl(-). Definition 1 yields
only that R(2n) = 0 for every ne Z; in general, R,(n + m) can be negative for
n + m odd. In case when R,(+) is a covariance too the product (2) is a covariance
automatically and we obtain a large class of locally stationary covariances. Let us
describe this class detailly. As long as R,(+) is a covariance then R,(-) is a real
function because R,(n + m) = R,(m + n) = R,(m + n).

Definition 2. Let {Z(n)}, n € Z, be a (complex) random sequence with finite second
moments and vanishing mean value. We shall say that {Z(n)}, n €Z is symmetric
if its covariance function R(+, +) has the form

R(n, m) = Ry(n + m).
A covariance function of this type will be called symmetric too.

Theorem 1. Every symmetric covariance function R,(+) can be expressed in the
form
Ri(n + m) = [2, A" dF (1)

where Fy is a left continuous nondecreasing function with finite variation equal
to R,(0).

Proof. The proof is quite similar to the proof of Theorem XII 8.1 in [2]. Let x
be a random variable belonging to the linear set of all finite linear combinations

over the sequence {Z(n)}, ne Z, i.e.
N

x =Y o Z(i)
i=-N
where oy, O_yyqs.-es 8oy, %o, 0y, ..., &y are complex numbers. Let us consider
the imbedding of {(LN, G yggy oves Bgy gy Opyveny ocN} into a two-side sequence
{a;}52 ., of complex numbers with finite number of nonzero elements. The set
of these sequences with finite number of non-zero elements forms a linear set with
respect to addition and multiplication by scalars coordinatewisely. Let us define
on this set a bilinear form

o, B> =‘:Z Y B, Ry(i + j)

-Lj=-L

N N

where o = {o} 2 _ . B={B};L -0 L=Max(N, M). Denote |af>= 5 ¥ ;.
i="Nj=-N
-R(i + j) then |-|| is a seminorm. We shall say that « is equivalent to jﬂ(a ~ )
if o — B| = 0. Instead of the original sequences we shall work with the classes
of equivalence which form a unitary space with the norm ||| Let H be a completion
of this unitary space with respect to the norm | -||. Then H is a Hilbert space and let
us define a shift operator T by the relation

(To); = ()i~y, i€Z.
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To be well defined the operator T must map the null class {0} into the null class
again. If la| = 0, i.e.
N—-1 N-1
Y adR(i+j)=0,
i=~N-1j=-N-1
then

“Toc”z B Nil | :i;g?i'l&j#l R(i +j) =

i=-N-1j

N-1
= Y % 4% R(i+j) =T a) =0
i==N—-1j=-N-1

because |(T?a, 23| < || T%]| [l = 0. In a similar way, one can easily prove that the
operator T'is symmetric in H, i.e. the equality

(T, By = <o, TH)

holds for every pair a, § of elements in H which correspond to sequences with finite
number of nonzero elements. It means the definition domain D(T) of T is formed
by all equivalence classes due to finite sequences, which form a linear set every-
where dense in H. As for every a where T'is defined T% = Tt the operator T is of
a real type with respect to complex adjoint property. This fact implies the existence
of a maximal self-adjoint enlargement Ty of T in H because the both deficiency-
subspaces due to T have the same dimension. The self-adjoint operator T, has
a spectral decomposition
T, = (%, AdE,

where {E;' 2. _,, is a resolution of the identity in H. Thanks to the fact that T, =
= Ton D(T)and D(T) = D(T") for every n = 0 we can state

Ry(p) = [, A7 d(E, #{0), o{0)>

where (20}, = 1, (2(0)); = 0 otherwise. As we consider two-side sequences there
exists the inverse operator T~ * to operator T defined by the relation

(T_la)i = (“)iu -

The operator T~ ! is defined on D(T) and similarly we can prove that T~ is symmetric
and maps the null class {0} into the same class of equivalence. T~* is an operator
of a real type as well and hence there exists a self-adjoint operator T ! satisfying
T 'c Ty As Ty = (T,) 7" on D(T) then

Ti'x = (|2, AdE) ' x = [*, A" dE,x
for every x € D(T).
We obtained that for every pe Z

Ri(p) = |2, 4" d<E; o{0), (0)> ,
Ri(n+m) = [2_Jr*"dF (j). ]
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On the basis of Theorem 1 and the Karhunen theorem, (see [3]), we can derive
a spectral decomposition of a symmetric sequence in the form of a stochastic integral
understood in the quadratic mean sense

Z(n) = [2, A" dE(%)
where {g“(/l)‘( , A€ Ry, is a martingale in the quadratic mean sense satisfying
Z(0) = Lim. &(2)
A @

0 =lim. &(2).
Ao —w
Theorem 2. Let {Z,(n)}, n € Z be a symmetric sequence, let {Z,(n)}, n e Z be a sta-
tionary sequence and let these sequences be mutually stochastically independent.
Then their product {Z(n)}, n € Z,

Z(n) = Zy(n) Z,(n), nez
is a locally stationary sequence.
Proof.

EL2(0) 20} = E{2,(n) Z,(n) Z2) Za(), = E2(0) Z:)
x E{Z,(n) Z,(m)} = Ry(n + m) Ry(n — m). O

Theorem 3. Let {Z(n)}, n € Z be locally stationary. Let n; < n, < nz < ... < ny
be integers. Then the covariance matrix R = {E{Z(n;) Z(n;)!}.;_,} is the Hadamard
product of a Toeplitz matrix and a Hankel matrix.

Proof. Local stationarity gives E{Z(n;)Z(n})} = Ry(n; + n;) Ry(n; — nj), for
simplicity let us put Z(n;) = y(i), i = 1,2, ..., N, then

By} = Sui + 1) Sa(i = J) -
Now, we have two matrices S, = {S,(i + j)}¥. S, = {S,(i — j)}¥-;-1 where

Ji=j=1
S, is a Hankel matrix and S, is a Toeplitz matrix. Their Hadamard product is pre-

cisely the covariance matrix of the random variables Z(n,), Z(n,), ..., Z(ny). O

Remark. It is evident that the Toeplitz matrix in Theorem 3 must be nonnegative
definite because Definition 2 demands Rz(-) to be a covariance function. In general,
the Hankel matrix need not be nonnegative definite although their Hadamard
product must be a nonnegative definite matrix. On the other side, by use of Theorem
3 we obtain a known result that the Hadamard product of two non-negative definite
matrices must be a nonnegative definite matrix also. It is evident as well that every fi-
nite subsequence of a symmetric sequence has its covariance matrix of the Hankel
type. The contruction of a random sequence with a Hankel covariance matrix is based
on property expressing a necessary and sufficient condition for nonnegative definite-
ness of a Hankel bilinear form. Let {X¢, Xy, ..., Xy_,} be a sequence of random
variables whose covariance function is a Hankel matrix. i.e. E{X,X;} = r(i +J}.
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Then the matrix R, = {r(i + j)}i;=¢ is positively definite if and only if
N
Wi+)=Yefi*, ,i=0,1,..,N-1, >0, 8,eR,
=1

(for details see [4]). This fact gives a hint for the construction of such a random
sequence. Let &, &, ..., &y be i.i.d. random variables with E{e;} = 0, E{|e,|*} = 1,
i=1,2,...,N. Let us define

N
X, =Y o8, i=01,..,N—1.
1=t

N
Then E{X,X;} =Y 08"/ = r(i + J), it means the covariance matrix of the sequence
=1

{Xo, Xy, ..., Xy} is of the Hankel type. Surely, we can continue and instead
of a finite sequence {ey, &5, ..., &} We can consider an infinite sequence {&;}% _ -
If the series .
Xi= Y o0
I=-o

is convergent in the quadratic mean sense for every ie{—N + 1, —=N +2,...
v =1,0,1,...,N — 1}, ie. if the seties

+ o0

Z 91012'-

I=—w
is convergent for every ie{~N + 1, =N + 2,..., —=1,0,1,..., N — 1}, then the
sequence {X;}Y-}y ., is symmetric.

We see that symmetric covariances are a special case of locally stationary covari-
ances. If a locally stationary covariance is the product of a symmetric covariance
and a stationary covariance by usec of Theorem 1 we can express that locally sta-
tionary covariance R(-, ) in the form

R(n,m) = [=, [*, am*n e e=m ddF,(A) Fy(u) .

Every random sequence {Z(n)}, n € Z with a covariance of this type can be by means
of the Karhunen theorem expressed in the form of a stochastic integral understood
in the quadratic mean sense

Z(n) = [2,, = A e ddé(2, p) .
The process &(+, +) is defined at the whole plane and satisfies E{&(4y, ) &(25, p,)} =
= F(min (A, A;), min (g, u,)), where F(+, *) = F,(+) F5(+). This property means
that &(-, -) is a plane martingale satisfying
Py E(u.v) = &, 1)
for every A < u, v 2 p, P, is the projector onto the subspace Hy, ,, generated

by all random variables Y o; EA p) with 4, S A, gy S pforeveryi=1,2,...,n

i=1
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We see immediately also that
Z(0) = Lim. A ® + ), £>0
A= oo

if we have put &—oo, —n) = 0. In this way We obtain the system of the subspaces
{Hiw)s (4, 1) € Ry With H_ o~y = {0} Hie,) is the Hilbert space generated by
the all random variables &(4, u), Ae(—, ), pe(—w, ). Every subspace
H, ,, defines the corresponding projector Pz, and one can easily prove that the
system {P(; o}, (4, u) € R, forms a resolution of the identity in the space Hiy o).
The system {P, ,)} defines in the space Hx,x) @ normal operator S

00 0 5 2%
S’:J J 21 T Py, = A+ i
e 2

-0

with definition domain D(S) = {x € Hw,0)' [[2, 42 d{Py,, %, X} < ®0}. As
P Z(0) = E(A, ) we obtain that S Z(0) = Z(1) and, in general, for every neZ
S" Z(0) = Z(n). Now we shall use a general formula

far F(w) AP,y = [fa f9(2)) AP

whete ¢(z): Q - Q' is a measurable mapping and P'(4") = [f,-:(4,ddP, . In
our case if we put ¢(z) = ¥z + z)e®*?/* and f(w) = w then the operator S in
H (s =) can be described as

S = [[*, wddP, .

Let H(z(+)) be a subspace of H, ) generated by all random variables Z(n), n € Z.
Let Tbe equal to S in H(z(+)), i.e. T'is an operator in H(z(+)) with 2(T) = 2(S) n
A H(z(+)) and Tx = Sx for every x € D(T). There is no problem to prove that T
is in the space H(z()) a normal operator too.

We can summarize and state that every locally stationary covariance being the
product of a symmetric covariance and a stationary covariance creates a normal
operator and hence this covariance can be written in the following form

3 R(n,m) = [[2, w#"ddG(u,v), w=u+iv.

Definition 3. A covariance function that can be expressed in the form (3) will be
called a normal covariance. The notion of a normal covariance for random processes
was introduced by the author in [5].

Similarly, as it was done in the case of a locally stationary covariance that is the
product of a symmetric covariance and a stationary covariance, every normal co-
variance generates a normal operator in the Hilbert space of values due to the under-
lying random sequence. This normal operator is the shift-operator in the linear
set of all linear combinations over the values of {Z(n)}, n € Z; in other words, T"Z(0) =
= Z(n) holds for every n e Z. By means of the Karhunen theorem every random
sequence having a normal covariance can be expressed in the form of a stochastic
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integral understood in the quadratic mean
Z(n) = [[2oz"ddé(A, ), z =2+ ip

where &(-, -} is a plane martingale. If a complex function f(-, +) defined in the plane
satisfies for every ne Z

152 12 | f(4 P ddG(2, 1) < 0,

then the random sequence {Y(n) = {{®, z" f(4, #) dd&(A, u)}, n € Z is again a random
sequence having a normal covariance because

E{Y(n) V) = (12 2" 2|1 0 4463, ).

2. NORMAL COVARIANCES AND RKHS

As familiarly known, for details sce [6], every covariance function formes a kernel
for the reproducing kernel Hilbert space (RKHS). Here we shall investigate the
RKHS due to a normal covariance R(-, ) Every covariance determines its RKHS
unambiguously and vice versa. By definition the RKHS is the space of all complex
sequences {m(n)}, n € Z, determined by

m(k) = E{¢Z(k)}, keZ,
where & € H(z(+)), H(z(+)) is the Hilbert space generated by all finite linear combina-
tions over the values of {Z(n)};%_,. We see immediately that R(n, )€ RKHS
for every n € Z because

R(n, k) = E{Z(n) Z(k)} .

The property characterizing the RKHS is its “reproducing property”
m(n) = {m(*); R(n, *)y, neZ,
if we define a scalar product in the RKHS by the relation
$my(); my()> = E{¢(8,}

where m(n) = E{£; Z(n)}, i = 1, 2. There exists an isometric and isomorphic mapping
I between the RKHS and H(z(-)) given by m(-)«—&. We have seen that every normal
covariance is closely connected with a normal operator. This operator is defined
in H(z(+)) on an everywhere dense linear subset and is given by

TZ(n) = Z(n + 1), neZ.
By means of I we can transform T into the RKHS by the relation
Tm(k) = E{T¢ Z(k)}
N
where £ e L{z(+)), i.e. L(z(*)) = {&: & = Y o; Z(n;), n;€ Z, @; complex}. Especially,
i=1

we have
TR(n, k) = E{Z(n + 1) Z(k)} = R(n + 1, k).
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It means, the operator T in the RKHS is defined on the linear subset L= {m(-) €
N

€ RHKS: m(*) = Y, «; R(n;, *)} which is also everywhere dense in the RKHS.
i1

The operator T in the RKHS has a normal enlargement because the operator T
in H(z(+)) is normal and there exists the mapping I. We know the covariance R(:, +)
of {Z(n)} > _ ., can be written as

R(n, m) = §[2,, 22" ddG(2, p)
N
hence R(n, k) = [[*,2"2* ddG(4, p). Thus for every &eL(z()), &= Zl“*z("f)

for the corresponding & = I my(-)
myk) = ”Tméla,.z""f" ddG(4, u) .
This fact implies that every element m(+) ¢ RKHS can be expressed as
) = 1712294606
where f(z) belongs to the closure ¢l { Z ;z"} of all linear combinations i“iz s

a; complex, n; € Z with respect to the followmg norm (f[|f(z)|? ddG(2, w)*/2. 2, In case
when the system {z"}, n e Z, is completc in the space £ (Rz, G(+, +)) then the RKHS
is isometric and isomorphic to the whole space %,(R;, G(*, *)). In every case, the
RKHS is isometric and isomorphic to the subspace spanned by all functions of the

N
type Y 2", o complex, n; € Z. At the first sight the operator T'in the RKHS can
1
be easily described as
N
m(k) = [[®, Y ;2" " 2 ddG(A, p)
i=1
if £ € L(z(+)). In general,
Tm(k) = [, f(2) z2* ddG(2, 1)
if
m(k) = [[2, f(z) 2 ddG(4, u) .
Theorem 4. The normal operator T in the space H(z(*)) is bounded if and only
if the corresponding operator T'in the RKHS is closed with respect to multiplication
N N
by z, ie. if f(*) ecl { ¥ a;z™} then f(+). zecl { Y a;z"} too.
i=1 =1
Proof. Let T be bounded in H(z(+)). Then T can be in the unique way enlarged
onto the whole space H(z(+)) and TT* = T*T. By means of the mapping I the operator

T in the RKHS can be defined everywhere in the RKHS as a normal operator too.
Denoting TT* = A we have a positive symmetric operator in the RKHS and
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|Tm()]| = | 4" m(+)|] where 4/ is the square r00t of 4. As
ITm(OP = ff2. [/ 2" 446, )

N N
we see that together with f(+) e el { " «,z"} z f() e €l {Y 2"} also.
i=1 1

v
On the other hand, let with every function f(+)ecl {Y 2"} z f(*) belong to
¥ T
cl{Y az"},ie if
i=1

122 ) ddG(i, 1) < o

120 [FG)? ¢l? 4460, 1) < oo

It means that the operator T in the RKHS is defined everywhere and T is normal.
The adjoint operator T* is determined by multiplication by Z, i.e.

T m(k) = [[°, f(z) 2** ddG(A, p), keZ.
The operator T*T = TT* is then symmetric everywhere in the RKHS defined
hence T*T must be bounded. At the same moment T'in the RKHS must be bounded
too as
[Tm()] = 412 m()]

for every m(+)e RKHS. The mapping I between the RKHS and H(z(-)) gives
immediately the boundedness of the operator T'in H(z(+)). i}

then

3. CHARACTERIZATION OF NORMAL COVARIANCES

The main goal of this part is to describe the class of normal covariances. We have
seen that this class if sufficiently large because every stationary covariance is normal
and every symmetric covariance too. Their product is a normal covariance also.

Theorem 5. Let R(-, +) be a covariance defined on Z x Z. Then R(+, +) is normal
if and only if R(+, ) satisfies the following “reproducing property” in its RKHS

R(n + 1, m) = <R(n, k); R(m, k + 1)) .

Proof. First, let us suppose R(:, +) is normal. Then R(n, m) = [[®,z"(Z)".
.ddF(4, p), z = A + ip. By usc the transformation 4 + iz < |z| €' we can express
R(+, +)in the form

R, ) = [ %, |2} e ddGi(] o
where the function G(-, -) is induced by the mentioned transformation from the
function F(-, +). For every neZ R(n, -) e RKHS and
R(n + 1’ m) - f?;o J'r:n |Z|1+n+m eia(m— i=m) ddG(|z], Q) —
= [§ [T, |zfrtmeletnm |2} ' ddG(lz], o) .
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Similarly,

R(m,j + 1) = [§ [~ |z|*+/*1 glem=I=D ddG( (2], @) =
= J'o " | lWr! ig(m— J)|Z[ ~ie ddG(|z| Q)
R(n, j) = [@ " |2 eler= ddG(|2],

Now, by use of the “reproducing property” in the RKHS we have that

CR(n, j); R(m, j + 1)) = [ [“. |z |'l ion glem [z] g~ ie
- Io —’rl |n+m+1_ ig(n+1~ m’ddG(l |’g = (n + 1, m)_

This form of a normal covariance shows that every normal covariance can be written
by means of a function S(-, -) defined on Z x Z as R(n,m) = S(n + m,n — m),
where

S(p, q) = & [ |2|P €0 ddG(|z], @) = ¢ [T, 7 ¢ ddH(w, @) -
Now, let us suppose that a given covariance function R(+, *) satisfies
R(n + 1, m) = (R(n, j); R(m,j + 1)) .
Let us define a shift operator T in the RKHS generated by the covariance R(-, -)
TR(n, ) = R(n + 1, +).
We see that the ;)peratot T can be defined on the linear set Lof all linear combinations

of the form Y a«; R(n, )€ RKHS which form an everywhere dense subset in
the RKHS !

N N
TY ;R(n, ) =Y o R(n; + 1, )5
i=1 i=1

in other words, the definition domain 9(T) of T is equal to L. For us the adjoint
operator T* to T will be very important. Let us prove that 9(T*) o L. As T* is
linear it is sufficient to prove that R(m, +) € @(T*) for every m e Z. By the definition
of T* R(m, *) e @(T*) i and only if

{Tm(+); R(m, -)> = <m(+); T* R(m, -)>
holds for every m(:)e @(T) and T* R(n, -) must be defined unambiguously. If
N
m(-) = ¥ a; R(n;, *), then
i=1

{Tm(+); R(m, +)) = iaKR(n,- +1, *); R(m, *)) =

=,§1 R, -); R(m, () + 1) = {m(-): R(m, () + 1) .

We have used the assumption of Theorem 5. This fact implies that the operator T*
is a shift-operator in the argument in the RKHS, i.e.

T*R(m, ) = R(m,(*) + 1).
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and 9(T*) = L. Thus the definition domain of T* is everywhere dense in the RKHS
and hence there exists a closed enlargement T of T. First, we shall prove that
TT* m(+) = T*T m(+) for every m(-)e L.

The set L is invariant with respect to T because if m(+) = Z o; R(n;, (+)) then
Tm(-) = Z #; R(n; + 1,(+)) e Las well We must prove that T* m(+) belongs to L
also. T* is linear, T* m(+) = T*Z“l R(n, (7)) = Ea, R(n, () + 1) and as we

i=1 i=1

see one can apply the operator T at this moment
N
TT* m(*) = Y o, R(n; + 1,(+) + 1).
i=1
On the other hand,
N N
T*Tm(:) = T*Y o, R(n, + 1,(*)) = Y o R(n; + 1, () + 1)..
i=1 i=1

We have proved that TT* = T*Ton the subset L. Further, we obtain that | Tm(-)| =
= || T* m(-)| for every m(-)e L because for every pair m;(+), m,()e L the following
equality

CT*Tmy(+); my(*)y = (Tmy(); Tma()) =

= {my(+); T*Tmy(+)y = (my(+); TT* my(0)) = <T* my(+), T* my(-))
holds. The operator T* is closed, i.e. when m,(-) —» m(-) and T* m,(-) > M(-)
in the RKHS then m(-) € @(T*) and T* m(+) = M(-). Thus
T mie) = T )] = [To(m) = )] =
= |T(m,(-) = m(-)] >0 as n.p— oo

in every case when m,(+) € L. This fact implies a possibility how to construct a closure

of T. Let us define a new operator T in the RKHS, which will be an enlargement
of T, T <= T, by the following procedure:

2(T) = {m(-) e RKHS: 3{m,(+)} = L,m,(-) » m(-), Tm,(-) - t(-) e RKHS} .
Then we put Tm(+) = t(-). It is evident that L= @(T), T<T and Jet us prove

that T'is defined in the unique way. Suppose m,(*) = m(+), p(*) = m(-), Tm,(-) -
= #(*), Tp,(+) = s(+). Then

m(); () = s(+)> = lim <m(-); T(m,() ~ p(+))> =
= lim (T* m(*); m,(+) = p(*)> = <T*m; 0) = 0

for every m(-) € D(T*). As J(T%) = RKHS, () = s(-) must be and Tis determined
unambiguously. Further, we shall prove that (T)* = T* and 2(T) = 9(T*). As
Tc T it implies immediately (T)* = T*. Let m(+) e 2(T*), p(*) € 2(T). Then

(T p(); m(*)> = lim ST pol*); m{-)> =n1i2 <pal(+), T*m(+)y = <p(*), T* m(+)> .
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We see m(+) e (T)* and T* m(-) = (T)* m(-), hence T* = (T)* and the equality
T* = (T)*is proved. Now let m(+) € @(T). It means there exists a sequence {m,(*)} <
=L such that m,(*) > m(*), Tm(:) = Tm(:), ie. [Tm,()~Tm,()|=
= |T*m,(-) — T* m,(-)| - 0 as n,p— 0. Hence T*m,(-) - r*(-) and as T*
is closed and L < 9(T*), m(+) € 2(T*), T* m(-) = t*(-). We have proved 2(T) =
< 9(T*). Similarly, if m(-) e D(T*) there exists a sequence {m,(-)} < L, m,(*) >
— m(+) and T* m,(-) - t*(-). At the same moment | Tam,(+) — Tm,(*)| = | T*m,(-) -
— T*m,(+)| - 0 as n, p - o, hence {T'm,(+)} is a Cauchy sequence in a complete
space that implies the existence of a limit #(-) e RKHS, f(+) = lim Tm,(-) and thanks

n-w

to the closeness of T we can state that 9(T*) = 9(T). We have proved that 9(T) =
= 9(T*). We know that | Tm(:)|| = | T* m(-)| for every m(-) e L. This fact together
with the closeness of Tand T* imply that for every m(*)€ 9(T) | Tm(*)| = [ T* m(-)|
Now, there is no problem to prove that T is a normal operator in the RKHS, i.e.
T must be defined on an everywhere dense linear subset, T must be closed satisfying
T(T)* = (T)* T. Suppose m(*) e D(TT*). It means T* m(-)e P(T) and in every
case D(TT*) = 9(T*) = 2(T). We can consider Tm(+) and to prove Tm(-)e
€ 9(T*) we must investigate <T p(+); Tm(-}> for every p(+) e Z(T). Thus <T p(*);
Tm(-)) = <T* p(+); T* m(*)p = <{p(*); TT* m(-)> and as immediately follows
{T'p(+); Tm(+) is a continuous linear functional on @(T) and it implies Tm(+) e
€ 9(T*). In the opposite direction, let m(-)e 2(T*T) that means m(-)e 9(T)
with Tm(-) e 9(T*). We have (T*T) = 9(T) = 2(T*) and we can consider
T* m(-). As T** = T (T is closed) T* m(-) belongs to @(T) if and only if T* m(-)
belongs to D(T**), i.e. (T* p(+); T* m(*)» must be a continuous linear functional
on P(T*). At the first sight (T* p(*); T* m(*)> = <p(*); TT* m(+)> and hence
T* m(*) e B(T) = 9(T**). We have proved that Z(TT*) = 9(T*T). We proved
sooner that TT* = T*T on the linear subset L; because L is everywhere dense in
9(TT*) too the equality TT* = T*T must hold on the whole definition domain
9(TT*). We proved that T'is a normal operator in the RKHS. As follows from the
general theory of unbounded operators in a Hilbert space every normal operator
possesses a spectral resolution, in our case

T= [, zdP,

where { P}, z € C, is a complex resolution of the identity in the RKHS. The adjoint
operator T* is then expressed in the form

T* = [[2,ZdP,

and their common definition domain 9(T)= 2(T*) is the linear subset in the
RKHS of all m(-) e RKHS for which

Hfm lzl &P, m(')’ m())

exists. We defined the operator Tas a shift-operator in L,i.e. TR(n, *) = R(n + 1, *).
This gives T"R(0, *) = R(n, +) and this property holds for every n € Z. Especially,
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we see that the operator T has an inverse operator T~* on L(T = T on L) and
T m(*) = T7 m(-) = (/|20 2 dP.) ™ m(") = [[2,, 27" AP, m(.)

holds for every m( ) € L. In this way we obtained that

R(n, (+)) = [J2, 2" dP. R(0, (*))
holds for every n € Z. The property of the complex resolution of the identity

PP, =P,P, = Pringy,on)
(min (zy, z,) = min (Re zy, Re z,), min (Im z,, Im z,)) yields a possibility to write
the covariance function R(+, +) in the following form
R(n, m) = [[*, z"(Z)" d(P, R(0, -); R(0, *)> =

= [[2,z(Z)"ddF(4,7), z=4i+ip
where F(-,-) is a two-dimensional distribution function with a finite variation
equal to R(0, 0). As the relation between a normal operator and its resolution of the

identity is a one-to-one correspondence the function F(-, -) is determined by the
covariance function R(*, +) unambiguously. O

Another characterization of normal covariances is possible by means of the notion

of nonnegative definiteness.

Theorem 6. A covariance function R(', ) defined on Z x Z is normal if and
only if R( ., ) can be expressed in the form
R(n,m) = S(n + m, n — m)

where the function S(+, +), which is defined on Z x Z, is nonnegative definite in the

following sense:
YV Y Y tunpS(n + p,m — q) 2 0
nm pgq

for every finite collection {a,,} of complex numbers, ne Z, m e Z.
Proof. Let R(+, +) be normal. Then as shown in the proof of Theorem 5 R(, *)
can be expressed as
R(n,m) = [2, [T, e*mtm e=m ddH(x, y)
and it implies the existence of a function S(+, *) defined on Z x Z such that
R(n,m) = S(n + m,n — m).
Further, let {¢.} be any finite collection of complex numbers. Then

zzzzmnm&pqs(n +pm-— q) =

nompq

= Z 2 Z Z“nmapq ffm .[tnex("+p) gvim=90 ddH(X, Y) =
nom q

nz Z Z Y ymipg € elym e*P g™ ddH(x, y) =

n m p

[}
q
= 2 o |2 Y tum e ™2 ddH(x, y) 2 0.

455



Let, on the contrary, there exist a function S(-, ) on Z x Z nonnegative definite
in the mentioned sense such that R(n, m) = S(n + m, n — m). Let L be the linear
set of all complex valued functions f(-, -) defined on Z x Z such that f(u, ») = 0
except a finite subset in Z x Z. If f(+, +), g(+, *) € Lthen we shall define

9> = XX LS (nm) o(p. ) St + pm ~ g)-

Then (f; g> is an Hermite bilinear form and according to assumption {f; )% = 0.
Instead of the original functions we shall consider classes of equivalence

f~ge|f-g|=0,

in other words, we shall consider the factor space L/N,, where Ny = {fe L: | f|| = 0}.
Let H be a completion of LN, with respect to the norm |- |. Then H is a Hilbert
space. In a simple way the bilinear form {-; +)> can be translated from Linto H.
Now, let T be a shift operator defined on L by the relation

Tf(u,v) = flu — Liv—1).

T is well defined because if |[f[| = 0 then |Tf| = 0 also. Let us put S f(u,v) =
= f(u — 1,v + 1) and let us prove that | Tf[? = (Tf; Tf> = <(STf; f ). By defini-
tion

I
3l =g =DM =M
i ap 3 =

7] ZZZquf(n, m) Tf(p.q) S(n + pym — q) =

14

Sfn—-1,m—-1)flp~1,q—-1)S(n+pm-—gq)=

z
;;f(n, m)S(n+p+2,m-q) flp,q) =
)

=

[

because STf(u,v) = Sf(u — 1,0 — 1) = f(u — 2,v), It means that |Tf]* =
= (STf; f> < [|STf] | f] and if |f] =0 then |Zf|| = O also. Thanks to this
property the operator T can be translated into space H with the definition domain
9(T) = L|N,. The operator T is defined in H on an everywhere dense linear subset.
In a similar way one can prove that the operator S is also well defined and can be
translated into the Hilbert space H. Let us show that S < T*, where T* is the adjoint
operator to Tin H. Let f & L|Ny, g € L/N,. Then

<Tf;g>=§§);;f(n— L,m—1)g(p,a)S(n+ p,m — q) =
=Z"I%§§f(",f")g(p,q)5("+ l+pm+1l—gq)=
=ZanZquf(n,M)g(p~1,q + 1)S(n + p,m — q) = <{f; Sg.

It means that S = T* on LN, in H and hence 9(T*) is everywhere dense in H.
At this moment the operator T has a closed enlargement T'in H, T is unambiguously
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defined. There is no problem to prove (following the proof of the previous Theorem 5)
that the operator T is normal in H, i.e. Tis closed, TT* = T*T and 9(T) is an
everywhere dense subset in H. For every normal operator there exists a complex
resolution of the identity in H and such an operator can be expressed as

T=[[2,2zdP,, z=2A+iu.
Let 5(u, v) be the element in H with 5(0,0) = 1 and (u, v) = 0 otherwise. Then
8(u, v) € L/N, and
(T3, 0530, 0> = £ X5 568 = Lm — )3(p.a) S(n + pym = ) =
nomop q
= S(1,1) = R(1,0).
Similarly, for every seZ, te Z(T* 5(u, v); T'(u, v)> = S(s +t,s — £) = R(s, t). By
means of properties of the complex resolution {P,},z e C we immediately obtain that
Rls, ) = (% 2 ddF0L ),

where F(A, u) = <P, 5(u, v); 5(u, v)>. We have proved that the covariance R(-, *)
is normal. m]

It is worth mentioning that Theorem 6 as special cases contains the Hamburger
moment problem and the Herglotz lemma. The Hamburger moment problem is
very closely connected with characterization of symmetric covariance functions, the
Herglotz lemma describes weakly stationary covariances. In this sense Theorem 6
is a generalization of these both cases.

(Received April 17, 1987.)
REFERENCES

{1} R. A. Silverman: Locally stationary random processes. IRE Trans. Inform. Theory IT-3
(1957), 3, 182—187.

[2] N. Dunford and J. T. Schwartz: Linear Operators. Part I1. Interscience Publishers, New York
—London 1963.

[3] 1. I. Gikhman and A. V. Skorochod: Introduction to the Theory of Random Processes.
{in Russian). Nauka, Moscow 1965.

{4] 1. C. Yochvidov: Hankel and Toeplitz Matrices and Forms (in Russian). Nauka, Moscow
1974,

[5] J. Michalek: Locally stationary covariances. In: Trans. Tenth Prague Conf. on Inform.
Theory, Statist. Dec. Funct. Random Processes, Academia, Prague 1987.

[6] N. Aronszjan: Theory of reproducing kernels. Trans. Amer. Math. Soc. 63 (1950), 337—404.

RNDr. Jiti Michdlek, CSe., Ustav teorie informace a automatizace CSAV (Institute of Informa-
tion Theory and A jon — Czechoslovak Academy of Sci ), Pod voddrenskou vézf 4,
182 08 Praha 8. Czechoslovakia.

457



		webmaster@dml.cz
	2012-06-05T17:29:10+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




