
Mathematica Bohemica

Štefan Drahovský; Michal Zajac
Hyperreflexive operators on finite dimensional Hilbert spaces

Mathematica Bohemica, Vol. 118 (1993), No. 3, 249–254

Persistent URL: http://dml.cz/dmlcz/125929

Terms of use:
© Institute of Mathematics AS CR, 1993

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/125929
http://dml.cz


118 (1993) MATHEMATICA BOHEMICA No. 3, 249-254 
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Summary. In this paper a complete characterization of hyperreflexive operators on finite 
dimensional Hilbert spaces is given. 
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0 . INTRODUCTION 

Let H be a complex separable Hilbert space, 3S(H) the algebra of all continuous 
linear operators on H and T G &9(H). We denote by {T} ; the commutant of T 
(X G {T}' if and only if XT = TX) and by {T}" = f | ( W : XT = TX) the 
double commutant of T. A closed linear subspace M C H is called invariant for an 
algebra sf if it is invariant for every X G ssf. If M is invariant for the algebra {T}' 
then M is said to be hyperinvariant for T. The lattice of all invariant subspaces of 
$f is denoted by Lat sf. 

Let M be a set of subspaces of H. We denote by k\g*JZ the algebra of all 
X G &{H) for which every M G *dt is invariant. The algebra ^ C # ( i / ) is called 
reflexive if sf = AlgLatj^. An operator T G d?(//) is called reflexive if AlgT—the 
weakly closed algebra generated by T and the identity /—is reflexive. We shall write 
Lat T instead of Lat Alg T. In [3] a characterization of reflexive operators on finite 
dimensional spaces was given. If the commutant of the operator T is reflexive then T 
is called hyperreflexive. In this paper hyperreflexive operators on finite dimensional 
spaces are characterized. 

1 This research has been partially suported by Grant of Slovak Academy of Sciences GA-
SAV 367/91 
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In this paper $ means the direct (not necessarily orthogonal) sum. 

1. THE NILPOTENT CASE 

First we consider the nilpotent operators on a finite dimensional space # . Let 
N G 31(H) be a nilpotent operator of order n (i.e. Nn = 0, JVn""1 £ 0). Since 
similarity preserves hyperreflexivity (see [2] for a little more general result) we may 
assume that the matrix representation of N is 

(i) N = j(kx) e J(k2) e . . . e J(km), n = kx > k2 > .. ^ km. 

Let the corresponding decomposition of # be 

(2) # = # i e # 2 e . . . e # m . 

Here J(k) means the k x k Jordan cell (i.e. each entry on the first subdiagonal is 
1, and all other entries are 0). We shall use the following descriptions of {N}' and 
Lat{N}' [4, p. 128]: 

m 
Se G Lat{N}' <=> JS? = ^ k e r J(kj)r> for an m-tuple of integers, 

(3) j=\ 

r i i . . . , rm, r\ > . . . ̂  rm ^ 0, k\ — r\ ^ . . . ̂  km — rm > 0. 

Let .4 G 38(H) have a block decomposition (corresponding to the decomposition 
(2)otH)A = (Aij). Then 

(4) AЄ{NУ 

Aц € {J(ki)У for all»; 

for i < i, Ay = ( ° ) with X G {J(*i)}'; 

for i > i, ^ = (y o) with y G {/(*,)}'. 

Recall that {/(*)}' consists of polynomials in J(k) and thus of lower-triangular 
matrices with equal entries on each subdiagonal (oi+ij+i = a,j, 1 •$ i, j ^ &). Now, 
we are able to describe AlgLat{N}': 

Theorem 1. Let N G 39(H) be a nilpotent operator of the form (1). Let A G 
31(H) have a block decomposition (corresponding to the decomposition (2) of H) 
A as (Aij). Then A belongs to AlgLat{N}' if and only if it has the following form: 

(5) Aц = 
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' a lower-triangular matrix ifi = /; 

( v ) Wl^ ^ower"tr^angu^ar X l'̂ 1" < i» 

(y 0) with lower-trjanguiar y ifi > j . 



P r o o f . Let us recall that for a pair of integers i , r; 0 ^ r ^ ib, the space 
kerJ( . t) r consists of all vectors x = (Ai, A2,. . . , A*) for which Ai = A2 = . . . = 
A*_r = 0. If JSf is a subspace of the form (3) and if x = x\ © x2 © . •. ® xm G -Sf, 
then for every A with a block decomposition satisfying (5) and for all pairs i, i ; 
1 1$ i, j ^ m, ./l.-jSj G ker J(ib,) r i. This shows that A G AlgLat{N}'. 

Now, suppose that A = (Aij) G AlgLat{N}'. Let the integers j and 5 satisfy 
l^j^m^O^s^kj. If 

{ s if s ^ ki, 

Jb,- if 5 > ib,-. 

m 
then J^ = © ker J(jbt)

r* G Lat{N}' . 
»=i 

AX Q<e^ A^ ker J(kj)3 C ker J(ib,)5, s = 0 , 1 , . . . , fy, 

for all pairs i, .7 satisfying 1 ^ i ^ j . It follows that An is lower-triangular for all i 

and if i < j then J4,J = with a lower-triangular kj x kj matrix Y. 

Let the integers i and s satisfy 1 .$ i ^ m, 0 -̂  s ^ ib,-. Setting rj = max{s -f kj — 
m 

Jkt-,0} for j = 1, 2, . . . , m we obtain Sf = 0 ker J(fc;)
r> G Lat{N}' , and this yields 

i = i 

Aij ker J(Jb;)
5+fc^fci C ker J(k4)

5 

for i < i and every s; 0 •$ 5 ^ £,-. It follows that Aij = (.K, 0) with a lower-triangular 
fc,- x ib,- matrix X. This completes the proof. • 

Corollary. A nilpotent operator N G &(B) is hyperretiexive if and only ifN = 0. 

P r o o f . This is an obvious consequence of the descriptions (4) and (5) of the 
commutant of N and of the algebra AlgLat{N}', respectively. • 

We shall need the following simple result: 

Lemma 2. The double commutant of every nilpotent operator N consists of 
polynomials in N. 

Proof. We use the models (1), (2) and (4) of N and of its commutant, respec
tively. Since {N}" C {N}' , A G {N}" has a block decomposition (Aij) satisfying 
(4). For p = 1, 2, . . . , m let Bp G {N}' have the block Bpp = / and all other blocks 
Bц = 0. 

ABP = BPA =*• Ah;s 0 f o r a l l t - - j . 
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There exist polynomials pu P2> • •» Pm such that p, (J(i ,)) = J4„ (i = 1 , 2 , . . . , ra). 

Setting C} G {N}' for i € { 2 , 3 , . . . , m} to be the matrix with the block C\j = I ) 

and all other blocks 0 we obtain from ACj = CjA 

Pi (J(W) = Pi (J(kj)), . i = 1,2, . . . , m 

and so A = p\(N). • 

2. GENERAL OPERATORS IN FINITE DIMENSIONAL SPACES 

The investigation of a general linear operator T € 39(H) can be reduced to the 
investigation of the nilpotent operators similarly as in [2] and [4]. 

Theorem 3. Let T 6 39(H) have the minimum polynomial my (A), mr(A) = 

ft (A - A t)
m'. Let Hi = ker(T - At/)

m». 

Then the following assertions hold: 

(i) Hi € Lat{T]f for t = 1, 2, . . . , n, 
(ii) Ti = T\Hi is hyperreflexive if and only if mi = 1, 

(Hi) # = # i e # 2 e . . . e # n , 
(iv) T is hyperreflexive if and only if all operators Ti are hyperreSexive. 

Therefore T is hyperreflexive if and only if it is similar to a diagonal operator. 

P r o o f . The assertion (i) is an easy consequence of the fact that 

(T-\iI)mi e{T}". 

To prove (ii) let us observe that {Ti}1 = {7} - A,/}'. The operator Ti - A, is 
nilpotent and so the assertion (ii) follows from the corollary of Theorem 1. 

The rest of this theorem is a consequence of the following lemma: • 

Lemma 4. Let H\, # 2 he finite dimensional spaces. Let H = #1 © #2 and let 
X 6 S9(H\), Y £ S9(Hi). Then the following assertions are equivalent: 

(1) The minimum polynomials mx, my of X, Y are relatively prime. 
(2) Alg(* © Y) = A l g * © Algy. 
(3) Lat(.X © Y) = Lat X © Lat Y. 
(4) Alg Lat(X © y ) = Alg Lat X © Alg Lat Y. 
(5) { * © y } ' = W © { Y } ' . 
(6) Lat{X©y} / = Lat{X} /©Lat{y} /. 
(7) AlgLat{X © y } ; = AlgLat{X}' © AlgLat{y}'. 
(8) {X®Y}" = {X}"e{Y}". 
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P r o o f . The proof of this theorem can be found e.g. in [4] and [6]. Let us recall 
the proof of (1) «» (2). 

If (1) holds then there exist polynomials a, b such that 
1 = amx + 6 m v . Therefore џx 

I e 0 = (6 • mY )(X 0 Y) £ Alg(X 0 Y) and 

0® 1 = (a • mx)(X ®Y) e Alg(X ®Y). 

This shows that (2) holds. 
If (2) holds then there exists a polynomial q such that q(X ® Y) = I 0 0. Let 

us denote by p the least common divisor of mx and mY, and let / = mx /p . Since 
q(Y) = 0 p divides q, consequently mx = p • / divides q • / . It follows that f(X) = 
/ • f(X) = « ( * ) / ( * ) = (9 • / ) ( * ) = 0 and so p = 1 and (1) holds. 

By a simple computation [6] it can be also proved that (n) implies (n + 1) for 
n = 2, 3, . . . , 7. Using Lemma 2 we obtain easily that the assertions (2) and (8) are 
identical. This completes the proof of the lemma. • 

3. ALGEBRAIC OPERATORS IN SEPARABLE SPACES 

The preceding results can be easily proved also for algebraic operators in infinite 
dimensional Hilbert spaces. To show this let us suppose that H is a complex separable 
(infinite dimensional) Hilbert space and that T € 39(H) is algebraic, i.e. there exists 
a polynomial p with complex coefficients such that p(T) = 0. In this case the notion 
of minimum polynomial makes sense and Lemma 3 remains true (with the same 
proof). 

First we consider a nilpotent operator T € 39(H). Let n ^ 1 be an integer such 
that T1 = 0 and T1"1 £ Q W e m a y assume that ||T|| -̂  1 (if | |T|| > 1, we replace T 
by T/ | |T| | ) . So T is a contraction of class Co in the sense of [5, Chap. III.4] and we 
may use the theory of Jordan models of Co-contractions [1, Theorem 111.5.1]. 

Let H2 denote the Hardy space of analytic functions in the unit circle. The 
minimal function of T is m(X) = An. By [2, Theorem B] T is hyperreflexive if and 
only if the operator S(m) = PmS\H(m) is hyperreflexive. Here H(m) = ( m / / 2 ) x , 
Pm is the orthogonal projection onto H(m) and (Sti)(A) = Au(A) is the unilateral 
shift. In our case m(A) = An and S(m) is a nilpotent operator on the n-dimensional 
Hilbert space H(m) with S(m)n~l £ 0. By the corollary of Theorem 1 this is possible 
only if n = 1, i.e. T = 0. Therefore the following analogue of Theorem 3 holds: 

Theorem 5. Let T G 39(H) be an algebraic operator having the minimum poly

nomial mT(X) = ft (A - A,)m ' • Let Hi = ker(T - A,7)m<. 
t 'asl 
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Then the following assertions hold: 

(i) Hi € L a t { r } ' for i = 1, 2, . . . , n, 
(ii) Ti = T\Hi is hyperreflexive if and only if mi = 1, 

(Hi) H = / / i $ / f 2 e . . . e / / „ , 
(iv) T is hyperreSexive if and only if all operators Ti are hyperreSexive. 

REMARKS AND OPEN PROBLEMS 

1. In [2] a characterization of reflexive operators (for dim// < oo) was given. 
It follows from this characterization and from Theorem 3 that if T 6 &{H) is 
hyperreflexive, then it is also reflexive. The other implication is not true, e.g. the 

/ 0 0 0 \ 
operator I 1. 0 0 I is reflexive, but it is not hyperreflexive. ( 0 0 0 \ 

1 . 0 0 
0 0 0 / 

In general (i.e. for d im/ / = oo) it is an open problem whether each hyperreflexive 
operator must be reflexive. 

2. The following question is also a natural open problem: 
Is a hyperreflexive quasinilpotent operator necessarily equal to 0? 
3 . The assertion of Lemma 2 holds for every operator (in a finite dimensional 

space). This can be proved combining Lemma 2, Theorem 3 and Lemma 4. A 
slightly different proof can be found in a recent book of R.A. Horn and C.R. Johnson 
[7, Theorem 4.4.19]. 
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