Mathematic Bohemica

Štefan Drahovský; Michal Zajac
 Hyperreflexive operators on finite dimensional Hilbert spaces

Mathematica Bohemica, Vol. 118 (1993), No. 3, 249-254

Persistent URL: http://dml.cz/dmlcz/125929

Terms of use:

© Institute of Mathematics AS CR, 1993

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

HYPERREFLEXIVE OPERATORS ON FINITE DIMENSIONAL HILBERT SPACES

Štefan Drahovský, Michal Zajac ${ }^{1}$

(Received July 19, 1991)

Abstract

Summary. In this paper a complete characterization of hyperreflexive operators on finite dimensional Hilbert spaces is given.

Keywords: invariant subspace, commutant, reflexivity
AMS classification: 15A21, 47A15

0. Introduction

Let H be a complex separable Hilbert space, $\mathscr{B}(H)$ the algebra of all continuous linear operators on H and $T \in \mathscr{B}(H)$. We denote by $\{T\}^{\prime}$ the commutant of T ($X \in\{T\}^{\prime}$ if and only if $X T=T X$) and by $\{T\}^{\prime \prime}=\bigcap\left\{\{X\}^{\prime}: X T=T X\right\}$ the double commutant of T. A closed linear subspace $M \subset H$ is called invariant for an algebra \mathscr{A} if it is invariant for every $X \in \mathscr{A}$. If M is invariant for the algebra $\{T\}^{\prime}$ then M is said to be hyperinvariant for T. The lattice of all invariant subspaces of \mathscr{A} is denoted by Lat \mathscr{A}.

Let \mathscr{M} be a set of subspaces of H. We denote by Alg \mathscr{M} the algebra of all $X \in \mathscr{B}(H)$ for which every $M \in \mathscr{M}$ is invariant. The algebra $\mathscr{A} \subset \mathscr{B}(H)$ is called reflexive if $\mathscr{A}=\operatorname{Alg}$ Lat \mathscr{A}. An operator $T \in \mathscr{B}(H)$ is called reflexive if Alg T-the weakly closed algebra generated by T and the identity I-is reflexive. We shall write Lat T instead of Lat Alg T. In [3] a characterization of reflexive operators on finite dimensional spaces was given. If the commutant of the operator T is reflexive then T is called hyperreflexive. In this paper hyperreflexive operators on finite dimensional spaces are characterized.

[^0]In this paper \oplus means the direct (not necessarily orthogonal) sum.

1. The nilpotent case

First we consider the nilpotent operators on a finite dimensional space H. Let $N \in \mathscr{S}(H)$ be a nilpotent operator of order n (i.e. $N^{n}=0, N^{n-1} \neq 0$). Since similarity preserves hyperreflexivity (see [2] for a little more general result) we may assume that the matrix representation of N is

$$
\begin{equation*}
N=J\left(k_{1}\right) \oplus J\left(k_{2}\right) \oplus \ldots \oplus J\left(k_{m}\right), n=k_{1} \geqslant k_{2} \geqslant \ldots \geqslant k_{m} \tag{1}
\end{equation*}
$$

Let the corresponding decomposition of H be

$$
\begin{equation*}
H=H_{1} \oplus H_{2} \oplus \ldots \oplus H_{m} \tag{2}
\end{equation*}
$$

Here $J(k)$ means the $k \times k$ Jordan cell (i.e. each entry on the first subdiagonal is 1 , and all other entries are 0). We shall use the following descriptions of $\{N\}^{\prime}$ and Lat $\{N\}^{\prime}$ [4, p. 128]:

$$
\begin{align*}
& \mathscr{L} \in \operatorname{Lat}\{N\}^{\prime} \Longleftrightarrow \mathscr{L}=\bigoplus_{j=1}^{m} \operatorname{ker} J\left(k_{j}\right)^{r_{j}} \text { for an } m \text {-tuple of integers, } \tag{3}\\
& r_{1}, \ldots, r_{m}, \quad r_{1} \geqslant \ldots \geqslant r_{m} \geqslant 0, \quad k_{1}-r_{1} \geqslant \ldots \geqslant k_{m}-r_{m} \geqslant 0
\end{align*}
$$

Let $A \in \mathscr{F}(H)$ have a block decomposition (corresponding to the decomposition (2) of $H) A=\left(A_{i j}\right)$. Then

$$
A \in\{N\}^{\prime} \Longleftrightarrow\left\{\begin{array}{l}
A_{i i} \in\left\{J\left(k_{i}\right)\right\}^{\prime} \text { for all } i \tag{4}\\
\text { for } i<j, A_{i j}=\binom{0}{X} \text { with } X \in\left\{J\left(k_{j}\right)\right\}^{\prime} \\
\text { for } i>j, A_{i j}=(Y 0) \text { with } Y \in\left\{J\left(k_{i}\right)\right\}^{\prime}
\end{array}\right.
$$

Recall that $\{J(k)\}^{\prime}$ consists of polynomials in $J(k)$ and thus of lower-triangular matrices with equal entries on each subdiagonal $\left(a_{i+1, j+1}=a_{i j}, 1 \leqslant i, j \leqslant k\right)$. Now, we are able to describe Alg Lat $\{N\}^{\prime}$:

Theorem 1. Let $N \in \mathscr{B}(H)$ be a nilpotent operator of the form (1). Let $A \in$ $S(H)$ have a block decomposition (corresponding to the decomposition (2) of H) $A=\left(A_{i j}\right)$. Then A belongs to Alg Lat $\{N\}^{\prime}$ if and only if it has the following form:

$$
A_{i j}=\left\{\begin{array}{l}
\text { a lower-triangular matrix if } i=j \tag{5}\\
\binom{0}{X} \text { with lower-triangular } X \text { if } i<j \\
\left(\begin{array}{ll}
Y & 0
\end{array}\right) \text { with lower-triangular } Y \text { if } i>j
\end{array}\right.
$$

Proof. Let us recall that for a pair of integers $k, r ; 0 \leqslant r \leqslant k$, the space $\operatorname{ker} J(k)^{r}$ consists of all vectors $x=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ for which $\lambda_{1}=\lambda_{2}=\ldots=$ $\lambda_{k-r}=0$. If \mathscr{L} is a subspace of the form (3) and if $x=x_{1} \oplus x_{2} \oplus \ldots \oplus x_{m} \in \mathscr{L}$, then for every A with a block decomposition satisfying (5) and for all pairs i, j; $1 \leqslant i, j \leqslant m, A_{i j} x_{j} \in \operatorname{ker} J\left(k_{i}\right)^{r_{i}}$. This shows that $A \in \operatorname{Alg} \operatorname{Lat}\{N\}^{\prime}$.

Now, suppose that $A=\left(A_{i j}\right) \in \operatorname{Alg} \operatorname{Lat}\{N\}^{\prime}$. Let the integers j and s satisfy $1 \leqslant \boldsymbol{j} \leqslant \boldsymbol{m}, 0 \leqslant s \leqslant \boldsymbol{k}_{\boldsymbol{j}}$. If

$$
r_{i}=\left\{\begin{array}{l}
s \text { if } s \leqslant k_{i} \\
k_{i} \text { if } s>k_{i}
\end{array}\right.
$$

then $\mathscr{L}=\bigoplus_{i=1}^{m} \operatorname{ker} J\left(k_{i}\right)^{r_{i}} \in \operatorname{Lat}\{N\}^{\prime}$.

$$
A \mathscr{L} \subset \mathscr{L} \Rightarrow A_{i j} \operatorname{ker} J\left(k_{j}\right)^{s} \subset \operatorname{ker} J\left(k_{i}\right)^{s}, \quad s=0,1, \ldots, k_{j}
$$

for all pairs i, j satisfying $1 \leqslant i \leqslant j$. It follows that $A_{i i}$ is lower-triangular for all i and if $i<j$ then $A_{i j}=\binom{0}{Y}$ with a lower-triangular $k_{j} \times k_{j}$ matrix Y.

Let the integers i and s satisfy $1 \leqslant i \leqslant m, 0 \leqslant s \leqslant k_{i}$. Setting $r_{j}=\max \left\{s+k_{j}-\right.$ $\left.k_{i}, 0\right\}$ for $j=1,2, \ldots, m$ we obtain $\mathscr{L}=\bigoplus_{j=1}^{m} \operatorname{ker} J\left(k_{j}\right)^{r_{j}} \in \operatorname{Lat}\{N\}^{\prime}$, and this yields

$$
A_{i j} \operatorname{ker} J\left(k_{j}\right)^{s+k_{j}-k_{i}} \subset \operatorname{ker} J\left(k_{i}\right)^{s}
$$

for $j<i$ and every $s ; 0 \leqslant s \leqslant k_{i}$. It follows that $A_{i j}=(X, 0)$ with a lower-triangular $\boldsymbol{k}_{\boldsymbol{i}} \times \boldsymbol{k}_{\boldsymbol{i}}$ matrix X. This completes the proof.

Corollary. A nilpotent operator $N \in \mathscr{B}(H)$ is hyperreflexive if and only if $N=0$.
Proof. This is an obvious consequence of the descriptions (4) and (5) of the commutant of N and of the algebra $\operatorname{Alg} \operatorname{Lat}\{N\}^{\prime}$, respectively.

We shall need the following simple result:

Lemma 2. The double commutant of every nilpotent operator N consists of polynomials in N.

Proof. We use the models (1), (2) and (4) of N and of its commutant, respectively. Since $\{N\}^{\prime \prime} \subset\{N\}^{\prime}, A \in\{N\}^{\prime \prime}$ has a block decomposition $\left(A_{i j}\right)$ satisfying (4). For $p=1,2, \ldots, m$ let $B_{p} \in\{N\}^{\prime}$ have the block $B_{p p}=I$ and all other blocks $B_{i j}=0$.

$$
A B_{p}=B_{p} A \Rightarrow A_{i j}=0 \text { for all } i \neq j
$$

There exist polynomials $p_{1}, p_{2}, \ldots, p_{m}$ such that $p_{i}\left(J\left(k_{i}\right)\right)=A_{i i}(i=1,2, \ldots, m)$. Setting $C_{j} \in\{N\}^{\prime}$ for $j \in\{2,3, \ldots, m\}$ to be the matrix with the block $C_{1 j}=\binom{0}{I}$ and all other blocks 0 we obtain from $A C_{j}=C_{j} A$

$$
p_{j}\left(J\left(k_{j}\right)\right)=p_{1}\left(J\left(k_{j}\right)\right), . \quad j=1,2, \ldots, m
$$

and so $A=p_{1}(N)$.

2. General operators in finite dimensional spaces

The investigation of a general linear operator $T \in \mathscr{B}(H)$ can be reduced to the investigation of the nilpotent operators similarly as in [2] and [4].

Theorem 3. Let $T \in \mathscr{B}(H)$ have the minimum polynomial $m_{T}(\lambda), m_{T}(\lambda)=$ $\prod_{i=1}^{n}\left(\lambda-\lambda_{i}\right)^{m_{i}}$. Let $H_{i}=\operatorname{ker}\left(T-\lambda_{i} I\right)^{m_{i}}$.

Then the following assertions hold:
(i) $H_{i} \in \operatorname{Lat}\{T\}^{\prime}$ for $i=1,2, \ldots, n$,
(ii) $T_{i}=T \mid H_{i}$ is hyperreflexive if and only if $m_{i}=1$,
(iii) $H=H_{1} \oplus H_{2} \oplus \ldots \oplus H_{n}$,
(iv) T is hyperreflexive if and only if all operators T_{i} are hyperreflexive.

Therefore T is hyperreflexive if and only if it is similar to a diagonal operator.
Proof. The assertion (i) is an easy consequence of the fact that

$$
\left(T-\lambda_{i} I\right)^{m_{i}} \in\{T\}^{\prime \prime} .
$$

To prove (ii) let us observe that $\left\{T_{i}\right\}^{\prime}=\left\{T_{i}-\lambda_{i} I\right\}^{\prime}$. The operator $T_{i}-\lambda_{i}$ is nilpotent and so the assertion (ii) follows from the corollary of Theorem 1.

The rest of this theorem is a consequence of the following lemma:
Lemma 4. Let H_{1}, H_{2} be finite dimensional spaces. Let $H=H_{1} \oplus H_{2}$ and let $X \in \mathscr{F}\left(H_{1}\right), Y \in \mathscr{B}\left(H_{2}\right)$. Then the following assertions are equivalent:
(1) The minimum polynomials m_{X}, m_{Y} of X, Y are relatively prime.
(2) $\operatorname{Alg}(X \oplus Y)=\operatorname{Alg} X \oplus \operatorname{Alg} Y$.
(3) $\operatorname{Lat}(X \oplus Y)=\operatorname{Lat} X \oplus \operatorname{Lat} Y$.
(4) $\operatorname{Alg} \operatorname{Lat}(X \oplus Y)=\operatorname{Alg} \operatorname{Lat} X \oplus \operatorname{Alg} \operatorname{Lat} Y$.
(5) $\{X \oplus Y\}^{\prime}=\{X\}^{\prime} \oplus\{Y\}^{\prime}$.
(6) $\operatorname{Lat}\{X \oplus Y\}^{\prime}=\operatorname{Lat}\{X\}^{\prime} \oplus \operatorname{Lat}\{Y\}^{\prime}$.
(7) $\operatorname{Alg} \operatorname{Lat}\{X \oplus Y\}^{\prime}=\operatorname{Alg} \operatorname{Lat}\{X\}^{\prime} \oplus \operatorname{Alg} \operatorname{Lat}\{Y\}^{\prime}$.
(8) $\{X \oplus Y\}^{\prime \prime}=\{X\}^{\prime \prime} \oplus\{Y\}^{\prime \prime}$.

Proof. The proof of this theorem can be found e.g. in [4] and [6]. Let us recall the proof of (1) \Leftrightarrow (2).

If (1) holds then there exist polynomials a, b such that
$1=a m_{x}+b m_{y}$. Therefore

$$
\begin{aligned}
& I \oplus 0=\left(b \cdot m_{r}\right)(X \oplus Y) \in \operatorname{Alg}(X \oplus Y) \quad \text { and } \\
& 0 \oplus I=\left(a \cdot m_{x}\right)(X \oplus Y) \in \operatorname{Alg}(X \oplus Y) .
\end{aligned}
$$

This shows that (2) holds.
If (2) holds then there exists a polynomial q such that $q(X \oplus Y)=I \oplus 0$. Let us denote by p the least common divisor of m_{x} and m_{r}, and let $f=m_{x} / p$. Since $q(Y)=0 p$ divides q, consequently $m_{x}=p \cdot f$ divides $q \cdot f$. It follows that $f(X)=$ $I \cdot f(X)=q(X) f(X)=(q \cdot f)(X)=0$ and so $p=1$ and (1) holds.

By a simple computation [6] it can be also proved that (n) implies $(n+1$) for $n=2,3, \ldots, 7$. Using Lemma 2 we obtain easily that the assertions (2) and (8) are identical. This completes the proof of the lemma.

3. Algebraic operators in separable spaces

The preceding results can be easily proved also for algebraic operators in infinite dimensional Hilbert spaces. To show this let us suppose that H is a complex separable (infinite dimensional) Hilbert space and that $T \in \mathscr{B}(H)$ is algebraic, i.e. there exists a polynomial p with complex coefficients such that $p(T)=0$. In this case the notion of minimum polynomial makes sense and Lemma 3 remains true (with the same proof).

First we consider a nilpotent operator $T \in \mathscr{B}(H)$. Let $n \geqslant 1$ be an integer such that $T^{n}=0$ and $T^{n-1} \neq 0$. We may assume that $\|T\| \leqslant 1$ (if $\|T\|>1$, we replace T by $T /\|T\|)$. So T is a contraction of class C_{0} in the sense of [5, Chap. III.4] and we may use the theory of Jordan models of C_{0}-contractions [1, Theorem III.5.1].

Let H^{2} denote the Hardy space of analytic functions in the unit circle. The minimal function of T is $m(\lambda)=\lambda^{n}$. By [2, Theorem B] T is hyperreflexive if and only if the operator $S(m)=P_{m} S \mid H(m)$ is hyperreflexive. Here $H(m)=\left(m H^{2}\right)^{\perp}$, P_{m} is the orthogonal projection onto $H(m)$ and $(S u)(\lambda)=\lambda u(\lambda)$ is the unilateral shift. In our case $m(\lambda)=\lambda^{n}$ and $S(m)$ is a nilpotent operator on the n-dimensional Hilbert space $H(m)$ with $S\left(m^{n-1} \neq 0\right.$. By the corollary of Theorem 1 this is possible only if $n=1$, i.e. $T=0$. Therefore the following analogue of Theorem 3 holds:

Theorem 5. Let $T \in \mathscr{B}(H)$ be an algebraic operator having the minimum polynomial $m_{T}(\lambda)=\prod_{i=1}^{n}\left(\lambda-\lambda_{i}\right)^{m_{i}}$. Let $H_{i}=\operatorname{ker}\left(T-\lambda_{i} I\right)^{m_{i}}$.

Then the following assertions hold:
(i) $H_{i} \in \operatorname{Lat}\{T\}^{\prime}$ for $i=1,2, \ldots, n$,
(ii) $T_{i}=T \mid H_{i}$ is hyperreflexive if and only if $m_{i}=1$,
(iii) $H=H_{1} \oplus H_{2} \oplus \ldots \oplus H_{n}$,
(iv) T is hyperreflexive if and only if all operators T_{i} are hyperreflexive.

Remarks and open problems

1. In [2] a characterization of reflexive operators (for $\operatorname{dim} H<\infty$) was given. It follows from this characterization and from Theorem 3 that if $T \in \mathscr{B}(H)$ is hyperreflexive, then it is also reflexive. The other implication is not true, e.g. the operator $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ is reflexive, but it is not hyperreflexive.

In general (i.e. for $\operatorname{dim} H=\infty$) it is an open problem whether each hyperreflexive operator must be reflexive.
2. The following question is also a natural open problem:

Is a hyperreflexive quasinilpotent operator necessarily equal to 0 ?
3. The assertion of Lemma 2 holds for every operator (in a finite dimensional space). This can be proved combining Lemma 2, Theorem 3 and Lemma 4. A slightly different proof can be found in a recent book of R.A. Horn and C.R. Johnson [7, Theorem 4.4.19].

References

[1] Bercovici, H.: Operator Theory and Arithmetic in H^{∞}, Mathemaical surveys and monographs 26, A.M.S. Providence, Rhode Island, 1988.
[2] Bercovici, H., Foias, C. and Sz.- Nagy, B.: Reflexive and hyper-reflexive operators of class C_{0}, Acta Sci. Math. 43 (1981), 5-13.
[3] Deddens, J. A. and Fillmore, P. A.: Reflexive Linear Transformations, Linear Algebra Appl. 10 (1975), 89-93.
[4] Fillmore, P. A., Herrero, Domingo A. and Longstaff, W. E.: The Hyperinvariant Subspace Lattice of a Linear Transformation, Linear Algebra Appl. 17 (1977), 125-132.
[5] Sz.-Nagy, B. and Foias, C.: Harmonic Analysis of Operators on Hilbert Space, North-Holland, Amsterdam - Akadémiai Kiadó, Budapest, 1970.
[6] Zajac, M.: On the singular unitary part of a contraction, Rev. Roumaine Math. Pures Appl. 35 (1990), 379-384.
[7] Horn, R.A. and Johnson, C.R.: Topics in Matrix Analysis, Cambridge University Press, 1991.

Author's address: Mathematical Institute of Slovak Academy of Sciences, Śtefánikova 49, CS-814 73 Bratislava, Slovakia.

[^0]: ${ }^{1}$ This research has been partially suported by Grant of Slovak Academy of Sciences GASAV 367/91

