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KYBERNETIKA-VOLUME 23 (1987), NUMBER 5 

AN EXTENSION OF BILLINGSLEY'S UNIFORM 
BOUNDEDNESS THEOREM TO HIGHER DIMENSIONAL 
M-PROCESSES 

JANA JURECKOVA, PRANAB KUMAR SEN* 

For multi-dimensional M-processes, an extension of an uniform boundedness theorem of 
Billingsley is considered under regularity conditions weaker than the usual ones pertaining 
to weak convergence (and, in particular, tightness) of such processes. Useful applications of this 
theorem are also stressed. 

1. INTRODUCTION 

For random functions belonging to the C[0,1] or D[0,1] space, Theorem 12.2 
of Billingsley's monograph [2] relates to a probability inequality for the supremum, 
and it plays a vital role in the proof of the tightness of these processes. In the context 
of tightness of multi-parameter processes (i.e., for random functions belonging 
to the D[0,1]* space, for some q g 1), various extensions of the Billingsley inequality 
have been considered by a host of workers (viz., Bickel and Wichura [1] and re
ferences cited therein). For robust estimation in general linear models (viz., Jureckova 
and Sen [5] and the references cited therein), it may be convenient to consider some 
general multi-parameter M-processes and to exploit their asymptotic linearity results 
in the study of the properties of the derived estimators. In this context, a basic 
requirement is the uniform boundedness in probability of such M-processes. Such 
a result can, of course, be derived through the weak convergence of such processes 
(viz., Jureckova and Sen [3], [4] and others). However, this may demand compa
ratively more stringent regularity conditions. For this reason, for a general class 
of multi-dimensional M-processes, an extension of Billingsley's uniform boundedness 
theorem is considered under less stringent regularity conditions, and applications 
of this result in statistical inference are stressed. Along with the preliminary notions, 
the main theorem is presented in Section 2. Applications are considered in the last 
section. 

* Work of the second author was partially supported by the (U.S.) Office of Naval Research, 
Contract No. N 00014-83-K-0387. 
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2. THE MAIN RESULT 

Keeping in mind the general setup of robust estimation in general linear models 
(viz [5], [6]), including the first and second order asymptotic distributional results, 
we consider the following random functions. Let Yl5..., Y„ be n independent and 
identically distributed (i.i.d.) random variables with a distribution function (d.f.) F, 
defined on the real line R(=(—oo, oo)). Consider a score function if/: U -> R, such 
that 
(1) M(x)dF(x) = 0, 
and 
(2) .Kx)-*i(*) + *a(*). xeU' 
where both ^ t and \j/2 are monotone functions. Consider the process 

(3) Nj(t) = tciJ[il/(Yi + n-i'2c'it)-rl/(Yl)-], teW, j=l p, 
i = i 

where the c; = (c a , . . . , cip)' are vectors of known (regression) constants, p is a po
sitive integer and we assume that there exists a positive definite (p.d.) matrix Q, 
such that 

(4) n - 1 £ c-fi'i = n~lC„-* Q, as n -* oo . 
i = l 

Keeping (2) in mind, we denote by 

(5) ^ ' V ) = ic i ,[^(Y i + n - 1 tVc i ) - ^ (Y i ) ] , teW, j = l,...,p; 
i = l 

' = 1 , 2 . 
Under general regularity conditions, ENjl\t) can be approximated by the first term 
of its Taylor expansion, which is typically of the form: 

(6) Ef(t) = n-^icijt'ciyl, 
i = i 

where the functional y, = y(\j/u F) depends of $, and F (viz., y, = JViOO dF(x) 
or |/(x) d(/f,(x)). The asymptotic behaviour of Nj(t) - Es(t) has been studied in 
a variety of contexts (in the form of asymptotic linearity) in [3], [4], [5], [6]. The 
current note provides a clarification of a technical point underlying these develop
ments. Denote by 
(7) Nj°\t) = Nj(t) - Ej(t) , j=l,...,p,teW, 
and 
(8) N<jl-°\t) = Nf\t) - Ejl\t) , teW, j=l p , 1=1,2. 

Finally, let T(=r1 x ... x Tp) be the unit hypercube in W (i.e., T = [0,1]"), and 
let 
(9) N™ = max sup \Nf\t)\. 
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Our main result may then be stated as follows: 

Theorem 1 . If there exist positive constants K*(<oo) and n0, such that for all 
t,ueT(with t = u, coordinatewise), n = n0 and every X > 0, 

(10) P{|iVy-°>(«) - Nj'<0)(*)| = X}= K*X~2 \\u - t\\2 , I = 1, 2 ; ; = 1, . . . , p , 

where | • || stands for the Euclidean norm, then there exists a positive constant Lp, 
such that for every n > n0, 

(11) P{M=0)
 = X}= LPX~2 , for every X > 0 . 

Remarks. For p = 1, Theorem 1 is very much comparable with Theorem 12.2 
of [2]. For p = 2, an extension of this Billigsley-type inequality has been considered 
by Bickel and Wichura in [1]. They have considered the inequality in the context of 
tightness of Devalued processes, and for this comparatively stronger result, they have 
to consider Lebesgue (or other products) measures of blocks in T and their regularity 
conditions include an inequality similar to (10) but involving the increments of the 
process over blocks and the Euclidean distance ||H — t\\ being replaced by such 
product measures. If our main objective is to derive a probability inequality on the 
uniform boundedness of M-processes [i.e., (11)], then we may replace such product 
measures by a quadratic measure [as in (10)], so that the verification of this regularity 
condition may demand less restrictive (moment) conditions on the score function 
as well as the regression vectors ct. This is the main idea of the current study. We 
do not, however, claim that (10) suffices for the compactness of the M-processes 
under consideration. 

Proof. We shall prove the theorem by induction (over p = 1, 2, . . . ) . 

Step I. If p = 1, we have a one-parameter process, and (11) follows directly from 
Theorem 12.2 of Billingsley [2]. 

Step II. For t e W, let us denote by 

(12) JV*°(f) = I - . I (-ir + -^N%h-elh,...,tp-£ptp), 
E, = 0 , 1 e„ = 0 , l 

for/ = 1, . . . ,p.Then, 

(13) JV$(0 = N*°(t) + [N%t) - iV*°(r)] , t e T, 

where N°j(t) - N*°(t) is a linear combination of restrictions of N%t) to (p - 1) 
parameters (or less). Thus, by our induction hypothesis, N°j(t) - N*°(t) satisfies 
(11). Hence, it suffices to establish (11) for the process N*°(t). Notice that N*°(t) = 0 
if fP = 0 for some r = 1, . . . , p, and this is one of the conditions in Theorem 1 of 
Bickel and Wichura [1] which we shall make use of. Also, we may note that for 
proving (11), it suffices to consider sup{|N*°(f)| :teT}, for some r ( = 1 , . . . , p), 
and use the elementary inequality to extend the result for all r = 1, . . . , p. Hence, 
we specifically choose r = 1. 

384 



For fixed s., h, ut e TY (with st = ty = Uj), consider the processes 

(14) Y(t2) = NX\h,t2)-NX\sut2), 

(15) Z(*2) = iVj°(«i, h) - Nt°(h, t2), t2 = (t2,..., *„)' e T2 x . . . x Tp . 

Then, by (10), for every n = n0 and A > 0, 

(16) ^lY^I^A}^!-^**^-^,)2, 
(17) P{|Z(r2)| = A} = A-2K**(Ul - hf , Vf2 € T2 , 

where K** is a finite positive constant (independent of n and X). Notice that in (12) 

* n o = *?(') - I - £ (-ir*+-+*-*»(.. - «xf.,.... tP - v.) • 
£1=0,1 Bp = 0 , l 

Then, by (5), we may rewrite N*(t) as a linear combination of 2P functions of the form 
(with coefficients +1 or - 1 ) : 

(18) f Cll[UYi + n-"2(clhth + ... + ciJrtJr)) - MY,)] 
i=l 

where r ranges over (0, p), I = 1, 2, and j l t ...,jr over all possible combinations 
of r indices from ( 1 , . . . , p); for r = 0, we have a null subset. Note that by our as
sumption, the ij/l are monotone. Also, the components of the vector 

(19) (cixCih,...,cnciJr) 

have 2r possible combination of signs. Hence, the index set N = {i: 1 <. i <. N} can 
be decomposed into T subsets corresponding to the same combinations of signs. 
Thus, there exists a positive integer M( = 2 P (2 P — 1)), such that N*(t) can be expressed 
as a signed-sum over M subsets of terms of the form (18) (with i e N replaced by i 
belonging to each of these subsets); we denote these component sums by Au ..., AM 

respectively. Then, we may note that As is S in tJk if cnciJk is positive and it is \ in tJk 

if cnciJk is negative, for k = 1, . . . , r; s = 1 M. Hence, we may write 

(20) Y(t2)=Y1(t2) + ... + YM(t2), 

(21) Z(t2) = Z,(r2) + ... + ZM(t2) , t2 e T2 x ... x Tp , 

where Yi(*2) and Zt(t2) are monotone in all components of t2, for / = 1, . . . , M. 
fc-i 

Now, for each; ( = 2 , . . . , p), we consider a partitioning of Ts as (J (zs, z s + 1 ] , where 
s = 0 

0 = z0 < zt < . . . < zk = 1. Thus, we would have a mesh of fep_1 grid-points on 
T2 x ... x Tp, so that using the monotonicity property of each Yx(t2) (in the elements 
of t2), we readily obtain that 

(22) sup{\Y(t2)\:t2eT2x ...xTp}<. 

< max {\Y(zri,..., ztp)\ :0<rJ = k; j - . 2 , . . . , p} + 

+ 2 f max{|Y,(z r2,..., zrp)\ : 0 = r , = k ; j = 2, . . . ,>} . 
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Note that Y(zr2,..., zfp) or the Y.(z,2, .., Z j J vanishes when zr2 = ... = zTp = 0. 
Let us order the grid-points (zn - ,p) , 0 < r» < k,j = 2 , . . . , p lexicographically 
and denote them by ft,..., £M„ whe fe M* = (& + i)--» _ l. Then, it follows from 
(16) and (22) that for every A > 0, 

(23) P{sup {|Y(*2)| : fa e T2 x . . . x Tp} >. A} < 
M* U U* 

= I P{|-t«| > M + l S P([^v)| = (2M)"1 A2} = 
1 = 1 , = l v = l 

= M*K**(«! - S l )
2 (A,-2 + 4M3A2-2), VA1( A2 > 0 ; Xx + X2 = l . 

It is easy to verify that for positive cu c%, 

(24) min {(cxX[2 + c2l2
2) : At + A2 * A ; A., A2 > 0} - A_2(c} /3 + c2

/ 3)3 , 

so that by (23) and (24), we obtain that 

(25) P{sup {|Y(*2)| : t2 e T2 x ... x Tp) = A} = 

= A-2M*X**(1 + 41 /3M)3(fi - S l )
2 = K^-^t, - S l )

2 , 

where K° is a finite positive constant. It follows similarly that for every A > 0, 

(26) P{sup {|Z(i-2>: t2 e T2 x ... x Tp) = A} < K^-^u, - t,)2 . 

By (14), (15), (25) and (26), we conclude that for every 0 = sx = tt = ux = 1 and 
A > 0, whenever n ^ n0, 

(27) 
P{ min {sup |iV*0(.l512) - N?(su t2)\, sup | t f J ° K '2) - ^ °(*!, «2)|} = A} = 

gK°r>r- - i ) a . 
Now, (27) corresponds to the last inequality in Step 5 of the proof of Theorem 1 
of [1], and hence, we may as well use their inductive arguments and conclude that 
(11) follows from (27). This completes the proof of the theorem. 

3. SOME GENERAL REMARKS 

The main motivation of Theorem 1 stems out of first and second order asymptotic 
distributional properties of M-estimators of location and regression parameters (as 
have been studied in detail by the current authors and others). In this context, typically, 
we encounter an M-process involving the N](t) in (3) and (6), where for the remain
der term in such a representation, we typically need a uniform boundedness result, 
and this is provided by (11) under the assumption in (10). For square integrable 
and 'smooth' score functions, (10) can easily be verified by using the second moment 
of the two random functions involved. On the other hand, for p >. 2, verification 
of the basic condition of Theorem 1 of [1] would typically involve the computation 
of 4th moment (or (2 + «5)th absolute moments, for some 8 > 0) of the N^(t), and 
this would in turn require more stringent regularity conditions of the score function i//, 
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the regression vectors ct and the underlying density function / In this way, the 
current theorem serves a very useful role in the asymptotic theory of M-estimators 
in linear models. It is, however, not necessary to have the squared Euclidean distance 
in (10). We may replace the right hand side of (10) by K*X~2r\u - t\2r, for some 
r > \, and in that case, in (11), we need to replace X~2 by X~2r, r > \. The proof 
sketched in the earlier section remains the same under this modification. However, 
in actual practice, the case of r = 1 is the most commonly adapted one, and hence, 
this refinement is not of much significance. Finally, we may remark that the delicate 
treatment in (18) through (22) may not generally hold for Z)p-processes, and hence, 
the current theorem is not advocated as a general replacement of Theorem 1 of [ l ] . 
Rather, it is proposed as a simplification in the commonly arisen cases where the 
score functions and related M-processes satisfy (10) under fairly simple setups, so 
that one does not need to verify the more stringent condition in [1]. In this context, 
it may be noted that in M-estimation, typically, the score function ij/ is not linear, 
and hence, the computation of the increments over a block involves higher order 
differences, and thereby, demands extra regularity conditions. 
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