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SECURE COMMUNICATIONS 
BASED ON DISCRETE TIME CHAOTIC SYSTEMS 

F . A R G E N T I , A. D E A N G E L I , E . D E L R E , R. G E N E S I O , P . P A G N I AND A. T E S I 

In this work the problem of designing a secure communication system is addressed. Dis­
crete time chaotic signals are used to mask information samples. Dead-beat synchronizing 
systems permit exact synchronization in finite time. This property can be used in secure 
communication schemes. An alternative approach uses a combination of chaotic signals to 
modulate the information to be masked. The sensitivity of the schemes to the key variation 
is analyzed and some communication issues are also discussed. 

1. INTRODUCTION 

Synchronizing chaotic systems [10] have been applied as cypher generator in the 
context of secure communications [3 ,4 ,6 ,8 ,14] . In chaotic masking a low power 
information signal is added to a chaotic signal without preventing locking of the 
authorized receiver to occur. If the information is binary, then chaotic switching 
permits to encode da ta by means of two different at tractors. In chaotic modulation 
the information is modulated on a chaotic carrier through an invertible nonlinear 
transformation. For more details, see [9] and references therein. 

Up to now, apart from a few examples [1,5,12,13], most of research has dealt with 
analog systems. As a drawback, such systems present a weaic robustness with respect 
to circuit component variability as well as to channel noise: these disturbances can 
affect the synchronization process. In this work discrete time secure communication 
schemes are described. A discrete-time nonlinear map is used as a chaotic generator. 
The output signal is used to modulate the information signal. Two schemes are 
presented: in the first the self-synchronizing property of such systems [2] is exploited, 
while in the second the map is used as a pseudo-random generator. The sensitivity 
of the secure recovery of the information signal with respect to the variation of the 
keys is also analyzed. 

2. DISCRETE TIME CHAOS SYNCHRONIZATION 

This section describes the synchronizing discrete-time systems that will be proposed 
for secure communication applications; for further details see [2,11]. 
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We will consider the Henon map, a second order well-known map, represented by 
the following equations 

a.i(ife + 1) = 1 - ax\(k) + x2(k) 

x2(k + l) = 0xi(k). 

This map presents a chaotic behaviour in a large neighborhood of the parameter 
values a = 1.4 and 0 = 0.3. Let y(k) be the output of the chaotic system: 

y(k) = l-axl(k). (2) 

The receiver can reconstruct the state of the chaotic system using the equations 

Xl(k + 1) = y(k) + x2(k) 
(3) 

x2(k + l) = (3xx(k). 

From ( l ) - ( 3 ) , it can be seen tha t the synchronization error, Axi(k) = Xi(k) — Xi(k), 
tends asymptotically to zero for \/3\ < 1. Moreover, if the output of the chaotic 
system is chosen as 

y(k) = xt(k) (4) 

then the synchronization error at the receiver side will satisfy 

Axi(fc + 1) = Ax2(k) 

Ax 2 ( ^ + 1) = 0. 

Therefore, the sinchronization errors will reach exactly zero in two steps indepen­
dently of their initial values, tha t is the system is dead-beat synchronizing. More 
detailed considerations are developed in [2]. 

3. SECURE COMMUNICATION SCHEMES 

One of the main appealing features of a dead-beat synchronizing system is that the 
same chaotic signal can be generated, in a deterministic way, by both the t ransmit ter 
and the receiver. This chaotic signal can be used for masking an information signal 
in a secure communication system. 

Let y(k) be a chaotic signal produced at the transmitter side and let s(k) be the 
information signal to be sent: y(k) is used to mask s(k) so that an unauthorized 
receiver can not detect s(k). A way to achieve this purpose is to choose a coding 
function c(s,y), continuous and invertible, so that c(s,y) is t ransmit ted instead of 
s. At the receiver side, the masking signal y(k) must be exactly known only by the 
authorized user: this is possible if he or she knows the keys a and /? as well as either 
the initial state of the Henon map or two initial samples of y. We will assume in the 
following that the keys of the secure communication are a and j3. 

In this work, two different approaches will be described. In both schemes the infor­
mation is supposed organized in packets of fixed length, say M, i.e., [S(IM),S(IM + 
1 ) , . . . , s(lM + M -1)} will be the /th packet. 
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Scheme A 

A.l : Generate a chaotic sequence having N samples, N >> M; 

A.2: Split the sequence in blocks of M + 2 samples; 

A.3: Transmit the /th block of the signal, M samples long, masking it with the /th 
block of the chaotic signal, M + 2 samples long, i.e., send the following data: 
[y(l(M + 2)),y(l(M + 2) + l), c(s(lM), y(l(M + 2) + 2)), . . . , c(s( /M + M - 1), 
y( / (M + 2) + M + l ) ) ] . 

At the receiver side the first two samples of each block are used to synchronize 
the map, so that the masking signal y is achieved; then, the samples [y(l(M + 2) + 
2 ) , . . . , y(l(M + 2) + M + 1)] are used to decode the information signal s through 
the inverse function c~l(c(s,y),y). 

Scheme A presents a high sensitivity [2] with respect to the choice of the keys of 
the system: a little difference in the choice of the parameters a and j3 makes the 
coded message indecipherable, even if the correct information for synchronization, 
i.e. the first two samples of each block, is achieved. Some drawbacks of this scheme 
are now discussed. First, the information for the synchronization of the map must 
pass through the channel, which in most cases must be modeled as noisy, i.e., it 
introduces errors in the synchronizing samples: therefore, these samples must be 
carefully protected with suitable channel codes. Second, the synchronizing samples 
cai:y no information, that is the bandwidth needed to transmit the masked signal is 
greater than that necessary to transmit s. To avoid these problems another scheme 
is proposed. 

Scheme B 

B.l : Use a Henon map with parameters c*o and /?o and a given initial state to 
generate a chaotic sequence yo(k) having 2L samples, where L is the number 
of signal packets to be transmitted; 

B.2: Use the samples yo(2l — 1, 21), / = 1 , . . . , L to initialize a second Henon map 
having parameters a and p. Each time a sequence yi(k), M samples long, is 
generated; 

B.3: Transmit the /th block of the signal, masking it with the sequence yi(k), i.e. 
t ransmit the following data: [c(s(lM), yi(l)), ..., c(s(lM + M - l),yi(M))]. 

In this case, the values ao and (3Q are part of the key to be known at the receiver 
side. In Scheme B, two Henon maps are used as a pseudo-random generator to 
modulate the information signal. 

An advantage of the schemes here considered is that they are memory less, tha t 
is the effect of an error occurring on a transmitted sample, for example due to the 
channel noise, does not propagate to neighbouring samples. 

An example of secure communication is now described. Consider to use Scheme B. 
Let the transmitter be described by a Henon map, say 7i, with parametric config­
uration a — 1.4 and 0 = 0.3. A second Henon map Ho, with parameters ao and 
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fto, is used to initialize the state of H. We have assumed ao = 1.4 and /?o = 0.3 
again. The coding function c(s, y) = y/s has been chosen. The information has been 
divided in packets each containing 128 samples. The square wave shown in Figure 1 
has been used as information signal; the masked signal, tha t is the signal actually 
transmitted, is shown in Figure 2. The authorized receiver reconstructs the signal 
perfectly. In Figure 3 the signal decoded by an unauthorized receiver is shown: only 
the parameter 0 has been changed, with a mismatch with respect to the correct one 
of 0.0001. Little changes in the other keys lead to similar results. As can be seen, 
a little difference in the parameters yields a noise-like signal. In the next section 
the choice of the modulating function and its influence on the overall scheme will be 
discussed in the details. 
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Fig. 1. Square wave information signal. 

Transmitted signal 
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F ig . 2. Transmitted signal. 
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F i g . 3 . Decoded signal with A/3 = 0.0U01 and the other keys unchanged. 

4. COMMUNICATION ISSUES 

Some communication issues deserve a more detailed discussion and are analyzed in 
this section. The tests presented here have been performed using Scheme B. 

4 .1 . Choice of the modulating function 

In a digital transmission system the information signal is binary encoded. Suppose 
the input signal is PCM coded with b bit/sample. Depending on the choice of the 
modulating function c(s,y), the masked signal to be sent through the communica­
tion channel may assume real values and, therefore, needs a further quantization. 
The quantization process introduces an irreversible mapping, so that also the signal 
reconstructed by the authorized receiver will be affected by an error. The examples 
of c(s, y) proposed in [2] belongs to this class of masking functions. 

We present here some results obtained using also invertible functions c(s, y) op­
erating on discrete values. For example, suppose c(s,y) = XOR(s,y), where XOR 
is computed on the binary representations of the operands. This choice implies 
that the masking signal y is represented with the same number of bits as s: this is 
accomplished by quantizing y with 26 levels, between its minimum and maximum 
values. The authorized receiver, which is able to perfectly reconstruct the masking 
sequence, performs the same quantization process. In this case the inverse function 
isc-1(x,y) = XOR(x,y). 

Another example of invertible function is c(s, y) = XOR(RR(s), y), where RR(a) 
performs the Right-Rotation of a, i.e., shifts the bits of a one bit right, with the 
LSB becoming the MSB (the RR() function has been used also in [5]); c -1( .r,y) = 
LR(XOR(.r, y)) performs the inverse operation, where LR() is the one bit Left-
Rotation operator. 

To evaluate the effectiveness of the proposed coding functions some tests have 
been performed using a speech signal sampled at fc = 11025 kHz, 8 bit/sample. The 
results obtained by masking the signal with different coding functions and transmit­
ting it with 8 bit/sample are reported in Table 1. The SNRa and SNRU are the 
Signal-to-Noise Ratio (SNR) experienced by the authorized and an unauthorized 
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receiver, respectively. We have supposed t h a t the latter receiver knew all the keys 

except (3, with A/? - 0.001 (similar results have been obtained changing the other 

keys). The SNR is computed as: 
2 

S N R = 1 0 1 o g 1 0 ^ (6) 

where as is the s tandard deviation of the input signal (in our tests as - 43.10) and 

MSE = E[(s - sd)
2] is the mean square error between the original and the decoded 

signal. For a comparison, if the decoded signal were a discrete variable uniformly 

distributed in the interval ( - 2 6 _ 1 , 2 6 - 1 - 1), b = 8, uncorrected with the input 

signal then SNR = —5.96dB. The coding functions that have been chosen are the 

multiplication, the division (to prevent from too large output values the amplitudes 

far from zero less than a given threshold are multiplied instead of divided), the XOR 

and the XOR-RR. In Table 1 the degradation of the quality measured by S N R a is 

due to the quantization of the masked signal. 

Table 1. Results with PCM speech signal, 

8 bit/sample. 

c(s, x) SNRa (dB) SNRЫ (dB) 
* 20.94 -3.40 

/ 15.45 -3.37 
XOR oo -5.59 

XOR-RR oo -5.80 

In Figure 4 the normalized cross-covariance yt between the input signal and the 

masked signal t ransmitted through the channel is shown, while Figure 5 shows the 

normalized cross-covariance 7.- between the input signal and the signal decoded by 

the unauthorized receiver. As can be seen, even if the latter cross-covariance is low 

for every modulation function used, this does not hold for yt- This corresponds also 

to a certain intelligibility (measured with subjective tests) of the masked signal when 

the multiplication and division functions are used as c(s, y). 

Fig, 4. Normalized cross-covariance between the PCM 8 bit/sample speech input and 
the masked signal, varying with c(s.y): multiplication (solid), division (dots), 

XOR (dashes), XOR-RR (dashes and dots). 
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F ig . 5. Normalized cross-covariance between the PCM 8 bit/sample speech input and 
the signal decoded by an unauthorized receiver (A/? = 0.001), varying with c(s,y): 
multiplication (solid), division (dots), XOR (dashes), XOR-RR (dashes and dots). 

The sensitivity to the key variation is shown in Figure 6, where the SNR expe­
rienced by an unauthorized receiver versus the variations of the parameters a and 
P r-om the correct keys is shown (the keys ao and /?o are supposed known). The 
modulating function is the X O R - R R . The SNRs obtained suggest a complete unin-
telligibility even when the keys variation is kept £ nail: this has been confirmed by 
some subjective tests. Similar results are found when a and /? are assumed known 
and ao and /3Q are changed. 

beta variation -5 -5 
alpha variation 

Fig. 6. SNR experienced by an unauthorized receiver versus Aa and A/3 
(PCM, 8 bit/sample, XOR-RR have been used). 



48 F. ARGENTI, A.De ANGELI, E. DelRE, R. GENESЮ, P. PAGNI AND A. TESI 

4 .2 . A p p l i c a t i o n t o c o m p r e s s e d s ignals 

The PCM is the simplest example of binary coding system. However, more effi­

cient methods of representing a signal (speech, audio or images) have been designed 

and standardized [7]. To test the secure communication scheme when applied to a 

compressed signal, the simple zero-th order D P C M scheme has been used. Table 2 

refers to a 4 bit/sample D P C M scheme: the same parameters defined in the previous 

subsection for the P C M case are shown. The degradation of the SNR experienced 

by the authorized receiver also when XOR or the X O R - R R are used as modulating 

function is due to the D P C M compression: as it can be seen, the use of multiplication 

or division further deteriorates this value. 

Table 2. Results with zero-th order 

DPCM compressed signal, 4 bit/sample. 

c(s, x) SNRa (dB) SNRU (dB) 
* 9.38 -4.94 

1 7.59 -5.33 
XOR 13.84 -4.90 

XOR-RR 13.84 -5.12 

Figure 7 and Figure 8 show the normalized cross-covariance between the input 

signal and either the masked signal or the signal decoded by the non-authorized 

receiver, respectively. As in the P C M case, subjective tests of intelligibility are in 

favour of the XOR and the X O R - R R functions. The sensitivity to the key variation 

is shown in Figure 9. The results are similar to those obtained for the PCM case. 

Fig. 7. Normalized cross-covariance between the speech input and the uncompressed 
(zero-th order DPCM, 4 bit/sample) masked signal varying with c(s,y): 

multiplication (solid), division (dots), XOR (dashes), XOR-RR (dashes and dots). 
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Fig. 8. Normalized cross-covariance between the speech input (transmitted with zero-th 
order DPCM, 4 bit/sample) and the signal decoded by an unauthorized receiver 

(A/? = 0.001), varying with c(s,y): multiplication (solid), division (dots), XOR (dashes), 
XOR-RR (dashes and dots). 

Fig. 9. SNR experienced by an unauthorized receiver versus Aa and A/? 
(DPCM, 4 bit/sample, XOR-RR have been used). 

5. CONCLUSIONS 

In this work some schemes for secure communications using the Henon map are 
discussed. In the two approaches presented, the first exploits the self-synchronizing 
property of this map, while the second avoids the transmission of synchronizing 
samples. Some communication issues regarding the quantization of the masked 
signal as well as the application of the scheme to a DPCM compressed signal have 
been discussed. 

(Received February 14, 1996.) 
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