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KYBERNETIKA — VOLUME 10 (1974), NUMBER 1 

A Graphical Way to Solve the Boolean 
Matrix Equations AX=B and XA = B 

U . J. NlEMINEN 

A graphical way to find all the solutions of the Boolean matrix equations AX = B and XA = B 
is proposed and an example is given. 

1. INTRODUCTION AND BASIC CONCEPTS 

As shown by Ledley in [2, pp. 448-484] and in [3, 479-494] , the determination 
of the solutions for the Boolean matrix equations AX = BandXA = B has important 
applications to switching theory and logical problems. A way to find all the solutions 
is given in the books cited above. Recently, Rudeanu [4] has derived a complete 
solution to the equations AX = B and XA = B in parametric form. In this paper 
we apply a well known graphtheoretic representation of a Boolean matrix to find 
a graphical way to determine the complete solution to the equations AX = B and 
XA = B. We assume that the reader is familiar with the basic concepts in graph 
theory. 

By a Boolean matrix Q = [a,/J we shall mean in this paper a (0, l)-matrix. The 

join of two Boolean n x m matrices A and B is the matrix [au u fr;/J, and the 

product of the matrices C and D of orders n x p and p x m, respectively, is an 

n x m matrix CD = [\jcisdsj~\. Further, AT is the transpose of A and A' the com­

plement of A, i.e. AT =s [oji] and A' = \a'is\- A ^ -B if and only if a;j ^ bti for any 

index pair ij. 

It is well known that with every m x n Boolean matrix Q one can naturally as­
sociate a bipartite graph Gb(Q) as follows (see e.g. Hedetniemi [ l ] ) : The set of 
vertices V(Gb(Q)) of Gb(Q) consists of two disjoint subsets {«; | / = 1, . . . , m} and 
{vj\j = 1, •••,«} which correspond to the rows and columns of Q, respectively. 
An edge («,-, Vj) joining «,- and vp belongs to the edge set E(Gb(Q)) only if a,7 = 1 



in Q. Conversely, every bipartite graph Gb can be translated into a Boolean matrix 

according to the rules above. 

In the following we shall concentrate on the equation AX = B. As known, the 

solution of XA = B is analogous to that of AX = B. 

2. THE BOOLEAN MATRIX EQUATION AX = B 

Consider the product of two Boolean matrices A and B, and let the vertex sets 

of the bipartite graphs Gb{A) and Gb{B) be V(G„(A)) = {uAi \ i = 1,. . . , . . . , m} u 

u {vAs | s = 1,..., k} and V{Gb{B)) = {wBs | S = 1,.... k] u {vBj\j = 1,..., n}. Let 

us draw the bipartite graphs Gfe(A) and Gb{B) such that the vertices in the sets {vAs} 

and {uBs} are common, and denote the graph thus obtained by Gj,(A) Gb{B). Then, 

according to the formula AB = ~XJaisbsj~\, in the bipartite graph Gb{AB) a vertex 

uABi is connected by an edge to a vertex vABJ if and only if there is a path of length 

two from uAi to vBj in the graph G6(A) Bb{B). As an illustration, see the graphs 

of Fig. 1. This graphical form of the product of two Boolean matrices can be applied 

to the determination of a complete solution to AX = B. 
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Fig. 1. 

As shown in the literature, the equation AX = B has a solution if and only if the 

matrix {ATB')' is a solution to AX = B, i.e. A{ArB')' = B. Moreover, the solutions 

of AX = B form a join semilattice, denoted by LU{X), where (ATB')' is the greatest 

element. Hence, if AQ = B, g u (ATB')' = (ATB')'. Thus, in order to obtain the 

complete set of solutions, one needs to determine the greatest element and the 

minimum elements of the semilattice LU{X), if such exist. First we consider a direct 

way to determine the graph Gb{{ArB')'), and the matrix (AT5')' as well, and then 

we show an obvious way to find all the solutions of AX = B. 

Assume that the equation AX = B has a solution. Now clearly a bipartite graph 

Gj,(X0) corresponds to the greatest solution of AX = B, if in the graph Gft(A) Gb(-X'o) 

every vertex uAi, corresponding to uBi in Gb{B), is connected by a path of length 



two to every vertex vXo-j, corresponding to vBj in Gb(B), for which (uBi, vBj) $ E(Gb(B)), 
i.e. (uBi, vBj) e E(Gb(B')). Thus the following simple rule can be obtained to find the 
graph Gb(X'0): 

Rule 1. Connect in Gb(X'0) the vertices TuAi = {vAil,..., vAir} = {uXo,it,..., uXtJ.ir}, 
uAieV(Gb(A)), to all the vertices vXol for which (uBi, vBJ) e E(Gb(B')). 

It should be noted that the matrix X0 determined by the rule above does not give 
any indication of the non-consistency of the equation AX = B. 

As an illuminating example, consider the following consistent Boolean matrix 
equation 

(0 [iiMU 
The graphs Gb(A) and Gb(B) are given in Fig. 2, and the graph Gb(X'0) can be seen 
in the graph Gb(A) Gb(X'0) determined by Rule 1. Hence, 

X0 = 
1 0 
1 1 
1 0 

- . • X M 

G K ( B . ) 

Fig. 2. 

Consider now a way to find all the solutions of AX = B. We construct a solution 
matrix base, denoted by Zx, Z2,..., Zt, where every Zw, w = 1, ..., t, is a Boolean 
matrix of the order of X and corresponds to an edge, say (uBi, vB}), of Gb(B) such 
that Gb(Zw) contains any edge which gives in Gb(A) Gb(Zw) a path of length two from 
UAI t 0 vz„j { = vB]) and no edges such that there would be a path of length two in 
Gb(A) Gb(Zw) determining an edge of Gb(B'). Since the matrix product is distributive 
with respect to the join operation and AZW ^ B, A(ZX u Z2 u ... u Z,) = B 
according to the definition of the matrices Zw, if Zw > 0 for any w, w = 1, . . . , t. 
Furthermore, as every G6(ZW) contains all the edges giving in Gb(A) Gb(Zw) the edge 
of Gb(B) which determines Gb(Zw), Zx u ... u Z, = (ATB')' = X0, the greatest 
element of the solution join semilattice LU(X). According to the definition of Zw, 
the matrix equation AX = B is consistent if and only if Zw > 0, i.e. E(Gb(Zw)) #= 0, 
for any w, w = 1, . . . , t. 



A matrix Q is a solution of AX = B, if Q n Z w > 0 for every w, and g 0 is a mini­

mum element of LU(X) if and only if the equation Q00 n Z w > 0 does not hold for 

any matrix <200 < Q0, w = 1,..., t. 

For the determination of a matrix Z w corresponding to an edge (uB;, vBj) e E(Gb(B)) 

we obtain the following simple rule: 

Rule 2. Connect in Gb(Zw) the vertices of TuAi = {vAh,..., vAir} = {wZwll,... 

• • •> "z w r r }> UAI e ^(o»(^))> t 0 p z„j a n t ! remove then the edges which belong to Gb(X'0). 
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Fig. 3. 

Consider as an example the matrix equation in (1). Fig. 3 shows the determi­

nations of the basis matrices Zx, Z2, and Z 3 corresponding to the edges (uB1, vB1), 

(uB2, vB1), and (uB2, vB2), respectively. The dotted lines in Fig. 3 mean the edges 

of Gb(X'0). Since Z l 5 Z 2 , Z 3 > 0, the equation in (1) is consistent. 

[0 0 

As one can readily check, the minimum elements of LU(X) are X, = 0 1 
1 0 

and 



* 2 = 

1 0 
1 1 
0 0 

. Z^ u Z 2 u Z 3 = 

"l o" 
1 1 
1 0 

= x0 = (ATB')'. The other solutions to AX = 

= B, which are between X1 and X0 in LU(X), are X3 = 
"1 0" 
0 1 
1 0 

and X, = 
"0 o" 

1 1 
1 0 

There is an other way to construct a solution matrix base. After determining the 
matrices Z , , . . . , Z , defined above, we substitute the matrix Zw, w= \,...,t, by 
a set {YlH„ Y2w,..., Yj„w} of matrices, where Ylw u ... u YSwW = Z„„ Ykw > 0 and 
Ykw contains a single one for any k, k = 1, ..., sw. Every solution to AX = B is 
obtained by forming all possible joins (U^) of the matrices in the sets {Yiw,..., YSwW} 
such that ({JY) n Zw > 0 for any value of w. 

In the example considered before, 

"1 0" 
0 0 
0 0 

r 1 2 = 
"0 0" 
0 0 
1 0 

ү2l = 

0 o 
1 0 
0 0 

Y„ = 
0 0 "0 0 
0 0 , and Y31 = 0 1 
1 0 0 0 

Thus 
X 

is X, = Y12 u Y22 u Y31 = Y12 u Y31 = Y22 u y 3 1, X2 = YuuY21uY31, 
3 = Ylt u Y22 u Y31 = Yu u Y12 u Y22 u Y31, XA = Y2 u Y2l u y 3 1 = y l 2 u 

u y 2 1 u Y22 u Y31, and X0 = Yn u Y12 u Y21 u Y31 = Yn u Y21 u Y22 u Y31 = 
= YUUY12UY21UY22UY31. 

In the case of the equation XA = B, Rule 1 and Rule 2 can be expressed as follows: 

Rule 1'. Connect in Gb(X'0) the vertices TvAi = {uAir ..., uAir} = {vXo-h, ..., vXo,ir}, 
vAieV(Gb(A)), to all the vertices uXo,jfor which (uBj, uBi)eE(Gb(B')). 

Rule 2'. Connect in Gb(Zw) the vertices of FvAJ = {uAjl,..., uAJr} = {vZyvjl, ... 
..., vZnJr}, vAJ e V(Gb(A)), to uZwi and remove then the edges which belong to Gb(X'0). 

(Received August 6, 1973.) 
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