
Kybernetika

Adam Janiak
One-machine scheduling with allocation of continuously-divisible resource and with
no precedence constraints

Kybernetika, Vol. 23 (1987), No. 4, 289--293

Persistent URL: http://dml.cz/dmlcz/125652

Terms of use:
© Institute of Information Theory and Automation AS CR, 1987

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/125652
http://project.dml.cz

K Y B E R N E T I K A - V O L U M E 23 (1987) , N U M B E R 4

ONE-MACHINE SCHEDULING WITH ALLOCATION
OF CONTINUOUSLY-DIVISIBLE RESOURCE
AND WITH NO PRECEDENCE CONSTRAINTS

ADAM JANIAK

The efficiently solved one-machine scheduling problems with no precedence constraints
are generalized to the case with allocation of continuously-divisible constrained nonrenewable
resource. Models of operation are assumed to be duration versus resource amount linear
functions. The following optimality criteria are considered: maximum completion time,
maximum lateness, maximum cost and weighted sum of completion times. For the problems
discussed polynomial-time algorithms are found.

1. INTRODUCTION

Up to now, one-machine scheduling problems with different optimality criteria
were considered under assumption that processing times of operations are constant.
For the most of them polynomial-time algorithms exist (cf. [3]). In this paper some
of these problems (i.e. problems with polynomial-time algorithms) are generalized
to the case when operations processing times depend linearly on the amounts of
continuously-divisible nonrenewable, doubly constrained resource, e.g., energy, fuel,
oxygen, catalyst, raw materials, money. They can be precisely formulated as follows.

There are n jobs J , , . . . , J},..., J„ that are to be processed on one machine. The
machine can handle only one job at a time. Each job J} consists of one operation
that corresponds to the processing of the job J) on the machine during an uninter­
rupted processing time p}. We shall assume that p} = Pj{u}) = b} - a}u},j = 1,2,.... n,
where u} is the amount of resource allotted to J'}, Oj > 0 may be interpreted as the
unit cost of shortening the job Jj processing time and bj > 0 - as the upper bound
on pj. We assume, moreover, the following set of feasible allocations of resource:

U = {t7eR"|u = [«, «j. . . . ,«„] ' A £ « , g UA 0 ^ Uj^pj,

j= l , 2 , . . . , n } ,

where U is the global amount of resource and fij < bj\aJ 0' = L 2 , . . . ,«) is a given

289

technological constraint on the maximal amount of resource allotted to the job Jj.
(The value bj — ajfij is the lower bound on pj). Let % = <7r(l), 7i(2),..., n(n)} be
a permutation of {l, 2,..., n] and 77 = {n} be the family of all permutations.

We shall consider the maximum cost criterion — cmax = max CJ(CJ), where Cj(t)

is a nondecreasing function in the time variable t and Cj = Cj(%, u) is the completion
time of the job Jj in permutation n e 77 under resource allocation u e U. The follow­
ing particular forms of this criterion will be also considered: the maximum comple­
tion time — Cmax = max {Cj} and the maximum lateness — Lmax = max {L,} =

= max {Cj — dj}, where dj is the due date, i.e. the moment by which the job Jj should

be completed. Moreover, we shall consider the weighted sum of completion times

criterion — 2lwJ^j' == H wj^7> where Wj > 0 is the weight attached to Jj,
J = I

One-machine scheduling problem with resource constraints consists in finding
such a permutation n* e 77 and such an allocation of resource u* eU that the con­
sidered criterion (i.e. one of the above criteria) is minimized. In the next section
we shall show that for these problems polynomial-time algorithms exist. Computa­
tional time (or a number of computational steps) for such algorithms is bounded
by a polynomial w(n) in the size of the problem considered (i.e. the number n of
jobs). The computational complexity of such an algorithm (problem) is said to be
0(w(n)) (cf. [3]).

In the sequel we shall use the following notation scheme of machine scheduling
problems (see [3]) — a|/?| y, where a specifies the machine environment (for one-
machine scheduling problems a = 1); /? cr {i-j, PJ(UJ)} indicates certain jobs charac­
teristics, where: r,- denotes that release dates (i.e. the moments at which jobs are
available for processing) are unequal (the absence of r,- denotes that release dates
are equal), PJ(UJ) denotes that Pj(u}) = b} — a-Uj (pj(uj) = b — uaj denotes that all
models of operations are of the same form); and y indicates the optimality criterion.

2. MAIN RESULTS

The l\pj(uj)\ cmax problem

It is obvious that for any allocation of resource u e U Cmax is equal to £ Pj(u •)
despite of permutation ne II. J = 1

Property 1. The following procedure generates (in 0(n . log n) steps) the optimal
allocation of resource w *e U to the l|Pj(w;)| Cmax problem:

Procedure 1. From among all jobs, i.e. from the set S s= {1, 2 , . . . , «} choose
the job Jh with the greatest parameter ah and assign to Jh the resource amount u* =
= min {/?,„ U}. Then repeat on the set S := S — {h} with U := U — u*, and so on.

290

It is easy to notice that for the case l\p/uj) — b — auj\ Cmax the above procedure
reduces to the following one (with O(w)-complexity): for J (assign the resource
amount u* = min [fiu U}. Then repeat for J2 with U := U - «*, and so on.

The l\rj,Pj(uj)\ Cmax problem

The following property holds.

Property 2. The l|r,-, Pj(uj)\ Cmax problem is solved (in 0(n2) steps) by ordering
the jobs n* according to increasing r} (i.e. by the Jackson rule [1]) and by the resource
allocation u* e U obtained in agreement with the following procedure.

Procedure 2.

Step 1: Set M; := 0 for i = 1, 2 , . . . , n and I := 1. Find the starting times of jobs
using the following recursive formulas:

S,. (i, := r„ . (1) , SnHi) := max [rn . (0 , ST,-(,-1, + &««(,-i,] ,

i = 2, 3, ..., n and go to Step 2;

Step 2: Find the greatest index k, I < k < n that satisfies the equation rK,(k) =

= S,,*^. Then find the set

P := {%*(() | fe < i < n, H„.(J) < /SB.(I)} .

If the set P is empty or U = 0, then Stop — u*, i = 1, 2 , . . . , n is the optimal

resource allocation, otherwise go to Step 3.

Step 3: Find an index t that satisfies

a,.(,) := max a„*(„
7i*0')eP

and, then set

j := min (S„.a) - r„.0)) , % := min {^».(t), U, p/a„. („}.

Next bring up to date resource allocation and starting times by setting

V (t) : = «**(*) + x, U:=U-x,

S„. a) := Sn.U) - x . a„.(() for t < j ^ n .

Finally set / : = /c and go to Step 2.

Proof. The ordering rule is self-evident since the Jackson rule is independent
of the operations processing times. It is obvious that the global amount of resource
should be allocated among the jobs composing the critical path. The maximal
deterioration of the length of this path is obtained by assignment of feasible resource
amounts to the jobs with the maximal parameters a,- values. Q

The l|/>j(»/)| Lmax problem

As is known (e.g. [3]), the l\Pj(uj)\ Lmax problem may be treated as the inverse

291

version of the l |r ; , p/tij)\ Cmax problem. Thus the \\pj(uj)\ £max problem is solved
(in 0(n2) steps) by ordering the jobs according to non-decreasing d"; and by allocation
of resource generated by the procedure analogical to that from Property 2.

The \\pj(uj) = b - auj\ cmax problem

Property 3. If all models of operations are of the same form: PJ(UJ) = b - auj,
0 ^ Uj ^ Pj, j = 1, 2 , . . . , n, then the following procedure generates (in 0(n2) steps)
the optimal solution to the l\pj(uj) = b — aUj\ omax problem.

Procedure 3. From among all jobs, i.e. from the set 5 : = {l, 2 , . . . , n}, put the job
Jh with the smallest value ch(Yp) in the last position, where at the first step YP '• =

:= n . b — a . min { Y Pj, &}> an^ assign to Jh the resource amount
• J = I

u* = min {Pj, max {0, U - Y Pj}} •
jeS-{h}

Then repeat on the set S := 5 - {h} with 0 := U - u*, YP •= YP ~ (b ~ au*)>
n :— n — 1, and so on.

The proof follows immediately from Theorem 1 in [2] and the fact that for any
global amount of resource being fixed the optimal resource allocation is the same
for any permutation (i.e. u*(;) = u*.(i), i = 1,2,..., n, n, n' e II).

The l|py(«j)| YwjCj problem

For the ljpĵ Uj-)! YWJCJ problem a polynomial-time algorithm (with 0('w . log n)
complexity) may be found under a strong assumptions on the job parameters. How­
ever, the computational complexity of this problem in the general case remains an
open question. The following property holds independently of the computational
complexity of this problem:

Property 4. The problem l\pj(uj) £C,- (i.e. for Wj = 1, ;' = 1,2,..., n) has the
same optimal solution (i.e. processing order and resource allocation) as that obtained
by replacing the processing times pj = bj — a-Uj by p'j = pt + c, where c ^ —
— min (bj — a y . Pj) is a fixed constant.

Proof. Consider a permutation n with a resource allocation u e U; the completion

time Cn(i)(n, u) of the job Jn(i) is given by Cn(i)(n, u) = Y P*(J)(UMJ))- Replacing
J = I

pK(j)(un(J)) by pn(J)(un(J)) + c the completion time is given by C'n(i)(n,u) =

= Y (PtU) (WH(J)) + c) = Cn(i)(n, u) + i. c. Hence the new criterion value £Cj is
J = l n

related to the old one £ C ; by Yc'i = Y exnOt' ") = Yci + in . (n + 1). c. Q

292

3. REMARKS

It is easy to verify that the proposed algorithms solving the problems:
1\PJ(UJ)\ c m«. l\rj,Pj(uj)\Cmax, l\Pj(Uj)\ Lma, l\pj{uj) = b - flM;|cmax, may be

generalized to the case with given precedence constraints.

Separate elaboration is desired for other one-machine scheduling problems with
allocation of resource, e.g., for problems with such criteria as: the total cost, the
weighted sum of tardinesses and the weighted sum of completion times and under
precedence constraints. Most of them are probably NP-hard (see e.g. [3] for definition).
Especially interesting seems to be this subset of the above NP-hard problems for
which classical equivalents (without resource) have polynomial-time algorithms.

ACKNOWLEDGEMENT

This research was partially supported by the scientific program R.P.I. 02: "Theory of Control
and Optimization of Continuous Systems and Discrete Processes".

(Received July 30, 1985.)

R E F E R E N C E S

[1] J. R. Jackson: Scheduling a Production Line to Minimize Maximum Tardiness. Research
Report, University of California at Los Angeles 1955.

[2] L. Lawler: Optimal sequencing of a single machine subject to precedence constraints. Mana­
gement Sci. 19 (1973), 544-546.

[3] H. L. Lawler, J. K. Lenstra and A. H. G. Rinnooy Kan: Recent developments in deter­
ministic sequencing and scheduling: a survey. In: Deterministic and Stochastic Scheduling,
(M. A. H. Dempster, J. K. Lenstra and A. H. G. Rinnooy Kan, eds.), Dordrecht 1982.

Dr. Adam Janiak, Technical University of Wroclaw, Institute of Engineering Cybernetics, ul.
Wybrzeie Wyspianskiego 27, 50 370 Wroclaw. Poland.

293

		webmaster@dml.cz
	2012-06-05T17:10:20+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

