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Summary. In this paper a complete characterization of hyperreflexive operators on finite 
dimensional Hilbert spaces is given. 
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0 . INTRODUCTION 

Let H be a complex separable Hilbert space, 3S(H) the algebra of all continuous 
linear operators on H and T G &9(H). We denote by {T} ; the commutant of T 
(X G {T}' if and only if XT = TX) and by {T}" = f | ( W : XT = TX) the 
double commutant of T. A closed linear subspace M C H is called invariant for an 
algebra sf if it is invariant for every X G ssf. If M is invariant for the algebra {T}' 
then M is said to be hyperinvariant for T. The lattice of all invariant subspaces of 
$f is denoted by Lat sf. 

Let M be a set of subspaces of H. We denote by k\g*JZ the algebra of all 
X G &{H) for which every M G *dt is invariant. The algebra ^ C # ( i / ) is called 
reflexive if sf = AlgLatj^. An operator T G d?(//) is called reflexive if AlgT—the 
weakly closed algebra generated by T and the identity /—is reflexive. We shall write 
Lat T instead of Lat Alg T. In [3] a characterization of reflexive operators on finite 
dimensional spaces was given. If the commutant of the operator T is reflexive then T 
is called hyperreflexive. In this paper hyperreflexive operators on finite dimensional 
spaces are characterized. 

1 This research has been partially suported by Grant of Slovak Academy of Sciences GA-
SAV 367/91 
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In this paper $ means the direct (not necessarily orthogonal) sum. 

1. THE NILPOTENT CASE 

First we consider the nilpotent operators on a finite dimensional space # . Let 
N G 31(H) be a nilpotent operator of order n (i.e. Nn = 0, JVn""1 £ 0). Since 
similarity preserves hyperreflexivity (see [2] for a little more general result) we may 
assume that the matrix representation of N is 

(i) N = j(kx) e J(k2) e . . . e J(km), n = kx > k2 > .. ^ km. 

Let the corresponding decomposition of # be 

(2) # = # i e # 2 e . . . e # m . 

Here J(k) means the k x k Jordan cell (i.e. each entry on the first subdiagonal is 
1, and all other entries are 0). We shall use the following descriptions of {N}' and 
Lat{N}' [4, p. 128]: 

m 
Se G Lat{N}' <=> JS? = ^ k e r J(kj)r> for an m-tuple of integers, 

(3) j=\ 

r i i . . . , rm, r\ > . . . ̂  rm ^ 0, k\ — r\ ^ . . . ̂  km — rm > 0. 

Let .4 G 38(H) have a block decomposition (corresponding to the decomposition 
(2)otH)A = (Aij). Then 

(4) AЄ{NУ 

Aц € {J(ki)У for all»; 

for i < i, Ay = ( ° ) with X G {J(*i)}'; 

for i > i, ^ = (y o) with y G {/(*,)}'. 

Recall that {/(*)}' consists of polynomials in J(k) and thus of lower-triangular 
matrices with equal entries on each subdiagonal (oi+ij+i = a,j, 1 •$ i, j ^ &). Now, 
we are able to describe AlgLat{N}': 

Theorem 1. Let N G 39(H) be a nilpotent operator of the form (1). Let A G 
31(H) have a block decomposition (corresponding to the decomposition (2) of H) 
A as (Aij). Then A belongs to AlgLat{N}' if and only if it has the following form: 

(5) Aц = 
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' a lower-triangular matrix ifi = /; 

( v ) Wl^ ^ower"tr^angu^ar X l'̂ 1" < i» 

(y 0) with lower-trjanguiar y ifi > j . 



P r o o f . Let us recall that for a pair of integers i , r; 0 ^ r ^ ib, the space 
kerJ( . t) r consists of all vectors x = (Ai, A2,. . . , A*) for which Ai = A2 = . . . = 
A*_r = 0. If JSf is a subspace of the form (3) and if x = x\ © x2 © . •. ® xm G -Sf, 
then for every A with a block decomposition satisfying (5) and for all pairs i, i ; 
1 1$ i, j ^ m, ./l.-jSj G ker J(ib,) r i. This shows that A G AlgLat{N}'. 

Now, suppose that A = (Aij) G AlgLat{N}'. Let the integers j and 5 satisfy 
l^j^m^O^s^kj. If 

{ s if s ^ ki, 

Jb,- if 5 > ib,-. 

m 
then J^ = © ker J(jbt)

r* G Lat{N}' . 
»=i 

AX Q<e^ A^ ker J(kj)3 C ker J(ib,)5, s = 0 , 1 , . . . , fy, 

for all pairs i, .7 satisfying 1 ^ i ^ j . It follows that An is lower-triangular for all i 

and if i < j then J4,J = with a lower-triangular kj x kj matrix Y. 

Let the integers i and s satisfy 1 .$ i ^ m, 0 -̂  s ^ ib,-. Setting rj = max{s -f kj — 
m 

Jkt-,0} for j = 1, 2, . . . , m we obtain Sf = 0 ker J(fc;)
r> G Lat{N}' , and this yields 

i = i 

Aij ker J(Jb;)
5+fc^fci C ker J(k4)

5 

for i < i and every s; 0 •$ 5 ^ £,-. It follows that Aij = (.K, 0) with a lower-triangular 
fc,- x ib,- matrix X. This completes the proof. • 

Corollary. A nilpotent operator N G &(B) is hyperretiexive if and only ifN = 0. 

P r o o f . This is an obvious consequence of the descriptions (4) and (5) of the 
commutant of N and of the algebra AlgLat{N}', respectively. • 

We shall need the following simple result: 

Lemma 2. The double commutant of every nilpotent operator N consists of 
polynomials in N. 

Proof. We use the models (1), (2) and (4) of N and of its commutant, respec­
tively. Since {N}" C {N}' , A G {N}" has a block decomposition (Aij) satisfying 
(4). For p = 1, 2, . . . , m let Bp G {N}' have the block Bpp = / and all other blocks 
Bц = 0. 

ABP = BPA =*• Ah;s 0 f o r a l l t - - j . 
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There exist polynomials pu P2> • •» Pm such that p, (J(i ,)) = J4„ (i = 1 , 2 , . . . , ra). 

Setting C} G {N}' for i € { 2 , 3 , . . . , m} to be the matrix with the block C\j = I ) 

and all other blocks 0 we obtain from ACj = CjA 

Pi (J(W) = Pi (J(kj)), . i = 1,2, . . . , m 

and so A = p\(N). • 

2. GENERAL OPERATORS IN FINITE DIMENSIONAL SPACES 

The investigation of a general linear operator T € 39(H) can be reduced to the 
investigation of the nilpotent operators similarly as in [2] and [4]. 

Theorem 3. Let T 6 39(H) have the minimum polynomial my (A), mr(A) = 

ft (A - A t)
m'. Let Hi = ker(T - At/)

m». 

Then the following assertions hold: 

(i) Hi € Lat{T]f for t = 1, 2, . . . , n, 
(ii) Ti = T\Hi is hyperreflexive if and only if mi = 1, 

(Hi) # = # i e # 2 e . . . e # n , 
(iv) T is hyperreflexive if and only if all operators Ti are hyperreSexive. 

Therefore T is hyperreflexive if and only if it is similar to a diagonal operator. 

P r o o f . The assertion (i) is an easy consequence of the fact that 

(T-\iI)mi e{T}". 

To prove (ii) let us observe that {Ti}1 = {7} - A,/}'. The operator Ti - A, is 
nilpotent and so the assertion (ii) follows from the corollary of Theorem 1. 

The rest of this theorem is a consequence of the following lemma: • 

Lemma 4. Let H\, # 2 he finite dimensional spaces. Let H = #1 © #2 and let 
X 6 S9(H\), Y £ S9(Hi). Then the following assertions are equivalent: 

(1) The minimum polynomials mx, my of X, Y are relatively prime. 
(2) Alg(* © Y) = A l g * © Algy. 
(3) Lat(.X © Y) = Lat X © Lat Y. 
(4) Alg Lat(X © y ) = Alg Lat X © Alg Lat Y. 
(5) { * © y } ' = W © { Y } ' . 
(6) Lat{X©y} / = Lat{X} /©Lat{y} /. 
(7) AlgLat{X © y } ; = AlgLat{X}' © AlgLat{y}'. 
(8) {X®Y}" = {X}"e{Y}". 
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P r o o f . The proof of this theorem can be found e.g. in [4] and [6]. Let us recall 
the proof of (1) «» (2). 

If (1) holds then there exist polynomials a, b such that 
1 = amx + 6 m v . Therefore џx 

I e 0 = (6 • mY )(X 0 Y) £ Alg(X 0 Y) and 

0® 1 = (a • mx)(X ®Y) e Alg(X ®Y). 

This shows that (2) holds. 
If (2) holds then there exists a polynomial q such that q(X ® Y) = I 0 0. Let 

us denote by p the least common divisor of mx and mY, and let / = mx /p . Since 
q(Y) = 0 p divides q, consequently mx = p • / divides q • / . It follows that f(X) = 
/ • f(X) = « ( * ) / ( * ) = (9 • / ) ( * ) = 0 and so p = 1 and (1) holds. 

By a simple computation [6] it can be also proved that (n) implies (n + 1) for 
n = 2, 3, . . . , 7. Using Lemma 2 we obtain easily that the assertions (2) and (8) are 
identical. This completes the proof of the lemma. • 

3. ALGEBRAIC OPERATORS IN SEPARABLE SPACES 

The preceding results can be easily proved also for algebraic operators in infinite 
dimensional Hilbert spaces. To show this let us suppose that H is a complex separable 
(infinite dimensional) Hilbert space and that T € 39(H) is algebraic, i.e. there exists 
a polynomial p with complex coefficients such that p(T) = 0. In this case the notion 
of minimum polynomial makes sense and Lemma 3 remains true (with the same 
proof). 

First we consider a nilpotent operator T € 39(H). Let n ^ 1 be an integer such 
that T1 = 0 and T1"1 £ Q W e m a y assume that ||T|| -̂  1 (if | |T|| > 1, we replace T 
by T/ | |T| | ) . So T is a contraction of class Co in the sense of [5, Chap. III.4] and we 
may use the theory of Jordan models of Co-contractions [1, Theorem 111.5.1]. 

Let H2 denote the Hardy space of analytic functions in the unit circle. The 
minimal function of T is m(X) = An. By [2, Theorem B] T is hyperreflexive if and 
only if the operator S(m) = PmS\H(m) is hyperreflexive. Here H(m) = ( m / / 2 ) x , 
Pm is the orthogonal projection onto H(m) and (Sti)(A) = Au(A) is the unilateral 
shift. In our case m(A) = An and S(m) is a nilpotent operator on the n-dimensional 
Hilbert space H(m) with S(m)n~l £ 0. By the corollary of Theorem 1 this is possible 
only if n = 1, i.e. T = 0. Therefore the following analogue of Theorem 3 holds: 

Theorem 5. Let T G 39(H) be an algebraic operator having the minimum poly­

nomial mT(X) = ft (A - A,)m ' • Let Hi = ker(T - A,7)m<. 
t 'asl 
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Then the following assertions hold: 

(i) Hi € L a t { r } ' for i = 1, 2, . . . , n, 
(ii) Ti = T\Hi is hyperreflexive if and only if mi = 1, 

(Hi) H = / / i $ / f 2 e . . . e / / „ , 
(iv) T is hyperreSexive if and only if all operators Ti are hyperreSexive. 

REMARKS AND OPEN PROBLEMS 

1. In [2] a characterization of reflexive operators (for dim// < oo) was given. 
It follows from this characterization and from Theorem 3 that if T 6 &{H) is 
hyperreflexive, then it is also reflexive. The other implication is not true, e.g. the 

/ 0 0 0 \ 
operator I 1. 0 0 I is reflexive, but it is not hyperreflexive. ( 0 0 0 \ 

1 . 0 0 
0 0 0 / 

In general (i.e. for d im/ / = oo) it is an open problem whether each hyperreflexive 
operator must be reflexive. 

2. The following question is also a natural open problem: 
Is a hyperreflexive quasinilpotent operator necessarily equal to 0? 
3 . The assertion of Lemma 2 holds for every operator (in a finite dimensional 

space). This can be proved combining Lemma 2, Theorem 3 and Lemma 4. A 
slightly different proof can be found in a recent book of R.A. Horn and C.R. Johnson 
[7, Theorem 4.4.19]. 
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