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K Y B E R N E T I K A - VOLUME 18 (1 982), NUMBER 5 

FIRST-ORDER AUTOREGRESSIVE PROCESSES 
WITH TIME-DEPENDENT RANDOM PARAMETERS 

ALENA KOUBKOVA 

We consider a first-order autoregressive process {Xt} with random parameters which are not 
independent in lime. We ask when {Xt} is stationary and derive the form of its covariance func
tion and spectral density under the assumption that the random parameters generate a first-order 
moving-average process. We also construct the best linear prediction. 

1. INTRODUCTION 

Autoregressive models with random parameters are natural generalizations of 
classical autoregressive processes. The problem of stationarity of the autoregressive 
series with independent random coefficients was solved by Andel (see [1]) and 
Nicholls and Quinn (see [3]). In some practical situations (for instance in applica
tions to economy) the assumption of independence cannot be accepted and it is 
suitable to consider some kind of time-dependence among the coefficients. In the 
simplest case random parameters generate the first-order moving average process. 
In this paper we investigate conditions of stationarity of such a series, its covariance 
function and spectral density, the inverse of its variance matrix and we construct 
the best linear prediction. 

We shall assume that the first-order autoregressive series with random parameters 
is generated from a random variable Xx with EXX = 0 and Var Xx = a2 > 0 by 

(1) I , = fc(l)l,-1+fl"1y, for f -»2, . . . , iV 

where Y2,..., YN are independent random variables with zero means, unit variances, 
and independent of Xx; a > 0 is a number and 6(2),..., b(N) is a series of random 
parameters generated by 

(2) b(t) = p0Zt + piZt_l for ( = 2 IV 
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where Z%, ...,ZN are independent random variables with zero means and the same 
variance 52 > 0 which are independent of Xu Y2,..., YN, and /i0 + 0, pt + 0 are 
real numbers. Obviously 

(3) Eb(t) = 0 for t = 2, ..., N 

and the covariance function B(t) of {b(t)} satisfies 

5 ( 0 ) = Eb2(s) = ((S2
0+p2)52, 

(4) B(l) = Eb(s + 1) b(s) = pop,62, 

B(t) = 0 for t = 2, ...,N - 2. 

2. CONDITIONS FOR STATIONARUY AND COVARIANCE 
FUNCTION 

]f we write X, in the equivalent form 

(5) X, = b(t)b(t - \)...b(2)Xi + a~l b(t)...b(3)Y2 + ... 

... + a'1 b(t) Y,_. + a~lYt, 

then it becomes evident that the assumption of independence Zj, ..., ZN on Xu Y2,... 
..., YN implies 

(6) EXt = 0 for all / . 

The covariance function R(s, t) of {Xt} is 

(7) R(s, t) = EXsXt = Eb(s) ... b(t + l) b2(t)... b2(2) a2 + 

+ a~2E[b(s)...b(t+ l)b2(t)...b3(3) + ... + b(s)...b(t+ 1)] 

for s, t = 2 , . . . , N, s _ t and 

R(s, 1 ) = E[b(s)b(s- l)...b(2)]a2. 

Now what we ask is, under which conditions R(s, t) depends only on the difference 
s - r. We first derive a necessary condition for stationarity of {X,}. 

Lemma 1. Let the variables ZU...,ZN have the same moments EZ3 and EZ4 

for all; . ]f the series Xu ..., XN is stationary, then 

(8) EZ? = 0 , EZ4 = <54 for all t = l,...,N 

and 

(9) a2 = j ^ - r ^ where (p2 + p\) 82 < 1 . 
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Proof. If Xu ...,XN is stationary then VarXj = VarX2 = ... VarX* = a2 

where (by (7)) 

(10) VarXs = EX2 = Eb2(s)... b2(2)a2 + a~2E[b2(s) ... b2(3) + ... 

... + b2(s) + 1] for s = 2, ...,JV. 

Now from Var X2 = a2 we get (9), from Var X3 = a2 we get EZ4 = <54 and from 

Var X4 = a2 we get EZf = 0 . • 

Lemma 2. Let Zu ..., ZN be independent random variables with EZ, = 0, EZ2 = 
= o2, EZf = 0, EZf = (54 for all t and let b(2),..., b(N) be generated by (2). Then 

(11) EZ2b2(s)... b2(fc) = p f l ^ ^ 2 ° ' + 2)Eb2(s - ./ - 1) ... b2(fc) + 
• J=o 

+ p?°-kW-k)EZ2
kb

2(k) 

for all 2 g s _J JV and 2 g k g s. 

Proof. We use induction. Evidently (ll)holdsfors = fc = 2. Now 

EZ2b2(s)... b2(fc) = j?2EZ4Eb2(s - 1) . . . b2(fc) + 

+ /?2EZ2EZ2_1b2(s- l)...b2(fc) 

and from the assumption that (11) holds for s — 1 it follows that it holds for s, too. 

Lemma 3. Under the assumptions of Lemma 2 it holds 

(12) Eb2(s)... b2(k) = [82(p2
0 + [S\)Tk+' 

for 2 g s ^ N and 2 <, k g s. 

Proof. We use induction again. Obviously (12) holds for s = fc = 2. Assume that 
it holds for s — 1. Then 

Eb2(s)... b2(fc) = £2EZ2Eb2(s - 1) ... b2(fc) + j82EZ2_1(9
2(s - 1 ) . . . b2(fc). 

Now (12) follows from the induction assumption and Lemma 2. • 

Corollary 4. The conditions (8) and (9) imply that Var Xs = a2 for all s = 2, ... 
...,JV. 

Proof follows from (10) and Lemma 3. • 
Next we show that the conditions (8)and (9) are sufficient for stationarity of Xu ... 
..., XN. First we prove two auxiliary lemmas. 

Lemma 5. Under the assumptions of Lemma 2 it holds 

(13) EZsb
2(s)...b2(fc) = 0 

for all 2 ^ s g N and 2 g fc ^ s. 
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Proof. We use induction. It is easy to prove that EZ2b
2(2) = 0. Now 

EZsb
2(s)... b2(k) = poh£ZlEZs-ib\s - 1) . . . b2(k) 

and it is equal to 0 by the induction assumption. • 

Lemma 6. Under the assumptions of Lemma 2 it holds 

(14) Efc(s)... b(k) = /yM2Efc(s - 2 ) . . . b(k) 

for 2 g fc S N - 2 and k + 2 < s % N and 

(15) Eb(s)...b(t + \)b2(t)...b2(k) = 

= PQPi5
2Eb(s-2)...b(t+\)b2(t)...b2(k) 

for all 2 ^ t g JV - 2, r + 2 g s <, N and 2 <, k g <. 

Proof is easy. • 

Corollary 7. The covariance function R(s, ?) satisfies 

(16) R(s, 0 = / W 2 R ( s - 2, 0 

for all 1 <; t g N - 2 and r + 2 g s g N. 

Theorem 8. The series Xu ..., XN is stationary if and only if (8) and (9) are satisfied. 
The covariance function R(f) is of the form 

(") wfflfiZ*"" «-*• »-• 
Proof. From Corollary 4 it follows R(0) = a2. Evidently R(2, l) = Efo(2) a2 = 0. 

From Lemma 5 we obtain that 

Eb(s + l)b2(s)... b2(k) = ^EZsb
2(s)... b2(k) = 0 

and it implies R(s + 1, s) = 0 = R(\)- Then we use Corollary 7 and get 

(18) R(t) = R(s + ?, s) = /?0/V2 R(s + t - 2, s) = / W 2 R(f - 2) 

for t =-2, ..., JV - 1. We use induction to conclude the proof. • 

3. SPECTRAL DENSITY 

Theorem 9. The spectral density of the series Xx, ...,XN exists and it is equal to 

(19) m = °- H M 
' 2K 1 - 2P0IJ15

2 cos 2A + (Po^d2)2 

for A 6 < — Jt, 7t> . 
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Proof. A sufficient condition for existence of the spectral density is 

(20) tjR(t)\ < oo 

(see [2], p. 43). In our case (20) is equal to a2 £ |/?o/?i<52|''' which is a geometric 
t = - 0 0 

series with the quotient |/?0/?i<52| < 1 and so (20) holds. Now the spectral density 
can be computed by 

(21) /(A) = 1 I e — R(t) 
2K t=-oo 

(see [2], p. 43). • 

4. INVERSE OF VARIANCE MATRIX 

Lemma 10. The series Xu ..., XN has the same variance matrix as the second-order 
autoregressive series with fixed parameters generated by 

(22) Vt = P0Pld
2V,_2 + c~lYt for t = 3,...,N 

where Vu V2 are random variables with zero means and a covariance matrix 

V 0 
,0 a2 

which are independent of Y,, ..., YN and 

yJi-((i2o+P2)52' 

Proof. Evidently EV, = 0 and R(t) = P0Pi$2 R(t - 2)for t = 2,...,N - 1. 
For ! = 0we get 

R(0) = EV2 = (PoP^2)2 EVt
2_2 + c-2 = (PoPJ2)2 R(0) + c~2 

and so 
r~2 n~~ 

R(0) = _ __ Q
 = a2 

W l-(U_S2)2 l-(P2o + Pl)d2 

For t = 1 we have 

R(l) = EV.+ 1V. = / W ^ E V . ^ V , = PoP,82 R(l) 

and then R(l) = 0. r j 

Theorem 11. Denote G = Var(AT1, . . . ,ZW) where JV __ 2. Then elements hst 

of the matrix H = G _ 1 are: 

a) for iV = 2: 

(23) htl = h22 = a'2, hl2 = h2l = 0; 
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b) for N = 3: 

l'n = '!33 , / ) , , — o~2 , 
<r2[l - %W>YY 

(24) /,13 = h3i= -W-32 - , 
T2[l - ( / W ^ ] 

/7S, = 0 in the other cases: 

c) for N = 4: 

hss = — — for s = 1, ..., 4 , 

a\\ - (yw2)2] 
(25) K~-h^-^~-iim!°'s-hl-

hst = 0 in the other cases; 

d) for N > 4: 

/, = i for s = 1, 2, AT - 1, N, 
cx2[l - (/?„/?, <S2)2] 

1 + ( W T . - 3 . . . . . N - 2 , 
*2[1 - (lW2)2] 

hsl = 0 in the other cases. 

Proof. We can use the results for the inverse of the variance matrix of the series 
Vt,...,VN (see [2], p. 170-172). Q 

5. PREDICTION 

Assume that Xt, ...,XN are known variables. We shall find the best linear pre
diction XN + t of the variable XN +, based on Xt, ...,XN, i.e. XN+t will be of the form 

(27) XN+, = ciX1 + ... + cNXN 

such that 

(28) E(XN + , - XN + tf 

is minimal. 
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Theorem 12. The best linear prediction of the random variable XN+t based on 

A | . ...., AM IS 

(29) f _ Up0ptS
2y'2 XN for f even 

"*' ~ \(PoPi&2r+ty2 Xs-i fort odd. 
The residual variance in both cases is 

(30) A2 = E(XN+t - XN + t)
2 = a\\ - ( / W 2 ) ' ] -

Proof. Minimization of (28) leads to normal equations 

(31) B(XN + t - ClXt - . . . - cNXN)Xk = 0 for k ={,..., N . 

In the matrix form it is 

EXN + tXl 

V*r(X1,...,XN)\\ ] = 

\BXN+tXN) 

and then 

fcA (R(N +t-\)\ 
(32) M = H ': 

V*/ \ *(0 
From (32) and Theorem 11 we get 

(33) c. = . . . = cN_, = 0 , C i V = (PoPrS2)"2 for ř even , 

C = . . . = cN_2 = cw = 0, c N _ t = (iS0^i<52) ( t+1)/2 

for t odd. 

The proof (30) is easy. • 

(Received February 3, 1982.) 
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