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K Y B E R N E T I K A — VOLUME 28 ( 1992 ) , NUMBER 2, P A G E S 1 4 0 - 1 5 4 

SUPPORT SEPARATION THEOREMS AND 
THEIR APPLICATIONS TO VECTOR SURROGATE 
REVERSE DUALITY 

TRAN QUOC CHIEN 

Given a closed convex subset A of a Hausdorff locally convex space X and a point x £ A, does there 
exist a nonzero continuous linear functional <p 6 X' such that <p(x) = sup <p(A)1 In this work the just 
defined problem is dealt with and obtained results are then applied to establish some strong duality 
principles concerning the surrogate reverse duality. 

1. I N T R O D U C T I O N 

It is well known that separation theorems play a crucial part in optimization theory (see 

[1-14] and the references therein). One of the most known separation theorems is the 

following: 

Given a nonempty closed convex subset A of Hausdorff locally convex space X and a 

point x 6 X \ A, there always exists a nonzero continuous linear functions <p € X* such 

tha t tp(x) > supip(A). 

In the last t ime the so-called surrogate quality has been widely used to establish 

dual problems to convex infimization problems, e. g. convex infimization problems with 

reverse convex constraints or concave infimization problems (see [ 1 5 - 22] and references 

therein). It is just the "unusual" surrogate duality [15,20,21,22] tha t gave rise to the 

following question: 

Given a nonempty closed convex subset A of Hausdorff locally convex space X and a 

point x 6 X \ A, does there exist a nonzero continuous linear functional ip € X* such 

tha t tp(x) = sup <p(A)l 

This problem was first studied by I. Singer (see [20-22]) . In [21, Corollary 2] he 

proved the existence of such a functional under the assumptions tha t the space X is a 

normed linear space and A is a solid subset of X. Further, in [20] it was shown tha t the 

assertion still holds if /t is a bounded set and X is a normable linear space. 

In the present paper we shall give a satisfying answer to this question for a general 

case when X is a Hausdorff locally convex space. 
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Theorem 2.4 is an analogue to the Singer's results [21-22] in Hausdorff locally convex 

spaces. The main contribution of this work is, however, Theorem 2.16 which deals with 

unbounded sets A. 

It should be stressed tha t the case of unbounded sets A has not been considered in 

any published work and the spaces we are concerned with here are general Hausdorff 

spaces and we need no normalization condition (e. g. existence of a bounded solid subset 

as it was implicitly supposed in [20]). 

The obtained results are then used to establish some strong duality principles con

cerning the surrogate reverse duality in vector optimization in the last section. 

2. S U P P O R T SEPARATION T H E O R E M S 

Let A" be a Hausdorff locally convex space. Given a nonempty convex closed set A C X 

and a point x0 $ A we know that there exists a nonzero continuous linear functional 

t/> £ X* such tha t (see [1, § 12, F, Corollary]) 

*P(x0)>supi>(A). (2.1) 

In this section we will find out conditions under which the inequality (2.1) becomes 

equality, i .e . 

xj>(x0) = sup i,(A). (2.2) 

It is trivially seen tha t if dim(A') = 1 then (2.2) does not generally hold. The case 

dim (X) = 0 is also trivial. So we shall suppose tha t 

d i m ( A ) > 2 . (2.3) 

2 . 1 . T h e o r e m . If A is a nonempty bounded closed and convex set and x0 £ A, then 

there exists nonzero rp £ X* satisfying (2.2). 

P r o o f . For the sake of simplicity we can suppose tha t x0 = 6 (otherwise consider 

the set A — x0 and 9 instead). Since 6 £ A there exists nonzero <p\ € X" such tha t 

0 > supipi(A). 

If 0 = sup tfi(A) then clearly ip = tp\ satisfies (2.2) and we are done. Otherwise we 

have 

0 >sup<pl(A). (2.4) 

Choose a point o 6 A ^ 0. Since the line 

L(0,a) = {t-a: t £ IR} 

is a proper closed subspace of X (dim L(0, A) = 1 < d i m X ) we can separate it from 

an outside point by a nonzero <y?2 € X*. It is then easily checked tha t 

<P2(x) = 0 \/xeL(9,a). (2.5) 
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If 0 = sup <p2(A), then clearly ip = ip2 satisfied (2.2) and we are done. Otherwise from 

(2.5) it follows 

sup ip2(A) > 0. (2.6) 

Consider the following function 

g(t) = sup {*'• ^(x) + (1 - t) • <p2(X) \x£A}. 

The function g is the composition of the support functional of the nonempty closed 

convex set A (hence, a finite-valued convex function) with an affine function on 1R and 

hence is continuous. In virtue of (2.4) and (2.6) we have 

Sr(0) > 0 > g{l). 

Consequently, since g(t) is continuous on [0,1] there exists t € [0,1] such tha t g(t) = 0. 

Then obviously the following functional 

in a nonzero continuous linear functional (4>(a) 7̂  0) and satisfies (2.2). The proof is 

complete. • 

Now let us consider the case when A is not supposed to be bounded. 

First, let us recall that a recession cone of a subset A of X is the set 

CA = {x £ X\Va£ A V i > 0 : a + tx £ A} . 

2 .2 . L e m m a . If A is a nonempty closed convex set, then 

CA = {x<= X | 3 a € , 4 V t > 0 : a + tx&A}. (2.7) 

P r o o f . Denote the right part of (2.7) by B. Obviously CA C B. Conversely, for 

q £ B there exists a £ A such tha t 

a + tq&A V f > 0 . (2.8) 

Given an arbi t rary point b £ A we have to prove tha t 

b + t-qe A V i > 0 . (2.9) 

So, fix c = b + t0 • q for some t0 > 0. Let d = (1 — a)a + a • c ( 0 < a < 1) be a point of 

the segment (a,c). Setting 

a , 
t\ =t0- — and e = a + tx • q, 

(1 -a) 

we have, by (2.8), e € A and 

A 3 t t - H ( l -ct)e = a-b + (l -a)(a + t0—^—q) =([ -a)a + a(b+t0q) 

= (1 — a) a + a • c = d. 

Hence d 6 A for all d £ [a,c) which entails c £ lin [A] C A. Since t0 is arbitrarily chosen, 

we obtain (2.9) and the proof is complete. • 
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2 . 3 . L e m m a . Suppose that A is a nonempty convex subset of X, x0 € X \ A, 

y € X* \ {0} satisfies 

<p(x0) < inf y?(A) 

and 
E = Bn{x€X\<p(x) = p), 

where 

B = {(l-a)x0 + a-a\aeA, 0 < o < 1} 

and _ 
ip(x0) < j3 < i i n X A ) . 

Then , if E contains a half-line 

h(b;u) = {b + t-u\t > 0} 

the recession cone Cj also contains the vector u. 

P r o o f . Since b = b + 0 -u 6 E C B, there exists a £~A, 0 < a < 1 (for b ^ x0 and 

b jt a) such tha t b = (\—a) x0 + a-a. By Lemma 2.2 it suffices to prove tha t h (a ; u) C A. 

Suppose, on the contrary, tha t there exists a real t > 0 such that c — a + t • u £ A. 

Then by a separation Theorem (see [1, § 12, F]) there exists ^ £ X* \ {6} such tha t 

ip(c) < inf »/>(A). There may be two cases. 

(i) tl>(x0)<mfip(A) (see Fig. 1) 

Choose a real 7 such that 

max{V>(c), VK-o)} < 7 < 'mf^(A). 

Then the hyperplane 

tf(V>,7) = { * e * | V ( * ) = 7} 

intersects h ( a , u) and h(6, u) at d and e, respectively. It is easily seen tha t all 

* - * - • Fig. 2. 

points x0, a, b, c, d and e lie in a two-dimensional affine subspace. Hence the half 
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line h ( x 0 , d — e) necessarily intersects h(6, u) at the point / . On the other hand, 

since the value of -0 on h ( x 0 , d— e) is i/>(x0) < 7 < inf 4>(A), h ( x 0 , d — e) does not 

cut through A. So, the point / cannot belong to B tha t contradicts the hypothesis 

£ 3 h ( i i , u ) . 

(ii) 4>(xo) > inf i>(A) (see Fig. 2) 

Choose, a real 7 such that 

V>(c) < 7 < miip(A). 

T h e hyperplane //(1/1,7) intersects h ( a , u ) and h(b, u) at d and e, respectively. 

Since i/i(a) > 7, i/>(x0) > 7 and 0(c) < 7, we have 0(6) > 7 and 

u) = i>(^Sj=\mc)-i>(a))<0. ф( 

Hence, clearly e = 6 + r • u for some T > 0. Then, the half-line h(xo, e — xo) does not 

cut through A t h a t contradicts e f f i c B . T h e proof is complete. • 

2 . 4 . L e m m a . Suppose that all assumptions and notations of L e m m a 2.3 remain 

valid. Then for each 6 € (lin E)\E we have 

6 - x 0 € C-r. 

P r o o f . Let be ( l in 25) \ 25. Then there exists c 6 E such tha t the segment [c,b) C E. 

Since c£ E there exists a £ A such that c £ ( x 0 , a ) . By Lemma 2.2, to prove b-x0 € C-£ 

it suffices to show tha t the half-line h (a , b — x0) C A. Suppose, on the contrary, tha t 

there exists d = a + 1 •U £ A for u = b — x0 and some t > 0. Then , since d fc A, there 

exists 4' E X* \ {9} such tha t 4>(d) < inf tp(A) (see [1, § 12, F]). Choose a real 7 satisfying 

4>(d) < 7 < inf 4>(A). 

T h e hyperplane 2/(1/1,7) intersects h ( a , u ) and h ( x 0 , u ) at e and / , respectively. There 

may occur the following cases. 
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(i)be[f,x0) (see Fig. 3). 

Fig.З. 

We note t h a t the points Xo, a, b, c, d, e and / lie in a two-dimensional affine sub-

space. So, the segment [x0, e) necessarily intersects the segment [c, 6) at a point 

g € [c,b). Choose a sequence {xn} C (g, b) converging to b on the segment (g,b). 

For each x„ there exists an G A such tha t xn € (x0,an). 

Since an belong to the two-dimensional affine subspace containing x0, a, b, c, d, e, 

/ , g and rf!(an) > 7 , an necessarily lie in the "quadrangle" bgef for all n . Conse

quently for each an, there exists nonnegative reals fin, fin, fin, fin such tha t 

/*? + Ѓg + ßê + Ѓ; = 1 

$ • b + fin • g + nn • e + ftn • f = an. 

Since fin, iin, fin, fin are bounded for all n, we can suppose, without loss of gen

erality, t h a t fin — > fii,, fin — > fig, fin — > fte and fin — > fij. Sett ing h — 

fit • b + fig • g + fie • e + fif • f, it is clear tha t an — > h (note t h a t X is a locally 

convex space), where h € A. Then, since xn € (x0, an), xn —> b and an —> h, 

we have b £ (x0, h) which contradicts b £ E. 

(ii) / € [xo, b) (see Fig. 4) 

Let [ e , / ] intersects [c, 6) at g. Then clearly there exists no h € A such tha t 

g G (xo, l»), a contradiction to g € [c, 6) C E C B. 
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(iii) x Є ( L Ь) (see Fig. 5) 

d 

Fig. 4. Fig.5. 

Set v = e-f. The half-line h(x0, v) necessarily intersects [c, b) at a point g G [c, b). 
It is easily seen that there exists no h € A with g € (ar0, h) (for the value of if) on 
h(x0, v) equal to i/K^o) < 7 < inf V'(^)), which contradicts 3 g [c, 6) C E C B. 

We have exhausted all possible cases and the achieved contradictions prove that the 
assumption 

a + t u $ A for some t > 0, u = b — x0 

fails. Hence h(a, u) C A. The proof is complete. D 

2.5. Lemma. Suppose that all assumptions and notations of Lemma 2.3 remain 
valid. Furthermore, let B be solid and E contain a boundary point of B. There exists 
V> € X" \ {0} such that 

V>(xo) = sup ij)(A) = sup 4>(B). 

Proof . Let b £ E be a boundary point of B. Then, since B is solid and convex (B 
is nothing else than the convex hull of {x0} U A), there exists ip £ X* \ {0} such that 
ip(b) = sup t/>(#). Let a G 1 such that b e (x0, a). Then from t/>(a) < ip(b), ip(x0) < tp(b) 
and ip(b) = a • rj>(x0) + (1 - a) • ip(a) for some 0 < a < 1 it follows 

sup^(A) > i>(a) = 4>(b) = supV-(B) > sup(^). 

Hence ^(^0) = ^(0) = supi/>(A) = supi/'(B). D 

2.6. Theorem. Suppose that A is a nonempty convex subset-of X, x0 £ A, the 
convex hull of x0 and A, denoted by co (x0, A), is solid, Gj does not contain a hyperplane 
and A £ int (x0 + Cj). Then there exists V» € X* \ {0} such that ip(x0) = sup^(A). 

P roo f . Since all hypotheses of Lemma 2.3 are satisfied we can choose a f G X*\ 
{0} and construct the sets B and E as in Lemma 2.3. Note that B = co (x0, A). 
Now, since B is solid and C j does not contain a hyperplane, the convex set E has a 
nonempty relative interior, i.e. rel-int (E) ^ 0 and aff (E) \ E ^ 0. So, by [1, § 11, A], 
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lin (E) — E yt icr (E) = rel-int (E) and the topological boundary of E coincides wi th 

its algebraic boundary. If E does not contain any of its boundary points , by Lemma 2.3 

and 2.4 we have A C int (x0, Cj), a contradiction to the assumption A <f. int (x0, Cj). 

Consequently, E must contain a boundary point of itself. It is clear t ha t this boundary 

point is also a boundary point of the set B and by Lemma 2.5 we obtain the assertion.O 

2 .7 . R e m a r k 1. Condition A (f. int (x0 + Cj) is not necessary as it is shown by the 

following example. Let X = IR2, x0 = (0,0) and 

A = A={(x,y)\x>0, y>0, x-y>\} 

(see Fig. 6). 

Fig. 6. 

Obviously Cj = IR2, and A C int (x0 + Cj) = int K*. = {(x, y) | x > 0, y > 0 } , i . e . 

the mentioned condition fails. But the continuous linear nonzero functional xj)(x, y) = —y 

satisfies ip(x0) = 0 = supi>(A). 

2 . 8 . R e m a r k 2. The s tatement of Lemma 2.3 may be reduced to say, since E C 

co (z0 U A~), 
CE Q Cc5(x0UA) = CJ-

In the la t ter equality, the inclusion D is obvious, while C follows from the following 

reasoning. 

Let u € Cco(r0u3)' a € A and let V be a balanced neighborhood of 0. Take a convex 

neighborhood V of 0 such that V' + V CV and let A > 1 'be such tha t 

A"' (x0 - a) e V. 

Since a + A • u € co (x0 U A), there exist a € [0,1], a' € A and v' £ V such tha t 

a + A • u = (1 — a) • x0 + a • a' + A • v'. 

Then 

a + u = (1 - a • A"1) a + a • A " V + (1 - a) A_1(a;o - a) + v', 
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which shows that a + u + v intersects co(_oU/f). Thus, 

a + u G co (_0 U A) . 

This proves that u G Ccoj-.-MV 

3. AN APPLICATION TO VECTOR SURROGATE REVERSE DUALITY 

First, let us introduce some necessary notions and notations. In the sequel R denotes 
the extension of Rm , i. e. 

R"1 = {(ui,...,_m)|_i e R = Ru{±oo} Vi= l , . . . ,m} . 

Further let us denote 

R+00 = RU{+oo} and R ^ = R U {-oo}. 

For u = ( « j , . . . , _m) and v = (vit...,vm) from R we define 

u > v iff _,•>«. V i = 1 , . . . , m; 

u _5> w iff u,- > I),- Vi = 1 , . . . , m; 

u > u iff u > u and u ^ v. . 

Let A C R be a nonempty subset. We denote 

= __ = {uG-f f lBw G -4: u < u} 

acunA = -_4U {u _ R™ | 3 v < u &Vn < u 3 i o G A : . < w} 

Sup/l = {uG acunA |V_G acun A : —>( _J > u)} . 

Interpretation: If A is a set of vector utility disposals, then acun A can be interpreted as 
the set of "free and approximately admissible disposals" and Sup A consists^of optimal 
disposals in the sense of the following properties. 

3.1. Lemma. Sup A is inside-stable, i.e. 

Vu, v G Sup A : ->(u > _). 

P roo f . This property is clear from definition. 
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3 .2 . L e m m a . If A C Il+oo, then Sup A is sup-stable to acun ,4, i .e. 

V a G a c u n A 3 u € Sup A : u > a. 

P r o o f . Let o G acun A. Consider the set B = acun A D ^{a}. 

Let C C B be a nonempty chain, i .e. 

Vu, v £ C: u>v or v > u. 

For i = 1 , . . . , m we define 

u* = sup {u, | 3 u £ C : u. is the i th component of u} 

and set 

u* = ( u * , . . . , u * J . 

It is clear tha t 

V u € C : u < u * . (3.1) 

We show tha t u* € 5 . Indeed, since A C R+oo) u* a l s o belongs to It+oo- Consequently 

there exists u £ M m , u <C u*. Taking into consideration tha t C is a chain, from definition 

of u* we deduce the existence of a point u1 £ C, with u <C u1 . Since u1 € C C 5 C 

acun A there exists a point u2 £ A with u <C u2 , which means u*, in its turn , also belongs 

to acun A. The fact tha t u* > a is obvious. Consequently 

u* e acun A fl ^{o} = B . 

So, by (3.1), u* is an upper bound of C in B. From the Zorn Lemma it follows tha t B 

possesses a maximal element tha t clearly belongs to Sup A and is obviously greater than 

or equal to o. T h e proof is complete. O 

Now given a set X, a subset C C X and a map 

F = (f1,...,fm):X—>mm, 

we shall be concerned with the global vector supremal Problem 3.3 

A= S u p E ( C ) . 

Let 

{ A , | d € P } 

be a family of subsets of X. Then the vector supremal Problem 3.4 

B = SupdgD Supx £A r fF(a:) 

is called a first type surrogage reverse dual problem to (3.3). Problems 3.3 and 3.4 are 

placed in strong reverse duality if A = B. 

With help of results of Section 2 we shall establish the strong reverse duality for a 

part icular case when A j , d £ V, are closed hyperplanes and C is a complement of a 

convex set. 

But first let us formulate a general criterion. 
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3 . 5 . L e m m a . Let {A\ | A 6 A} be a (finite or infinite) family of subsets of IR 

Then 

and, hence, 

Sup 

u^ 

u* = Sup 

U S U P ^ 

U S U P ^ 

(3.2) 

(3.3) 

P r o o f , (i) Let y0 € acun [\JA A\\. Then either t/0 £ -A\, for some A' G A, or 

3t/ < t/o & Vt/ < j/o 3A' G A 3t/ ' e A\<: t/ < «/'. (3.4) 

In the first case, since Sup /IA, is sup-stable to A\, by Lemma 3/2, we have 

t/o 6 -Sup Av C acun U SuP^л 

In t h e second case, from (3.4) and the sup-stability of Sup A\ to A\ for all A G A, it 

follows 

3 j / < t/o k V t / < t / o B A ' e A 3y" € S u p A v : t/0 < y", (3.5) 

which means 

t/o € acun U S u P ^ 

(ii) Conversely, let y0 € acun IJ S u p / U . Then either y0 € - S u p A > , for some 

A' є Л, or 

3y <2/o & Vj/ < t/o 3A' G A 3y" G Sup AA': 2 / < 2/". 

In t h e first case 

2/o G acun Av C acun [JЉ 

In t h e second case, since y" G Sup Ay C acunA^, there exists t/' G Ay such t h a t 

2/ < y'. Consequently, we obtain again (3.4) which means 

t/o G acun u* 

From L e m m a 3.5 we immediately obtain the following s ta tement . 

3 . 6 . L e m m a . For any family {A,; | d G T>] we have 

B = suP W U M (3.6) 
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3.7. Theorem. Let X be a topological space. If either 

0) C = (JAd 
v 

or 

(ii) C C (Jj, Ad C C, fi are lower semicontinuous for all i = 1 , . . . , m, and 

F(C) C R ^ . 

Then Problems 3.3 and 3.4 are placed in strong reverse duality. 

P roof . If (i) holds then by Lemma 3.6 it is clear that A = B. 
If (ii) holds then from definition it follows 

acun F(C) C acun F I ( J Ad j C acun F(C) C acun F(C), 

hence 

acun F(C) = acun F I [j Ad j = acun F(C), 

which entails A = B. D 

Now suppose that X is a linear topological space and V is a subset of X* \ {0}. Let 
us choose the following families of subsets of X 

Ad = {x£X\d(x) = sup d(X\C)} dcV (3.7) 

and 

Ad = {x£X\d(x)=mfd(X\C)} deV. (3.8) 

The associate first type surrogate reverse dual problems are 

Sup Sup F(x) 
dcv x€X (3-9) 
d e y d(x)=sxtpd(X\C) 

and 

respectively. 

Sup Sup F(x). 
. , „ *<=x (3.10) 

d e v d(x)=ЫId(X\C) 

3.8. Definition. The set V C X' \ {0} is said to he quasiabsorbing if 

Vy>€ X'\{0} 3t>0: t-<p&V. 
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3 . 9 . T h e o r e m . Suppose that X is a Hausdorff locally convex space, V is quasiab-

sorbing, X \ C is nonempty convex bounded and closed and for each i = 1 , . . . , m, /; is 

lower semicontinuous and fi(x) > —oo V x S C . 

T h e n we have 

S u p F ( a ; ) = Sup Sup F(x) 

xЄC dєV xex 
d(x)=supd(X\C) 

(3.11) 

= Sup Sup F(x). 

JCT> X e X 

atzU d(x)=iid d(X\C) 

P r o o f . For a; g C we have x g X\C, whence by Theorem 2.1 there exists <p € X * \ { 0 } 

such tha t <p(x) = sap<p(X \ C). Since T> is quasiabsorbing there exists t > 0 such that 

d = t-<p eV. Clearly, x e As
d. We have proved C C \J As

d. 
v 

On the other hand for x e A"d, d £ T> it is clear tha t x <£ i n t ( X \ C) which implies 

x € C. Finally we have C c ( J A ^ c C . 
v 

Now it suffices to apply Theorem 3.7 and we obtain the first equality. T h e second 

equality can be proved analogously. G 

3 . 1 0 . T h e o r e m . Suppose tha t X is a Hausdorff locally convex space, T> is quasiab

sorbing, X \ C is convex, solid, C=r^ does not contain a hyperplane and there holds 

X\C<f.x+ intc=^ VxeC. (3.12) 

Further , let either 

C = C (3.13) 

or 

fi is lower semicontinuous on C and fi(x) > —oo Va: € C V* = 1 , . . . , m . (3.14) 

Then the equalities (3.17) hold. 

P r o o f . For x 6 C, we have x £ X \ C. If x 6 X \ C, since X \ C is convex and solid, 

a: is a support point of X \ C (see [1,§ 12, E]), whence there exists * £- X * \ { 0 } satisfying 

*l!(x) = sup V (X \C) = sup ty (X \ C). Then since V is quasiabsorbing, there exists 

t > 0 such tha t d = t • ip £ V and we have a- € Ad. 

If a; ^ X \ C, then all hypotheses of Theorem 2.6 are satisfied. So there exists again 

* £ X* \ {0} satisfying *(a:) = sup * (x \ c ) = sup * ( X \ (7), and by the same 

consideration as above we have x € Ad for some d <ZT>. 

So 

CC|JAJ. 
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On the other hand for x G As
d, d € P it is clear that x £ int (X \ C) which entails 

x € C. Hence 

Cc[JAdcC. 
v 

Now it suffices to apply Theorem 3.10 and we obtain the first equality. The second 

equality can be proved analogously. D 

3 . 1 1 . R e m a r k . In comparison with similar results in scalar case of I. Singer [15], our 

results are considerably more general, e. g. X need not be a normed space. In addition, 

our hypotheses are much weaker than those of I. Singer [15], e. g. the set X \ C need not 

be bounded and the map F need not always be lower semicontinuous. 

(Received November 9, 1990.) 
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