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S-ISOMORPHIC ALGEBRAIC STRUCTURES 

ІVAN CHAJDA, PETR EMANOVSKÝ, Olomouc 

(Received September 24, 1993) 

Summary. For an algebraic structure sJ = (A, F, R) or type r and a set S of open 
formulas of the first order language L(T) we introduce the concept of S-closed subsets of 
s/. The set 'tfs (.c/) of all E-closed subsets forms a complete lattice. Algebraic structures sj, 
8$ of type r are called E-isomorphic if 'rfsf.c/) = ^(Sl). Examples of such S-closed subsets 
are e.g. subalgebras of an algebra, ideals of a ring, ideals of a lattice, convex subsets of an 
ordered or quasiordered set etc. We study E-isomorphic algebraic structures in dependence 
on the properties of E. 

Keywords: algebraic structure, closure system, subalgebra, ideal, S-closed subset, S-
isomorphic structures 

AMS classification: 08A05, 04A05, 06B10 

The concept of an algebraic structure was introduced in [6] and [8], A type of a 

structure is a pair r = {{n;; i £ / } , {nij; j £ J}) , where n< and m,j are non-negative 

integers. A structure srf of type r is a triplet (A, F, R), where A ^ 0 is a set and 

F = {fi; i £ I}, R = {Qj; j £ J } are such that for each i £ / , j £ J , / ; is an 

n;-ary operation on A and Qj is an mj-ary relation on A. Denote by L(T) the first 

order language containing operational and relational symbols of type r , see [6] for 

some details. If R = 0, the structure (A,F, 0) is denoted by (A, F) and it is called 

an algebra. If F = 0, the structure (A,$,R) is denoted by (A,R) and it is called a 

relational system. A relational system (A,R) is called binary if each Qj £ R is binary; 

moreover, (A, R) is said to be antisymmetrical if each QJ £ R is an antisymmetrical 

relation. 

Introduce the following concepts: for each 7 £ T, where F is an index set, let 

G7(xi,..., Xky, | / i , . . . , ySy, z, fi) be an open formula containing individual variables 

x\, • •., Xkn, j / i , . . . , ! / « , , « and a symbol f, of an nj-ary operation; for each A £ A, 

where A is an index set, let G\(x\,... ,Xkk,yi, • • • ,Vs\,z,Qi) be an open formula 
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containing individual variables x\, . . . , Xkx, y\, •••, ySx, z and a symbol Qj of an 

m r a r y relation. Put E = {G 7 ; 7 £ T} U {G>; A 6 A}. The set E = { G 7 , 7 e 

P} U {G\, A 6 A} of formulas of language L(r ) is called limited if there exist non-

negative integers n, m such that m = max({A;7,7 e T} U {k\,\ e A}) and m = 

max({5 7 ,7 e F} U {s>, A e A}). Let ^ = (A,F,R) be a structure of type r and 

B C 4 . 

Definition 1. A subset B of srf is said to be E-c/osed if for each 7 G T, 

A e A and every a\, ..., a*T, a i , . . . , a'^ e B, b\, . . . , 6S l , 6'j, . . . , b'Sx, c, 

c' e A, if G 7 ( o i , . . . , 0 ^ , 6 1 , . . . ,bs^,c,fi) is satisfied in sf then c € B and if 

G^(a i , . . . , a ' A ; ; k , 6 i , . . . , 6^ , c ' , g j ) is satisfied in .e/ then c' e B . Denote by ^(s/) 

the set of all S-closed subsets of sf. 

Since the concept of E-closed subsets is defined by the set of universal formulas, 

B = {\{Bs; 5 e A} is also a E-closed subset of s/ provided SSs has this property for 

each S 6 A. We accept also the case B = 0. Thus we have 

L e m m a 1. Let s/ = (A,F,R) be a structure of type T and E a set of open 

formulas of the language L(T). Then the set ^(st/) of all T,-c\osed subsets of s/ 

forms a complete \attice with respect to set indusion with the greatest element A. 

Corollary 1. For any s/', E and MCA there exists the least T,-closed subset 

Csj(M) containing M. 

If M = { 0 1 , . . . ,o„} then we will write briefly C„/(M) = C^(a\,... ,an). 

If the set E is implicitly known, we will use only the lattice % (si) to specify the 

closure system; we will use the more familiar notation for % ( - ^ ) provided it was 

introduced in algebra, see the following examples. 

E x a m p l e s . 

(1) Let s/ = (A, <) be an ordered set. Put T = 0, A = {1}, k\ = 2, s\ = 0 and 

E = {Gi} , where G i ( x i , x 2 , 2 , ^ ) is the formula (x\ ^ z and z ^ x 2 ) . Then the 

E-closed subsets of s/ are exactly the convex subsets of (A, ^ ) . 

(2) Let s/ = (A,F) be an algebra, F = {/;; i 6 / } . Let A = 0, T = I, fa = m, 

Si = 0 for i e I. Pu t E = {G{; i e I}, where G{(x\,... ,xni,z,fi) is the formula 

(fi(xi, ...,xni) = z). Then the E-closed subsets of si are subalgebras of sf = (A, F) 

a.ndtfz(s/) = Sub(s/). 

(3) Let J? = (R,+,.,Q) be a ring, A = 0, T = {1,2,3}, fa = 2, k2 = k3 = 1, 

s\ = 0, s2 = s3 = 1 and E = { G i , G 2 , G 3 } , where Gi is the formula (x\ + x2 = z), 

G2 is the formula (x\ -y\ = z) and G3 is the formula (y\ -X\ = z). Then the E-closed 

subsets of 3?, are the ideals of ^ and tfz(@) = \&3?., the lattice of all ideals of &.. 
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Analogously we can introduce left or right ideals of @. 

(4) Similarly, if_£? = (L,V, A) isalat t ice , A = 0, T = {1,2}, fci = 2, fc2 = 1, si = 0, 

s2 = 1, S = { G i , G 2 } , where Gi is the formula (x\ V x2 = z) and G2 is the formula 

(x\ A1/2 = z), then the E-closed subsets are lattice ideals, i.e. ^ E ( - S ? ) = USf. 

(5) Let Sf = ( L , V , A ) be a lattice, F = {1,2}, A = {1'}, fci = fc2 = fcr = 2, 

si = s2 = Si< = 0, S = { G i , G 2 , G i / } , where Gi is the formula (x\ V x2 = z), G2 

is the formula (x\ A x2 = z) and Gi< is the formula (x\ A z = X\ and i 2 V z = i 2 ) , 

Then the E-closed subsets are the convex sublattices of _Sf. 

(6) Analogously, if & = (L, + , . , < ) is a X-lattice (see [10]), T = {1,2}, A = {1'}, 

fci = fc2 = fcr = 2, si = s2 = Si< = 0, S = { G i , G 2 , G i / } , where Gi is the formula 

(x\ + x2 = z), G2 is the formula (x\ • x2 = z) and Gi< is the formula (x\ < a and 

z ^ x 2 ) , then the S-closed subsets are just the convex subX-lattices of ££. 

(7) Analogously, if s/ = (A ,V,A,Q) is a q-lattice (see [3]), S = {Gi ,G 2 ,Gi<}, 

where Gi is the formula (x\ V i 2 = z), G2 is the formula (x\ Ax2 = z) and Gi* is the 

formula (x\Qz and zQx2), then the E-closed subsets are the convex sub-q-lattices 

diet. 
(8) Let s/ = (A,f) be a monounary algebra, A = 0, T = {1}, fci = 2, si = 0, 

E = {Gi} , where G i is the formula (x\ ^ x2 and x2 ^ z and z ^ x\ and / ( x i ) = z 

and fk(z) = z 2 for some non-negative integer fc). Then the S-closed subsets are the 

convex subsets of the monounary algebra s/ defined in [7]. 

(9) Example (1) can be generalized as follows: For a binary relational system 

s/ = (A,R) with R = {QJ\ j e J} we call V^(si) the lattice of convex subsets if 

S = {GJ; j 6 J } and every Gj(x\,x2,z) is the formula (x\ Qj Z and z Qj x2); we 

denote tfs(s/) by C o n v ( ^ ) . 

(10) Examples (5), (6), (7) can be generalized as follows: An algebraic structure 

s/ = (A, F, R) is called a binary algebraic structure if a relational system (A, R) is 

binary. Let s/ be a binary algebraic structure, a?\ = (A,F), si2 = (A,R), S = S i U 

S 2 , where S t = {G 7 ; 7 £ T} and S 2 = {Gx; X e A}. The lattice Vs(s/) is called 

the lattice of convex subalgebras of si if % , (-*i) = Sub si\ and ^ a ( s i 2 ) = Conv .t/2; 

•g'E(^') is denoted by CSub j* ' . 

We can also modify Definition 1 in the sense of the following remark. 

R e m a r k 1. The concept of E-closed subsets can be generalized if we consider 

term functions instead of fundamental operations in formulas GT of E. Indeed, 

if & = (G,. , _ 1 , e ) is a group, p(x,y) is the term function p(x,y) = yxy~l and 

E = { G i , G 2 , G 3 , G 4 } , where G\(x\,x2,z,.) is the formula (x\-x2 = z), G2(xx,z,~l) 

is the formula (x\,~l = z), G3(«,e) is the formula (e = z) and Gi(x1,y1,z,p) is the 

formula (p(x\,y\) = z) then ^ E ( ^ ) is the lattice of normal subgroups oitf. 
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Similarly, we can also define ideals of an (-group ^ = (G,., x, e, V, A), i.e. nor­

mal subgroups of the group (G,., _ 1 , e ) which are convex sublattices of the lattice 

(G,V,A). 

Definit ion 2. Let sz?', SS be structures of the same type r and let S be a set 

of open formulas of the language L(T). We say that sV, SS are ^-isomorphic if the 

lattices ^(sz/) and ^(SS) are isomorphic. 

E x a m p l e s . 

(10) Binary relational systems srf = (A, R), SS = (B,P) of the same type are 

called convex isomorphic if Conv srf = Conv SS. A special case of this concept is rep­

resented by convex isomorphic ordered sets. They were characterized in [1] and [4]. 

(11) Binary algebraic structures srf = (A,F,R), SS = (B,G,P) of the same type 

are called convex isomorphic if C Sub stf = C Sub SS. In particular, convex isomor­

phic lattices were characterized in [9] and convex isomorphic ^-lattices were charac­

terized in [5]. 

(12) Let stf = (A,F),S8 = (B, F) be two algebras of the same type and % = Sub, 

i.e. S-closed subsets are subalgebras. Then stf, SS are ^-isomorphic if Sub.e/ S 

S u b ^ . 

(13) For rings or lattices, if % = Id, then S?lt Sf.2 are ^-isomorphic if I d ^ S. 

id m%. 

Definition 3 . An algebraic structure sf = (A,F,R) is called Inseparable if 

{a} e V-si*/) for each a 6 A. 

Definition 4. Let #/ = (A,F,R), SS = (B,F,R) be S-separable structures 

of the same type r which are S-isomorphic and let h: ^(s*/) -> ^(SS) be the 

isomorphism. The mapping iph : A -> B defined by the rule {</>/,(a)} = h{(a)} is said 

to be associated with the isomorphism h. 

For M C A w e put <ph(M) = {cph(a),a e M}. 

R e m a r k 2. If srf is S-separable then ^(srf) is an atomic lattice whose atoms 

are exactly the sets {a} for each a € A. Moreover, every isomorphism of atomic 

lattices maps atoms onto atoms. Hence, Definition 4 is correct. 

Lemma 2. Let sz/ = (A,F,R), SS = (B,F,R) be S-separabJe and 1,-isomorphic 

structures of the same type. Let h: ^(srf) -» ^(SS) be the isomorphism. Then we 

have <fih(C^(M)) = Ca(<ph(M)) for any M C A. 

P r o o f . First, suppose D € i f s ( ^ ) . If a 6 A then {a} C D and so {<Ph(a)} = 

h({a}) C h(D), thus <ph(D) C h(D). Conversely, if 6 e h(D), then {6} C h(D) and 
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{<p-\b)} = h~1({b}) Q D because h is a bijection. Thus {<ph
l(&)} is a singleton and 

<Pll(b) G D, i.e. 6 G v>j.(.0), giving h(D) C v>/.(D). So we have 

(1) W>(D) = h(D). 

Now, let M C A . Since M C C*(M), we obtain ph(Af) C </>/»(CV(M)). Fur­

thermore, <ph(C^(M)) = ft(C^(iW)) G « E ( ^ ) by (1) and so Cgg^M)) C 

V/»(C^(M)). On the other hand, let X G Vs(@) be such that <ph(M) C X. Since 

/i is surjective, there exists Y G %(•« ' ) with h(Y) = <ph(Y) = X. It follows that 

M C Y and, therefore, C ^ ( M ) C Y. Consequently, <ph(C^(M)) C X and we can 

see that <ph(C^(M)) C C&(<ph(M)). D 

T h e o r e m 1. Let si = (A, F,R), 8S = (B, F, R) be ^-separable structures of the 

same type for some limited E = {G 7 , 7 e T} U { G A , A 6 A}. TAen the following 

conditions are equivalent: 

(i) s/, 88 are ^-isomorphic. 

(ii) There exists a bijection g: A-+ B such that g(C^(M)) = C<g(g(M)) for any 

MCA. 

(iii) There exists a bijection g: A -» B such that 

g(C^(au ... ,o„)) = Cs)(g(ai),.. -,g(an)) 

for each O i , . . . ,an £ A, where n = max({fc7,7 G T} U {fc,\, A G A}). 

P r o o f . The condition (ii) follows from (i) by Lemma 2. The implication (ii) =>• 

(iii) is trivial. Prove (iii) => (i): Let g be a bijection satisfying (iii). Let h: Exp A -> 

E x p B be a mapping defined as follows: h(M) = {g(a); a G M} for any MCA. 

Since g is a bijection, h is also a bijection. We are going to prove that for any E-closed 

subset D of srf its image h(D) is a E-closed subset of 88. Suppose D £ ^(srf). Let 

7 £ T, Gy(xi,... ,xkl,yi, • • • ,ys^,z, fi) e E. Let a[,...,a'n G h(D), b[,... ,b'm,c' G 

B and let the formula GJ(a'n,...,a'n,b'l,..., b'm,c',fi) be satisfied in 83 for each 7 G T 

(and, analogously, for each A G A, G\ G S). Then c' G C&(a[,... ,a'n). Since g is 

a bijection there exist au ... ,an,bi,... ,bm,c G A such that g(ai) = a\, g(bj) = b'j, 

g(c) = c'. We have c G C ^ ( o i , . . . ,a„) C D according to (iii). Then c' G h(D), 

hence h(D) G V^(88). Analogously we can prove that if h(D) is E-closed in 8$ then 

also D is E-closed in a?. Thus the restriction of h onto ^(stf) is the isomorphism 

of % ( ^ ) o n t o ^ s ^ ) . D 

Let s/ = (A, F, R) be a binary algebraic structure with R = {<pj; j G J} and let 

a, b G A. The set (0,6) = {x G A; a Q, X and x QJ b for each j G J } is called an 

interval of s/ determined by the elements a, b. 
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Corollary 2 (see Theorem 2.1 in [4]). Two ordered sets srf = (A, ^ ) , SS = (B, ^ ) 

are convex isomorphic if and only if there exists a bijection g: A -> B such that for 

each a,beA: g((a,b)) = (g(a),g(b)) if a ^ b and g({a,b}) = {g(a),g(b)} if a \\ b. 

Corollary 3 (see Theorem 1 in [9]). Two lattices i?i = (Li,V,A), i f 2 (L 2 ,V,A) 

are convex isomorphic if and only if there exists a bijection g: L\ —• L2 such that 

g((aAb,aVb)) = (g(a) Ag(b),g(a)V g(b)) for each a, b € A. 

The following assertion is evident: 

L e m m a 3. Let s/ = (A,F) be an algebra and ^(j^) = S u b ^ . Then s/ is 

^-separable if and only if srf is idempotent. 

Let si/ = (A,F) be an algebra, a i , . . . , a n e A. Denote by [ax,..'.,an} the 

subalgebra of si/ generated by the elements a\, ..., an. 

Corollary 4. Let srf', SS be idempotent algebras of the same type T = {m,i e 1} 

such that there exists n = max{nj, i G / } . Then Sub si/ ~ Sub 89 if and only if there 

exists a bijection g: A -> B such that g([a\,..., an]) = [g(a\),..., g(an)] e Sub SS 

for any Oj, . . . , a„ e A. 

The concept of genomorphism was introduced in [2]: Let a/ = (A, F), SS = (B, G) 

be algebras, not necessarily of the same type. A mapping g: A -> B is called a 

genomorphism, if 

a) g is generative, i.e. for each n-ary operation / G F and for each ax, . . . , an e A 

w e h a v e g ( / ( a i , . . . , a „ ) ) € [g(a\),... ,g(an)], 

b) g is congruential, i.e. for each n-ary operation / € F and for each a\, ..., an, 

a[, . . . , oj, € A such that g(a'{) = p(a;) (i = 1, . . . , n) we have g(f(a\,... ,an)) = 

g(f(a'1,...,a'n)). 

A bijective genomorphism is called an isogenomorphism. Evidently, every homo-

morphism is a genomorphism and every injective generative mapping is a genomor­

phism. 

Corollary 5. Let si/, SS be idempotent algebras of the same type r = {n*; i e 1} 

such that there exists n = maxjn; ; i 6 / } . Then Subs/ ~ S u b ^ if and only if 

there exists an isogenomorphism of si/ onto SS, such that the inverse mapping is an 

isogenomorphism also. 

Clearly, any isomorphism and any antiisomorphism of lattices are isogenomor­

phism. Isogenomorphisms of lattices and semilattices were characterized in [11]. 
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Definit ion 5. An algebraic structure si/ = (A, F, R) is called IZ-semiseparable 

if Cst(a) / Cs/(b) for each a, b e A with a ^ b. An element a e A is called a 

^.-idempotent if C^(a) = {a}. An algebraic structure si/ is called E-semiidernpotent 

if for each 0 5̂  X G ' ^ ( . e / ) there exists a E-idempotent a with a € X . 

R e m a r k 3. If^" = ( A , P , P ) is an algebraic structure and a e A is a E-

idempotent then a is an idempotent element of the algebra s/ = (A, F). The converse 

assertion is not valid in general, e.g. if si/ = (A, V, A, Q) is a g-lattice where Q is the 

induced quasiorder (i.e. aQb if and only if a V 6 = bVb). Let £/ be not a lattice and 

^(si/) = C Sub si/. Then there exist idempotent elements of (A, V, A) which are not 

E-idempotents. 

If si/ is E-separable then it is also E-semiseparable, but not vice versa. For in­

stance, if s/ = (A , V, A) is a lattice and ^(si/) = Id si/, then Cjar(a) is the principal 

ideal of si/ generated by an element a and si/ is E-semiseparable but not E-separable. 

Clearly, s/ is E-separable if and only if each element a e A is a E-idempotent. 

Denote by T^(s/) the set of all E-idempotents of si/. If si/ = (A,F) is an algebra 

and ^ E ( ^ ) = S u b s / , then T^,(s/) is the set of all idempotent elements of si/. If 

SJ/ = (A, ^ ) is an ordered set and ^(s/) = Conv si/, then Ts(si/) is the set of all 

one-element intervals of A. 

T h e o r e m 2. Let si/ = (A, F, R) be a E-semiseparabie algebraic structure. 

(1) If Ts(si/) jt 0 then ST = {{x}; x e Tz(s>/)} is the set of all atoms of the 

lattice % ( . « / ) . 

(2) The lattice ¥E(*/) is atomic if and only if s/ is IZ-semiidempotent. 

P r o o f . (1) Denote by A t ( ^ ) the set of all atoms of ^(s/). Clearly, ST C 

k\.(s/). Suppose P e A t ( ^ ) and P $ &. Then there exist xx, x2 6 P, x\ ^ x2 

such that Crf(xi) C P , C^(x2) C P and C^(xi) ± C£/(x2), because s/ is E-

semiseparable. This contradicts the assumption that P is an atom. 

(2) If %( •« ' ) is atomic and 0 ^ X e ^ s ( ^ ) then there exists P e At(si/) such 

that P C X . According to (1) we have P = {x} for some x e T^(si/), thus x e X . 

Conversely, let s/ be E-semiidempotent. If X ^ A t ( ^ ) , then 0 ^ P = {x} C X . 

Hence, ^(si/) is an atomic lattice. D 

R e m a r k 4. If si/ is not E-semiseparable then part (1) of Theorem 2 does not 

hold. E.g. if s/ is a g-lattice in Fig. 1, then C Sub si/ (see Fig. 2) has two atoms but 

Tz(sz/) = {1}, i.e. 5" = {{1}} is a one-element set. 

Similarly, if si/ is not E-semiseparable then part (2) or Theorem 2 does not 

hold. E.g. if si/ is a g-lattice in Fig. 3 then C Sub si/ in Fig. 4 is atomic but not 

E-semiidempotent. 
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Fig. 3 Fig. 4 

R e m a r k 5. If s/, SS are S-semiseparable and S-semiidempotent algebraic 

structures which are S-isomorphic, then ^(s/), ^(38) are atomic lattices accord­

ing to Theorem 2 and kt(s/) = {{x}; x 6 T-z(s/)}, A t ( ^ ) = {{y}; y 6 Ts(38)} 

are the sets of all atoms in ^(s/), ^(38), respectively. Since every isomorphism of 

atomic lattices maps atoms onto atoms, there exists a bijection th: Ts(s/) -> Ts(38) 

defined by the rule {th(x)} = h({x}) for each x G Ts(s/), where h is the isomor­

phism of ^s(s/) onto ^(38). 

Clearly, if s/ is a E-separable algebraic structure then it is also S-semiidempotent, 

but not vice versa. Furthermore, if s/ is E-semiidempotent then s/ need not be 

E-semiseparable. For instance, let s/ = (Z, +,.) be the ring of all integers and 

^T.(s/) = Ids/. Then s/ is S-semiidempotent (any ideal of s/ contains zero, the 

only S-idempotent), but s/ is not E-semiseparable (e.g. G^(2) = C^(—2)), thus it 

is not S-separable. 

Let s/ = (A,V,A) be a lattice without the least element and ^(s/) = Ids/. 

Then s/ is E-semiseparable but it is not S-semiidempotent. 

Let s/ = (A,V,A,Q) be a ^-lattice which is not a lattice and ^(s/) = CSubs/. 

Then s/ is neither E-semiseparable nor E-semiidempotent. 

T h e o r e m 3. Let s/ = (A,R) be a binary reiational structure, R = {QJ ; j e J } , 

A = J and for each j £ J let the formula Gj be of the foim (xi Qj z and z Qj a^)-

The following conditions are equivalent: 

(i) s/ is ^-separable, 

(ii) s/ is S-semiseparable, 

(iii) s/ is antisymmetiical. 

78 



P r o o f . The implication (i) => (ii) is evident. Let srf be E-semiseparable, aQj b 

and b Qj a for some a, b e A, Qj e R. Then b e C&(a), i.e. C^(b) C C^r(a) and 

a e Cs/(b), i.e. ( ^ ( a ) C C^(b), thus C^(a ) = CV(6) and so a = 6. Hence we have 

(ii) =* (hi). 

Prove (iii) => (i): Let a be an arbitrary element of A and suppose 6 e C^(a). 

Then a £>j 6 and 6 £,• a for each QJ e i? and so a = 6 because #,- is antisymmetrical. 

Hence C^(a) = {a} and •sa' is E-separable. • 

Corollary 6. Let srf = (A,R), SS = (B,P) be antisymmetrical binary relational 

systems of the same type. Then si/, SS are convex isomorphic if and only if there 

exists a bijection g: A -* B such that 

(*) g(Caf(a,b)) = CSB(g(a),g(b)) for each a,b e A, 

A binary algebraic structure srf = (A,F,R) is called antisymmetrical if (A,R) is 

antisymmetrical, and it is called idempotent if (A,F) is an idempotent algebra. 

Corollary 7. Let stf = (A,F, R), SS = (B,G,P) be antisymmetrical idempotent 

algebraic structures of the same type. Then £/, SS are convex isomorphic if and only 

if there exists a bijection g: A -t- B which satisfies the condition (*). 

Definition 6. Let srf = (A, F, R) be an algebraic structure of type r , let E be 

a set of open formulas of the language L(T). By a graph Gr E (^ / ) of stf we mean a 

pair (<£-z(srf),H), where the elements of ^(szf) form the vertex set and (X, Y) e H 

for X, Y e tfz(s3?) if and only if X n Y =4 0. 

T h e o r e m 4. Let szf, SS be algebraic structures of type r and let E be a set of 

open formulas of the language L(T). Then (1) implies (2). If, moreover, &/, SS are 

E-separabie then the conditions (1), (2) are equivaient, where: 

( I ) « E ( ^ ) ~ % W ; 
(2) G r s K ) ~ GrE(<£?). 

P r o o f . Let ft be an isomorphism of %( .« / ) onto ^ E ( ^ ) and let X , Y e ^ E ( ^ / ) 

be such that X n y / 0. Since X n y e % ( _ / ) , we have ft(X n y ) e % ( ^ ) and, 

clearly, h(XnY) # 0. As h is an isomorphism, we have ft(Xny) = h(X)nh(Y) + 0. 

On the other hand, if h(X) n h(Y) / 0, then h(X n Y J / f l , hence X n y # 0. Thus 

X n y 5̂  0 if and only if h(X) n / i(y) j£ 0 and so h is the isomorphism of graphs 

G r E ( ^ ) and G r E ( ^ ) . 

Now, let srf', SS be E-separable and let g be an isomorphism of the graphs GrE(.g/), 

Grs(SS). We will show that g is the isomorphism of the lattices 'ffs(s^) and ^(SS) 
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as well. SuPP o s e X, Y £ ^(s/), X C Y and o € o(X). Since s/ is S-separable, 

we have {a} e % ( ^ ) . Furthermore, {a} n g(X) # 0, hence g-l({a}) n X # 0. 

A s I C V , we get 5 _ 1 ({a}) n F / 0 and so {a} n ff(Y) # 0. Thus a 6 ff(Y) and, 

consequently, <?(X) C g(Y). Similarly we can prove that the inclusion g(X) C g(Y) 

implies X CY. O 

Let s/ = (A,F,R) be an algebraic structure and 8 an equivalence on A. We call 

8 a congruence of s/ if it is a congruence of the algebra (A, F). 

Definition 7. Let s/ = (A, F, R) be an algebraic structure of type r , let E be 

a set of open formulas of the language L(T) and 8 £ Cones'. If X £ ^ E ( J ^ ) , a £ X , 

6 £ [o]fl imply 6 £ X for each a, 6 £ A and every X of * E ( - / ) , then s/ is called 

E- coherent with respect to #. 

T h e o r e m 5. Let s/ = (A, F, R) be an algebraic structure of type T, let E be 

a limited set of open formulas of the language L(T) and 8 £ Cons/. Let s/ be 

E-coherent with respect to 9. Then s/ and s//8 are ^-isomorphic. 

P r o o f . Let us define a mapping h: ^(s/) ->• Exp(s//0) as follows: h(0) = 0 

and h(X) = {[a]$; a £ X } for X ^ 0. Since s/ is E-coherent, h is clearly 

an injection. We will prove that h is an isomorphism of ^(s/) onto ^(s//9). 

Let D £ ^(s/), let 7 e I\ where Gy(xi,...,Xk1,yi,...,y^,Z,ft) is the for­
mula of S. Let [ai]„, . . . , [ofcJ9 6 h(D), [&i]», . . . , [6,,]«, [c]9 £ . E / / 0 and 

let G7([ai]fl,... ,[a f c ,] f l ,[6i]fl,... ,[6,1]»,[c]«./.) be satisfied in s//8. Then [c]e £ 

G^ / S ( [ a i ] s , . . . , [ a„ ]« ) e^(s//d) a n d c £ C ^ ( o i , . . . , a „ ) C D where n = max({fc7; 

7 £ T} U {k\; A £ A}), because s/ is S-coherent. Hence [c]» £ h(D). Analogously it 

can be done for A £ A and the formula G\, i.e. h(D) is S-closed in s//8. Analogously 

we can prove that if h(D) is E-closed in s//8 then D is E-closed in s/, i.e. h is the 

isomorphism of ^(s/) onto ^(sZ/d). D 

R e m a r k 6. Theorem 2 and 3 in [5] are consequences of Theorem 5 applied to 

g-lattices. 

Let s/ = (A, F, R) be an algebraic structure f type r , let E be a set of open 

formulas of the language L(T). Let us define a binary relation 8s on A as follows: 

xdzy if and only if C^(x) = C^(y). This equivalence need not be a congruence 

of s/. For instance, if 2f = (Z, + , . , 0) is the ring of integers and <€•£,(&) = W 2?, 

then e.g. 20E2, 30E - 3 but not (2 + 3)0E(2 + ( -3 ) ) . However, if s/ = (A,V,A) 

is a g-lattice and ^(s/) = G S u b ^ , then 0E £ Cons/; if this g-lattice s/ is not 

a lattice, then 9% ^ w (the least congruence on s/). Evidently, &s = u) for every 

E-semiseparable structure s/. Generally, we have 



T h e o r e m 6. If 6^ is a congruence on &/, then s/ is ^-coherent with respect to 9%. 

P r o o f . Let X e ^ E ( ^ ) , a € X and 6 € [a]„E. Since 9S e Con.o', 6 € [a]E< 

implies [6]sE = [a]»E, i.e. C^(a) = C^(b). However, a £ X and X 6 ^ E ( J ^ ) imply 

Cs/(a) C X , thus also 6 € X = [a]8i;, i.e. ^ is S-coherent with respect to 0£. • 
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