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K Y B E R N E T I K A — V O L U M E 14 (1978), NUMBER 2 

Discourse on One Way 
in which a Quantum-Mechanics Language 
on the Classical Logical Base 
Can Be Built up 

ROMAN BEK 

In this paper one of possible methods how to build up a quantum-mechanics language on the 
classical logical base is presented. If a time variable is introduced in the formulae of the language, 
then some statements on complementary magnitudes of quantum mechanics can be formulated 
without any occurence of well known paradoxes. 

Quantum mechanics with its set of physical mathematical and semantic problems 
has been a source of basic discoussions and large generalizations. In this paper I will 
be dealing with a few questions concerned with the necessity of a special, non-classi­
cal "quantum logic" suggested by Hans Reichenbach. The question will be considered 
with from the semantic point of view. 

This special logic, according to Reichenbach is to be the base of quantum-mecha­
nical language that enables to describe also the results of empirical operations with 
complementary magnitudes in a sphere of microworld. Its suggestion originated 
from some well known empirical initial points that used to be frequently published 
in special as well as popular literature. When striving for explanation of these empiric­
ally found facts the physicists faced difficulties of basic importance. In order to solve 
all these problems a number of drastic changes in physical, mathematical, logical 
and philosophical aspects of modern physics were suggested. 

Let us start our discourse with a short treatment of an empirical fact, which is — 
in view of many authors - of basic importance when discussing quantum mechanics. 
In the next part of this discourse I will try to show that - under certain assumptions 
- logical difficulties originating from this fact can be solved on the base of classical 
logic, too. 



First I briefly explain the well known "two-slits experiment" (of. (3)). 
Let us consider the function of the device consisting of a particle source Z, a dia­

phragm with the slit A and of a rear shield on which particules drop after passing 
through the slit A (Fig. l). 

Traces of particles that fall in the point X after passing through A may be broken 
in the region of A. This effect can be explained by interference of the particle and that 

.1 

Fig. 1. Fig. 2. 

of the diaphragm in a neighborhood of A. The fall of a particle into a given region 
of the rear shield may be influenced by various factors varying in time. A particle 
can be but need not fall in the given point X. Probability that the particle from the 
source Z will fall in the point X after passing through the slit A, is by Fine P(X) = 
= P(A A X), where (A A X) denots the conjunction of statements: "The particle from 
the source Z passed through the slit A" and "The particle fell into the point X". 

In case of soft radiation from Z individual falls of particles can be observed as 
gleams on the rear shield if it is properly adjusted. If a photografic plate is placed on 
the rear shield and if the experiment is repeated with a great number of particles, 
the well known interference scheme is produced by the impact points of the particles. 

Let us consider a similar experiment with a diaphragm with two slits A, B (Fig. 2). 
Obviously any particle that fell on the rear shield passed through one and just 

one of the slits A, B. The probability that a particle from the source Z will fall into 
the point X of the rear shield after passing through one of the slits A, Bis 

P(X) = P((A v B) A X) . 

Using the distributive law of classical logic we can modify the term in brackets as 
follows 

P(X) = P((A A X) v (B A X)). 

Using the probability theory rule on addition of probabilities of disjoint arguments 
we get: 

P(X) = P(A A X) + P(B A X)~ P(A A X A B A X). 



The last term in the equation is obviously zero (it is impossible for a particle to pass 
through both of the slits A, B). Hence we get 

P(X) = P(A A X) + P(B A X). 

The term P(A A X) corresponds with the one-slit experiment (in case of two-slits 
diaphragm B can be sheltered). Similarly the term P(B A X) corresponds with the 
one-slit experiment with the slit B (A can be sheltered now). It follows from the last 
equation that the probability of the phenomenon that a particle will fall into the point 
X after passing through a two-slit diaphragm with the slits A, B is equal to the sum 
of probabilities of two distinct phenomena that a particle will fall into X after passing 
through just one of the slits A, B when the other one is sheltered. 

This effect should be observable also in the case of experiment with many particles. 
The interference scheme that appears on the rear shield after passing through a two-
slit diaphragm with both slits open should be identical with the superposition of two 
partial inteference schemes obtained by experiments with one of the slits sheltered. 

The results of experiments performed did not comply with this conclusion at all. 
The superposition of schemes obtained from partial experiments does differ from the 
scheme obtained by experiments with both slits open. 

From the facts obtained in an empirical way several alternative conclusions can 
be drawn: 

The first conclusion possible is to resign on the identification of propabilities 
P(A A X), resp. P(B A X) with partial schemes obtained from one-slit experiments 
(with slits A and B respectively). That means that we admit in this case that a particle 
considered in the two-slits experiment is "different" from a particle considered in 
both partial experiments. In other words the fact that the slit B is open provides 
influence on the passage of a particle through the slit A and vice versa. Thus the 
passage of a particle through one slit X is effected by the other distant slit. This 
conclusion is in contradiction with the physical principle on the contact energy 
transmission. 

Let us point out here that the anomaly is not encountered if particles are treated as 
prolifering waves and not "flying bodies". On the other hand this interpretation is 
in contradiction with those individual particles that create observable individual 
gleams on the rear shield. When adopting the wave interpretation the last effect can 
be only explained by an infinitely fast contraction of the wave into a single point 
at the time when the wave reaches the shield and when the gleam appears. This expla­
nation appears to be in contradiction with principles of physical again. 

Another conclusion possible is a requirement to give up the rule on addition 
of disjoint arguments of the probability function P and to change the mathematics 
apparatus used in quantum physics profoundly. 

The third conclusion possible is to neglect the distributive law. This law is a tauto­
logy if the classical sentential calculus that forms (together with the predicate-calculus 
logic) the logical base of the accurate description of reality. Hence the requirement 



to give up the distributive law in its classical form is linked with a demand to build 
up a new non-classical logical calculus as logical base of quantum mechanics language 
by many authors. 

In the following I will be dealing with the last of the three alternatives mentioned. 
The requirement to give up the distributive law and to build up some special "Quan­
tum logic" is motivated by other reasonings as well. 

Let us present briefly the reasoning of E. Scheibe [7] reffering to the well known 
requirement of simultaneous measurements of locality and momentum of a particle. 
Let us consider a moving particle. We shall measure the value of its momentum 
at a given time. Making a use of that we shall form a sentence B on momentum of 
the particle. We want to identify a position of the particle through measurements at 
the same time: i.e. a point of its trajectory when the particle is located at the given 
time. Let us imagine now that we are to make the selection between two possible 
points, in one of them the particle must occur. Based on this we form two statements 
A, A' on the location in one or in the other point of the particle. 

We can now formulate composed sentence: 

l(B A (A v A')) <-* B] . 

This sentence is true in view of the facts mentioned. B obviously holds as well as the 
alternative (A v A'), hence the whole equivalence holds true. On the other hand from 
the quantum-mechanics theory it follows that the sentence 

(B A A) v (B A A') 

obtained from the antecedente of the given equivalence through the distributive law 
does not hold. The non-validity of this disjuction is given empirically. 

Due to the well known Heisenberg principle it is namely impossible to determine 
exactly the position and momentum of a particle at the same time. The greater 
accuracy of momentum measurements, the less exactness of position measurements 
and vice versa. Hence neither proposition (B A A) nor proposition (B A A') are true 
since both of them are describing simultaneous exact measurements of momentum 
and position in one or in the other alternative point. It follows that the disjunction 
is not true as well. 

The theorem on impossibility of simultaneous exact measurements of position and 
momentum of a particle is one of the most important principles of quantum mechanics. 
(A similar theorem on simultaneous exact measurements of time point and energy 
of .a particle holds.) These theorems are closely linked with the character of mathe­
matical formalism used for the description of quantum-mechanical phenomena. 
Pairs of quantities the simultaneous exact value of which it is impossible to determine 
by taking measurements are frequently called "complementary quantities" (due to 
Born). Statements on simultaneous exact values of complementary quantities are 
frequently called "incompatible statements". 



While an empirical statement on precise value of one of both complementary 89 
quantities of a given microobject is verifiable and can be incorporated into the lan­
guage system of quantum mechanics built up on the logical base of the classical 
double valued logic (on a Boolean base), conjunction of two statements on exact 
values of complementary quantities is not verifiable and it cannot be incorporated 
into the mentioned language system in view of many authors. 

The limitation mentioned concerning the logical base of the quantum mechanics 
language is considered as definite and insurmountable by good many physicists. 
By them this fact is a consequence of the character of the mathematical formalism 
used in quantum mechanics (cf. arguments of Kochen and Specker in [4]). 

On the other hand some other theoreticians insist that from the immeasureability 
of some magnitudes it does not follow that physical objects really do not have exact 
values of such magnitudes — independently of the measurement itself. 

A lot of physicists put stress — in accordance with this sort of reasonings - on 
that it is impossible to exclude the existence of "hidden parameters" ("hidden 
variables") that once — after they will be found — will make it possible to evaluate 
simultaneous exact values of mutually complementary magnitudes (5). 

Hans Reichenbach suggests in his basic work "Philosophic foundations of quantum 
mechanics" a solution of the difficulties treated above by a transformation to the 
three valued nonclassical logical base of the language of quantum mechanics. This 
language was used when results of measurements of quantum mechanical magnitudes 
were described. 

The logical base of the language suggested contains propositions that can attain 
three values: "true" (T), "false" (E), "indeterminated" (N). Such a logical nonclassi­
cal calculus is built up by means of logical connectives introduced in tables. In the 
work by Reichenbach mentioned only a few connectives are introduced in tables 
and they are used further for constructions of formulae. By means of these formulae 
he shows that the discussed paradoxes can no more come in the language suggested 
by him. 

First of all three connective of negation are introduced 

~ is the connective of "cyclic negation" 
— is the connective of "diameter negation" 
— is the connective of "complete negation" 

The table of these connectives: 

~A -A A 

N F N 
F N T 
T T T 



Three-valued disjunction and conjunction, three kinds of implication and two kinds 
of equivalence are introduced further: 

v is the connective 
. is the connective 

=> is the connective 
-* is the connective 
•+-> is the connective 
= is the connective 
4 is the connective 

The tables of these connectives: 

of three-valued disjunction 
of three-valued conjunction 
of standard implication 
of alternative implication 
of quasiimplication 
of standard equivalence 
of alternative equivalence 

A B A v B A.B A => B A^B 1 A++B A = в A â в 

T T T T T T T т т 
T N T N N F N N ғ 
T F T F F F F ғ ғ 
N T T N T T N N ғ 
N N N N T T N T т 
N F N F N T JV N ғ 
F T T F T T iV F ғ 
F N N F T T JV N ғ 
F F F F T T Лt T т 

In this way Reichenbach introduces only a less part of all possible connectives 
of the three-valued logic, the number of which is 3 9, i.e. 19 683. 

These connectives make it possible to form several tautologies of the three-valued 
logic so that paradoxes in the quantum mechanics are avoided. 

For example Reichenbach presents the following tautologies: 

A = A 
A = A 
A = / 
A = Ä 
Ã = (~ A v 

(A V ~ A V ' 

(A v Ã) 

-(A.B)s(-A 
-(A v B) = (-A v -B) 
(A.(BvC))^((A.B)v(A.C)) 
(A v (B. C)) = ((A v B). (A v C)) 

("the identity rule") 
("the double diameter negation rule") 
("the triple cyclic negation rule") 
("the double complete negation rule") 

'A) ("the relation between cyclic and complete negation)") 
A) ("the rule quartum non datur") 

("the rule pseudo-tertium non datur") 
B) ("de Morgan rules for the diameter negation") 

("the distributive rules") 



The concept of "complementary sentences A, B" (i.e. sentences giving statements 
on exact values of complementary magnitudes at a given moment of time) can be 
then introduced by means of the formula 

(A v ~ A ) ^ ~ ~B. 

The value "true" is attained by simple sentences that are verifiable by an empirical 
(measuring) operation; the value "false" is attained by simple sentences that can be 
found as false by an empirical (measuring) operation; the value "indeterminated" 
is attained by simple sentences for which neither a verifying nor a falsifying empirical 
or measuring operation can be given. 

Hence if we can realize a verifying or a falsifying operation for the sentence A 
speaking about one of the complementary magnitudes then such an operation 
cannot be realized for the sentence B describing the other complementary magnitude. 
The sentence B attains therefore the value "indeterminated". 

In the work mentioned above Reichenbach shows on the example of the "two-
slits experiment" that in the language constructed in this way the paradoxes mentioned 
above cannot be derived. 

II. 

In the second part of the treatment I will show that — under certain assump­
tions — the mentioned paradoxes can be solved without resorting to the nonclassical 
"quantum logic" as the base of the quantum mechanics language. 

The basic starting point of the following reasonings is an assumption that physical 
objects posses objectively their properties at a given degree no mather whether these 
degrees of properties were measured yet or not. An obvious well known fact should 
be stressed now: measuring operations are not the only ways how to get information 
on real objective values of magnitudes of a given physical objects. Information on 
values of magnitudes of physical objects can also be obtained by analytic processes 
performed within the range of an exact language built on a given logical base and 
containing also terms and sentences of mathematics (containing mathematical 
formalism). Evaluations of values of magnitudes that were not measured directly by 
means of functions where in place of arguments other value of basic magnitudes that 
were actually measured is nothing now of course. These functions and their evaluation 
operations belong to the logic-mathematical component of the physical theory. 

Let me point out in this place that an argument of a kind "no basic magnitudes 
(hidden parameters) can exist, which would enable an exact evaluation of simul­
taneously existing values of complementary magnitudes since it is not possible due to 
the mathematical structure of the theory" leave aside the possibility of replacement 
of one mathematical "tool" by another more adequate, one. The history of science 
provides more ground for the pluralism of logic-mathematical language tools than 
for the statement of definiteness of the "tool" used in the empirical science today. 



Let us consider some magnitudes C, D used in classical physics. Let these magnitu­
des reflect objectively (i.e. independently of our observing or measuring abilities) 
existing properties of physical objects. 

Let vc (vD resp.) be the values of these magnitudes possesed by a physical object a 
at a time t. Statements on this fact are formulated in a symbolic way as: 

Ma, 0 , v
D(a> t) • 

For this formulation we used the language of sentences in which, apart from ordinary 
individual constants and variables, also time variables occur. In my other papers I 
called this language the "chronology language" or the "language constructed on a 
chronological base". 

Admit further that at the time t a measurement was realized so that the values 
of magnitudes C (D resp.) were measured. These facts we describe by means of sen­
tences 

Mc(a,t), MD(a,t) 

i.e. by sentences: "Measurement designed for the statement of values C (D resp.) 
of the object a at the time t was performed". 

The measurements mentioned certainly joint an evaluation of some function 
in place of which arguments is object a, time t (metric character of time structure is 
supposed) and whose value is a number giving the measured value of the magnitude C 
(D resp.): 

fc(a, t) = vc, fD(a, t) = vD . 

In classical physics it was supposed that in a case of an "ideal sharp measurement" 
the value measured is equal to the value possessed by the object independently 
on the measuring operation. 

For every magnitude C the validity of the sentence 

(1) Va V*[(Mc(a, t) A fc(a, t) - pc) -» vc(a, t)] 

was assumed. 
In fact each measuring apparatus has its own (technically given) reliability interval 

Ic, so that we are forced to weaken the sentence (l) slightly: 

(2) Va Vr[(Mc(a, tj A fc(a, t) = vc A v'c(a, t)) -* \v'c - vc\ g J c ] . 

In classical physics it was generally assumed that in course of the historical deve­
lopment of measuring techniques the reliability interval will become narrower (i.e. 
that the reliability of apparatuses will improve). The problems concerned with this 
"optimistic supposition" are dealt within an other work of mine. 

Classical physics supposed further that all empirical physical magnitudes of an 
object can always be measured and their exact values found ("they are compatible 



magnitudes"). So it was assumed that for any pair of magnitudes C, D the sentence 93 

(3) Va Vf Vf'[(Mc(a, t) A MD(a, t') A fc(a, t) = vc A fD(a, t') = v0) -> 

-> (uc(a, f) A i>B(a, *'))] 

holds. 

By substitution /'/t w e ge t t n e sentence: 

(4) Va V/[(Mc(a, f) A M D ( « , t) A / c ( a , t ) = vc A jD(a, f) = vD) -> 

-»(»c(a, r) A UB(a, ())] . 

This sentence states the reahzability of simultaneous measurements of magnitudes 
C, D leading to findings of really existing values on these magnitudes in the object 
measured. 

Both sentences can be further reshaped for a given reliability intervals lc (lD resp.) 
of measuring apparatuses and also an "optimistic" sentence on historically unlimited 
improvement of both simultaneously realizable operations (this sentence will not be 
precisely formulated here not to make the text extremely complicated). 

Let us consider a pair K, L of quantum-mechanical magnitudes of a rnicroobject e. 
In the sense of the assumption of simultaneous existence of values of both magnitudes 
of the same object made above, let us form the sentence 

(5) [vK(e,t)AvL(e,t)-]: 

"Object e has the values vK (vL resp.) of magnitude K (Lresp.) at the same time t." 
If measurements of both magnitudes of the object e were realized simultaneously, 

then the two following sentences would hold simultaneously: 

MK(e,t), ML(e,t). 

Similarly as before the following sentences would speak on measurements realized: 

fK(e, t) = vK , fL(e, t) = vL. 

In quantum mechanics on the other hand the empirical knowings lead to the con­
clusion that an analogy of sentences ( l ) - (4 ) does not hold for arbitrary pairs of 
magnitudes K, L. 

If these magnitudes are complementary, then it is not possible to measure them 
simultaneously and to ascribe the results of measurements as atributes to the objects 
themselves. 

In this place we reach an important phase of our reasonings. The fact that we 
distinguish between the results of measurements of the value of magnitude of an 
object and between the value of the magnitude referring to the object itself indepen­
dently of the results of measurements, makes it possible to define the concept of 
"complementary magnitudes" not by means of the concept of "simultaneous 
immeasureability of magnitudes" but by means of the concept of "nonexistence of 



possibility of such measurements of magnitudes that give results exactly referring 
to reality in both cases". 

So in the chronology language we can introduce the concept of "complementarity 
of magnitudes K, L" by means of a sentence of the form 

(6) Compl (K, L) *-> Ve Vf[VMK VjK VvK(MK(e, t) A fK(e, t) = vK A vK(e, t)) -+ 

- ~3M L 3jL 3t>L(ML(e, /) A fL(e, t) = vL A vL(e, .))] . 

Reichenbach increases in his paper a demand not to consider necessarily as com­
plementary such magnitudes that by chance were not simultaneously measured up 
to now. The sentence (6) suits demand very well; from the sentence 

(7) ~ 3t 3e 3MK 3ML[MK(e, t) A ML(e, t)] 

we find easily that ^ 

Compl (K, L) 

cannot be derived as its consequence. 
Reichenbach states an important theorem on impossibility of simultaneous 

measurements of complementary magnitudes. 
Consistently with the assumptions adopted here I will modify the theorem so that 

it will express impossibility of simultaneous measurements and findings of objectively 
existing values of complementary magnitudes reffering to the same object. 

(8) Compl (K, L) <-+ ~ 3e 3f 3MK 3ML 3fK 3fL 3vK 3uL[MK(e, t) A vK(e, t) A 

A fK(e, t) = vKA ML(e, t) A vL(e, t) A fL(e, t) = » J . 

It is easy to get the sentence (8) from the sentence (6). The sentences (6) —(8) speak 
on the values of a magnitude of a physical object at the same moment of time. 

The last condition can be generalized: we will consider two distinct moments 
t, t' that differ no more than a given time interval At. 

Let there be At ^ 0 so that it holds: 

(9) Compl (K, L) ~ Ve V/[VMK VjK VvK(MK(e, t) A fK(e, t) = vK A vK(e, t)) -» 

-* ~3M L 3/L 3vL 3t'(ML(e, t') A fL(e, t') = vL A vL(e, ('))] . 

\t - t'\ <. At 

For At = 0 (i.e. for? = f) the sentence obviously goes into the sentence (6). 
For At ^ 0 sentences analogues to the sentences (7), (8) can be easily formed now. 
The sentence (9) in its interpretation is closely connected with the physical hypothe­

sis of discrete quantified time. The complementarity of magnitudes of a physical 
object comes within a single time interval. Let us say now that it is impossible to 
measure and find objectively existing values of complementary magnitudes at mo­
ments with the period equal or less than a given time interval At. The length of this 



interval is given by principles of physics (through light propagation speed in vacuum 95 
and through the value of the Planck effective quantum of electromagnetic field 
particularly). 

The language suggested allows the formulation of a sentence on "hidden para­
meters" i.e. the sentence on the existence of measurable magnitudes from whose values 
for a given object it is possible to reach — through an analytic process — conclusions 
on real values of complementary magnitudes of this object within a given time interval 
— as a possible assumption. I will formulate this theorem in the mixed language 
in the following way. 

Let there exist mutually compatible magnitudes of a physical object e : Ju ..., Jm. 
Let the sentences MJt(e, tt), .. ,,MjJe, t,„) speak on the realizations of measuring 

operations performed at moments tu ..., tm, where the period of no pair of these 
moments is greater than the lasting of the given interval A t. 

Analogously let the sentences 

fjfah) = vj„ ...,fjm(e,tm) = vJm 

be the sentences speaking on the values of magnitudes Ju ..., Jm of an object e at 
time tJt, ..., tjm measured in this way. Let the sentence: vK(e, t) A vL(e, t) speak on 
complementary magnitudes of the object e, that attain values vK, vL at moments 
t, t'. Let the moments t, t' be within the same time interval together with all moments 

'./,> •••>hm. 

Let the sentences: Vu ..., V„ be theorems of a given physical theory and speak 
on fundamental relations between magnitudes Ju...,Jm and complementary 
magnitudes K, L. 

Under these conditions the assumption regarding the existence of "hidden para­
meters" will be expressed in sentence (10). 

From the assumption of the form 

(10) 3Jt, ..., 3Jm( ft Mjt(e, tJt) A fJt(e, tJt) = vJt)] A V, A . . . A V„) 
i = l 

it is possible to get the consequence of the form 

(vK(e, t) A vL(e, t')] 

in an analytic way. 

Let us remind on this occasion that the consequent of the sentence (10) is an analy­
tic sentence of the language considered and that it does not say anything about any 
result of direct measuring activities of values of magnitudes K, L which remain to be 
complementary magnitudes due to the validity of sentence (9). 

The sentence (10) is no proof of the existence of "hidden parameters" in itself 
by any means. It can either be incorporated into the language or it need not be 
incorporated. 



96 The matter of the last reasoning was only to stress the fact that the language suggest­
ed allows its formulation. 

The validity of the theorem regarding complementarity of magnitudes K, L does 
not exclude the following statements of course. 

For any pair t, t' of moments the distance between which is not greater than a given 
interval At at most one of the following theorems holds: 

(11) Ve[(MK(e. 0 A fK(e, t) = vK) - vK(e, ()] , 

Ve[(ML(e, t) A fL(e, t) = vL) - vL(e, f)] . 

Each of these theorems belongs to a "partial language" dealing with results of me­
asurements of values of just one of the two complementary magnitudes (many 
authors speak on "partial Boolean algebras" in this respect). Partial languages -
in each of them just one such a theorem is formulated — can obviously be formed 
within the chronology language discussed. 

I will show now that in a sphere of the chronology language suggested, which is 
constructed on the classical logical base and contains the assumptions mentioned, 
we can avoid the paradoxes discussed without being forced to change the classical 
character of the logical base. 

Let us back to "two-slits experiment" first. We formulate the following sentences 
in the language considered: 

A(e, t) "The particle e passed through the slit A at the time t") (in place of this 
statement we shall write briefly A'). 

B(e, t) "The particle e passed through the slit B at the time t" (in place of this 
briefly B'). 

Both last sentences are empirical statements and speak on the results of partial 
experiments where always one slit is open while the other one is closed. 

X(e, t) "The particle e fell into the point X at the time r" (briefly X'). 
MA(e, t) "The particle e was measured at the time t when passing through A" 

(briefly MA). 
MB(e, t) "The particle e was measured at the time t when passing through B" 

(briefly M'B). 
fA(e, t) "Through measurements the particle e was located in the slit A at the 

time r" (briefly f ' A ) . 
fB(e, t) "Through measurements the particle e was located in the slit B at the time 

t" (briefly f'B). 
fx(e> t) "The particle e was empirically found when it fall in the point X at the 

time t" (briefly j ^ ) . 
fojjujj- a r e proposition functions in this case; • 
vA, vB, vx are their values respectively. 



For the passage of the particle through the slits the sentence holds: 

(12) Ve Vt[(MA(e, t) A fA(e, t) A A(e, t)) -+ ~(MB(e, t) A fB(e, t) A B(e, ())] . 

This sentence is obviously satisfied at any experiment; the particle cannot be in two 
slits simultaneously. 

The sentence (12) can obviously be generalized for two moments /, t', and a given 
interval At: 

(13) Ve V? W[(MA(e, t) A fA(e, t) A A(e, t)) -> ~(MB(e, t') A fB(e, t') A B(e, ('))] . 

The particle cannot be in two slits within a given time interval. 
It is obvious that both last sentences comply with the complementarity requirement. 
Probability that the particle falls in the point X after passing through either the 

first or the other slit will be now: 

P(X'") = P[((M'A Af'AA A') V (M'B Af'BA B')) A X'"] , t <t" 

= P[(M'A AfAA X'") V (M'B Af'BAB'A X'")] , 

= P(M'A A f'A A A' A X'") + P(M'B A fB A B' A X'") -

- P(M'A A f'A A A' A X'" A M'B A fB A B' A X'") . 

It follows from (12) that the last (subtracted) term is equal to zero and so it holds 

(14) P(X'") = P(M'A A fA A A' A X'") + P(M'B A f'B A B' A X'") 

and hence the wanted probability will be equal to the sum of probability of the case 
when the particle fell into X after having passed through A and that when the particle 
fell into X after having gone through B. The sum given does not correspond with 
the sum of probabilities for partial experiments with repeatedly closed slits: these 
experiments are never performed simultaneously. 

When dealing with partial experiment when one slit is open while the other one is 
closed we work with the probabilities 

(15) P(M'A A f'A A A' A X'") 

(16) P(M'B A fB A B'' A X'"') 

where t + t', t" =t= t, t < t", t' < t'". 
On these grounds there is no base whatsoever to insist that in both cases the same 

particle is dealt with. Partial experiments are necessarily performed with different 
particles and under different conditions as well. Obviously nothing can ensure any 
identity of all conditions of two experiments at distinct times t, t' (t" and ('" resp.) 
Hence there is no reason for assuming the equality of the probability from the sen­
tence (15) and that in the left-hand term of the sentence (14) (probability from the 
sentence (16) and that in the right-hand term of sentence (14) resp.) 



From this is follows that we are not forced to draw the controversial conclusion 
that a particle passing through one slit is influenced by an effect of the other slit just 
at the time of its passage. Thus also any reason for the rejection of the distributive 
law of classical logic is lost (that is actually what was the motivation of Reichen-
bach's construction of three valued "quantum logic"). 

In the following part of this discourse I will turn to the Scheibe discussion concern­
ing simultaneous identification of the position and momentum of a particle. Let us 
consider two complementary magnitudes K, L— now position and momentum — 
again. Let vK, vL be objective values of these magnitudes possessed by the particle e 
at the moment t. 

Next we will use abbreviation similar to those used earlier: Instead of writing 

MK(e, t) we use abbreviation M'K , 
ML(e, t) M'L , 

fK(e, t) fk , 
Me,i) f'L, 
Me,t) fl, 
vK(e, t) v'K. 

Let us suppose now that measurements of values of magnitudes K, L were perfor­
med and results vK, vL were gained. Let us suppose further that the real, objective 
value of the magnitude K corresponds exactly with the results of the measurement. 
In reference to the real value of the magnitude L we will consider three possibilities 
successively. Let vL be the real value in the first case; let v'L (different from vL) be the 
real value in the second case; let no of the values found through measurements 
be the real one. Then we will formulate exactly corresponding sentences — analogous 
to those from Scheibe discussion — accordingly: in place of writing: 

vL(e, t) abbreviations v'L , 
v'L(e, t) v[. 

Sentences corresponding with the first alternative mentioned are: 

(17) [(M'K Af'KA V'K) A ((M'L Af'LA V'L) V (M'L A f'L' A V'L))] , 

(18) [(M'K A fK A VK A Ml A / i A V'L) V (M'K A f'K A V'K A M'L A f'L' A »*)] . 

Both sentences are equivalent due to the distributive law. Due to the interpretation 
mentioned the first member of conjunction in the sentence (17) is true; the second 
part of conjunction in (17) is also true. The first member in the disjunction cannot 
be true due to the assumption about complementarity of magnitudes K, L. Therefore 
the first member of the disjunction of the sentence (18) appears to be false while the 
second member of this disjunction is true. All both sentences are true in the inter­
pretation given. 



The second alternative mentioned corresponds with sentences: 

(19) [(MK Af'KA V'K) A ((M'L A fL A V'l) V (Ml A / £ A ^'))] , 

(20) [(M'K A /* A Pi A M'L A /* A «£) V (Mi A / i A Pi A M i A / [ ' A v'fi\ . 

When this interpretation is adopted, both sentences are true propositions again. 

The third alternative corresponds with the sentences: 

(21) 

[(M'K A /i A Pi) A ((M'L A /i A ~VL A ~pi') V (M[ A f'[ A ~VL A ~!?£))]. 

(22) [(Mi A /i A pi A M'L A /i A ~ Pi A ~ Pi') V 

V (Mi A /i A Pi A Mi A /i' A ~p' A -Pi')] . 

When this interpretation is adopted, both sentences are true propositions again. 

Thus we have seen that the distributive law is not broken in the region of quantum-
mechanical effects in our treatment of Scheibes "hypothetical experiment". 

The apriori assumption of objective existence of given values of magnitudes of 
physical objects even when they were not being measured and found, appears to be 
a very important condition of our reasonings in the recent part of this paper. The 
capability to use time terms in exact formulations of our chronology language is 
another assumption of course. Let us note further that it is possible to generalize the 
sentences (15) —(22) for reasonings about measuring procedures and existence of 
values of measured magnitudes at distinct time t, t' the period of which is not greater 
than the length of a given time interval At. 

In the current reasonings it has been shown that the chronology language makes 
it possible to "avoid" some typical difficulties involved in the interpretation of quan­
tum-mechanical effects. In this respect I have mentioned the idea of three valued 
"quantum logic" by Reichenbach. 

In the end of this discourse I want to emphasize that the reason for the suggestion 
of the chronological base of the quantum-mechanics is not a proof of its equivalence 
with three values logical base of the Reichenbach's language. It is of course possible 
to introduce through definitions the triple of Reichenbach proposition values: 

T(vK(e, t)) «-» 3MK 3fK(MK(e, t) A fK(e, t) = vK) 

F(vK(e, t)) <-> 3MK 3fK(MK(e, t) A fK(e, t) 4= vK) 

N(vK(e, t)) ^ 3L3ML 3/L(Compl (L, K) A ML(e, t) A fL(e, t) = vL A vL(e, t)). 

into the metalanguage of the quantum mechanics language using the complementarity 
relation discussed above. 



In this metalanguage we can introducte through terms T, F, N proposition forming 
functors corresponding with Reichenbach's connectives of nonclassical logical calcu­
lus and then describe the logical structure of Reichenbach's tautologies by means 
of them. 

The proof of the equal degree of adequacy of the chronological base of Reichen­
bach's three values logical base for the construction of the quantum mechanics 
language has not been presented in this paper. I feel that Reichenbach's ideas from 
the work mentioned above do not provide the performance of such a proof for the 
time being: Reichenbach does not build his nonclassical logic as an axiomatic system, 
but he presents some of its tautologies as an example. 

III. 

Summary: 

1. It was an aim of the discourse presented to show the possibility of construction 
of the quantum mechanics language on the classical logical base, so that it is 
possible to formulate some of the important information of quantum mechanics 
and not to come to controversial conclusions in a logical way. 

2. The classical logical calculus creating the logical base of the language was suggested 
while syntaxis and semantics were modified slightly: time terms enter its formulae 
together with common predicate and individual terms. The language constructed 
in this way was called a "chronology language". 

3. When building the suggested language an important assumption concerning the 
objective existence of values of physical magnitides of objects — no matter whether 
they were actually measured - was made (in the metalanguage). Using this 
assumption the concept of "complementarity of physical magnitudes" was made 
in the language constructed. 

4. It was shown that within the suggested language it is possible to formulate some 
sentences on complementary magnitudes of quantum mechanics avoiding parado-
xies. Reichenbach solved the paradoxies by resorting to a nonclassical quantum 
logical base of the language. 

(Received January 5, 1977.) 
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