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TWO SOLUTIONS FOR A NONLINEAR DIRICHLET PROBLEM 

WITH POSITIVE FORCING 

J. MATOS, L. SANCHEZ, Lisboa 

(Received July 19, 1994) 

Summary. Given a semilinear elliptic boundary value problem having the zero solution 
and where the nonlinearity crosses the first eigenvalue, we perturb it by a positive forcing 
term; we show the existence of two solutions under certain conditions that can be weakened 
in the onedimensional case. 

Keywords: semilinear elliptic equations, multiple solutions, shooting method, variational 
methods 

AMS classification: 34B15, 35J25 

1. INTRODUCTION 

Let fi be a bounded, regular open set in UN. Consider the boundary value problem 

Au + g(x, u) = h(x) in fi 

u = 0 on 9fi 

where h(x) is a nonnegative function in fi and g(x, u) is a nonlinear term that 
"crosses" the first eigenvalue Ai of —A in fi with zero boundary condition. If we 
substitute the right-hand side of (1.1) for t(fi + hi(x) where i i s a real parameter, tpi 
is the first (positive) eigenfunction and hi is a given function in fi then (1.1) becomes 
a problem of Ambrosetti-Prodi type and it is well known that (see Ambrosetti and 
Prodi [1], Berger and Podolak [3], Kazdan and Warner [10] and De Figueiredo [5]), 
with a precise definition of what "crossing an eigenvalue" means, there exists a 
number t* such that (1.1) is solvable if and only if t >. t* and has two solutions if 
t > V. In the onedimensional case, with a parameter t multiplying h(x) in (1.1), the 
existence of arbitrarily many solutions has been recently investigated by Zinner [17]. 
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Therefore it seems natural to ask under which conditions (1.1) possesses at least 
two solutions when h is a general positive function. Comparing both situations and 
noting that there is no parameter in (1.1) it becomes obvious that some additional 
assumption on g is needed to obtain such a result. In fact we make the simple, 
localizing hypothesis 

(1.2) g(x,0)=0, Vieft. 

Before stating our first result let us introduce the following notation: by G we 
shall denote the primitive G(x, u) = fg g(x, s) ds. 

Theorem 1. Let g : CI x R ^ U be a locally Lipschitz continuous function such 

that (1.2) holds and in addition 

(1) There exist a, b > 0 such that \g(x, u)\ < a|u| + 6 in Ti x R. 

(2) 
.. g(x,u) 2G(x,u) 
hmsup — < Ai < j3(x) = hm U-++O0 u 

uniformly for x in CI. 
(3) g(x,u) < 0 i f u < 0 . 
(4) Setting 0i, fa € L°°(Cl) such that 

liminf 9±Л = д ( x ) i l i m s u p iM = д ( x ) 

uniformly in CI, we have /3 = A or f$ = p\. 

Then for any h e C°'a(Cl) (with 0 < a < I) such that h >. 0 and h £ 0 in CI, 
problem (1.1) has at ieast two solutions. 

This theorem is a consequence of lemmas that we state and prove in Section 3: 
first we study the existence of a negative solution and then we look for a second 
solution. 

The case N = 1 deserves special treatment since, as one might expect, weaker 
assumptions yield the same type of theorem. The simplest results are obtained by 
assuming that g(x,u) = g(u) is independent of x. Setting CI = (0,it) and G(u) = 
fg g(s) ds we can state 

Theorem 2. Let g: R -» R be a continuous and locally Lipschitz function such 
that (1.2) holds (i.e. g(0) = 0), 

l i m i n f^)< 1 < l i m i n fM, 
u-+—oo U£ -U-+00 U 
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and there exist a,b>0 such that \g(u)\ ^ o|u| + 6,Vu 6 R. 

Then, if g(u) ^0 for all u^ 0, for any h € C([0, K]) such that h>-0 and h^O in 

[0,TI] problem (1.1) has at least two solutions. 

This and related results will be covered in the next section. 

2. T H E ONEDIMENSIONAL CASE 

Let g: U -¥ R be a continuous and locally Lipschitz function such that g(0) = 0 

and let / i : [0,it] -» R be a continuous function such that h ^ 0 and h ^ 0 in (0,rc). 

Consider the two-point boundary value problem 

u" + q(u) = h(t) 
(2.1) y W W 

u(0) = 0 = u(jt). 

As was mentioned in the introduction we denote by G the primitive G(u) = 

/ 0 "g ( s )ds . 

The following lemma is proved (under more general conditions) in Zanolin [15]. We 

extend h to (—oo, +oo) as a nonnegative continuous function such that sup h = sup h. 
R [o,«] 

L e m m a 3 . Assume that G is bounded below in R (i.e. inf G > —ooj. Then any 

solution of the equation u" + g(u) = h(t) can be globally defined in R. 

R e m a r k . Prom this result we conclude that if inf G > - o o then any maximal 

solution of the equation 

(2.2) u" + g(u) = 0 

is global (i.e. is defined in R). 

As is well known, for each e G R, the (unique) solution of the initial value au­

tonomous problem 

u" + g(u) = 0 
(2.3) 

u(0) = 0, u'(0) = e 

satisfies the equation | u ' 2 + G(u) = | e 2 in its interval of existence. 

Next, we shall use the phase-plane method to show that under adequate assump­

tions there exist some large negative values e for which the solution of the autonomous 

problem (2.3) cannot vanish in (0,TC). 

L e m m a 4 . Assume the following hypotheses: 
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(Gi) lim G(u) = +00. 

(G2) I i m i n f 2 - M = a < 1 . 
«-»-oo u2 

Then there exists a sequence of negative reaJ vaJues (en) , with en -> —oo when 

n -» +00, such that for each n e N the solution of (2.3) (with e = en) has no zeros 

in (0,lt]. 

P r o o f . It is enough to consider the case infG > — oo. Otherwise we consider 

the problem associated to the modified function g, where g(u) = g(u) if u < 0 and 

g(u) = 0 if u >. 0, noting that any solution of u" + g(u) = 0 with initial conditions 

u(0) = 0 and u'(0) = e < 0, which does not vanish in (0,7t], is a solution of (2.2) in 

[0, it]. In fact, if we set G(u) = /0" g(s) ds, then by (Gi), G is bounded below in R. 

Assume then that infG > - o o . Our hypotheses and Lemma 3 imply that, for 

each e 6 R, we may refer to the solution of (2.3) as a function u(t) = u(t,e) defined 

and continuous in R that has continuous derivative with respect to the first variable. 

Now we assume that there exists R > 0 such that 

g(u) < 0 if u < -R. 

Otherwise, by (Gx), there exists a sequence of negative real values u n with u n -> - o o , 

such that G'(un) = g(un) = 0 and G(un) = max G(u) for all n 6 N , and then by 
«€[«„0] 

the phase-plane analysis of the autonomous system, associated to the equation (2.2), 

namely 

u' =v, v' = -g(u), 

we obtain the assertion. 

With this hypothesis it is easy to prove that there exists eo such that if e < e0 

then the orbit of u(t,e) intersects the negative u-axis at a single point (S,0), where 

e F-> 6(e) < 0 is a continuous function of e < e0 which is uniquely defined by 

G(S(e)) = j and S(e) < 0. 

For each s ^ eo, denote by Te the orbit of «(-,e) and let te be the minimal time 

needed for Te to intersect the u-axis at the point (<5(e),0). We have 

'* = / — du 

V t2(G(ÍЬG(t i ) ) " 

Let <p(u) = \— G(u). By (G 2 ) , limsupip(u) = +oo. Then there exists a sequence 

of negative real values (Sn) with Sn -+ - o o when n -> +oo, such that | u 2 - G(u) < 
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\S2

n - G(Sn) for Sn < u <. 0, which means that 

S2 -u2 

G(Sn) - G(u) < -^— for Sn < u <. 0. 

Without loss of generality, we can suppose that, for each n e N, there exists only 

one e„ < 0 such that S(en) = Sn (en = -^/2G(Sn)). We thus obtain a sequence (en) 

of negative real values with en -> - c o , such that 

t = f° du ^ Ґ 
e" Js. # ( Ö - G(u)) * Js. 

du 

«5„ ./2(G(Í„) - G(«)) j<5„ ^ T ^ 

Finally, since for each n £ N, the negative semi-period of the solution of (2.3) 

(with e = e„), i.e. the minimal time needed for (u(t),u'(t)) to intersect the u'-axis 

in (0, +00), is 2te. > K, u has no zeros in (0,n]. D 

R e m a r k . With (Gi), for e < 0, the solution u of (2.3) is global or takes a 

positive value in its interval of existence (in particular, for some t > 0, u(t) = 0). 

L e m m a 5. Assuming that G is bounded below and satisfies (G2), problem (2.1) 

has at ieast one nonpositive solution in (0,it). 

P r o o f . Let M = ||hW^ and consider the auxiliary problem with initial condi­

tions, with e G R, 

u" + g(u) = M 
(2.4) V ' 

u(0) = 0, u'(0) = e. 

Let f(u) = g(u) - M. Then F(u) = / * / ( s ) ds = G(u) - M a and 

i- • « 2 J ? ("> i- • 12G(") 
hm inf — 5 - ^ = hm inf — i r ^ = a < 1. 
u—•—00 u ^ M->—00 U ^ 

Since G is bounded below it follows that lim F(u) = +00. Lemma 4 implies that 

there exists e < 0 such that the solution u of (2.4) cannot vanish in (0,TT]. Therefore 

u(t) < 0 in (0,1tJ. 

Since u" + g(u) = M >. h(t) in (0,n), u(0) = 0 and U(TC) <. 0, then u is a lower 

solution of the problem (2.1). On the other hand it is obvious that u; = 0 is an upper 

solution of the problem (2.1). 

By the lower and upper solutions method (see e.g. Mawhin [13]) we conclude that 

(2.1) has at least one solution v, with u ^ v ^ 0 in (0, K). D 

45 



R e m a r k . If one of the hypotheses 

(i) g(u) < 0, Vu < 0, 

(ii) g(u) >- 0, Vu < 0, 

(hi) M < 1 ) V u < 0 , 
u 

(iv) h > 0 i n [0,TC], 

(v) there exists /? > 0 such that h(t) >- /3sini, Vt € [0,TC] 

holds, then v < 0 in (0,TC), U ' (0 ) < 0 and V'(K) > 0. This is a consequence of 

an elementary version of the maximum principle in cases (i), (ii) and (iii) and of 

elementary pointwise estimates in cases (iv) and (v). 

For each e 6 R we denote by u(-,s) the solution of the initial value problem 

u" + g(u) = h(t) 

u(0) = 0,u'(0)=e. 

L e m m a 6. Assume that G is bounded below and satisfies (G2) and 

(G3) l i m i n f ^ > l . 
•>' u-H-oo U 

Then, if there exists S < 0 such that u <. S implies g(u) <. 0, then there exists 

a sequence (en) with en -» +oo such that, for each n e N the solution u(-,e) has 

exactly one root in (0,TC]. 

P r o o f . We divide the proof into two steps. 

Step 1. We claim that , for e sufficiently large, u(-,e) has a first zero T£ e (0,TC) such 

that u'(Ts,e) -» —oo as e -> +oo. 

In fact, let P > 1 and let R > 0 be such that g(u) - h(t) > Pu if u >- R and 

t 6 [0, TC]. Given T > 0, we can show by integrating the equation of problem (2.5) in 

[0, T] that , if e > 0 is large, then u(-, e) reaches the value R for some t0 6 [0, T] . Using 

a well known comparison argument with respect to the linear equation u" + Pu = 0, 

it turns out that there exists ii < t0 H—-= such that u(t\,e) = R, and it is easy 

to see that u'(ti,e) -+ —oo as e -¥ +oo. Then, as above, we conclude that , given 

a > T -\ = , u(t,e) has a zero Tc ^ a when e is sufficiently large and, further, 
y/B . 

u'(Ts,e) -> - o o as e -* +oo. 

Since we can choose r and a such that 0 < r < TC = and r H = < a < TC, 

hence for e is sufficiently large, Ts exists as claimed. 

Step 2. Let us take the solution u(t,e) and suppose that the claim is false. Then 

there exists e0 > 0 such that if e > e0, u(-,s) has besides the root Te another root 
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Ss ^ it. We can suppose that e0 is so large that Ac := min u(,e) < S, and then 

there exist TE < aE <_ be <. Se such that 

u(ae,e) = u(be,e) = Ae, 

u'(-,e) < 0 in [T£,ae) and u'(-,e) > 0 in (b£,Se]. Integrating the equation 

£(T+°W)-*«-' 
between t € (Te,aE) and oE and using the mean value theorem we obtain 

- ^ - + G(u(t)) - G(Ae) < M(u(t) - A,) 

where M = max h(t) so that, defining G(u) = G(u) - Mu, 

- t ° I d t I J ^ t ° d « 
y„, i*»i JA.j2(is(At)-S(u)) 

f° du 

'^J2(G(AS)-G(u)) 

so that 

du 

Similarly we obtain 

5£ - fc£ >-

(2.6) 
,0 

n>Se-Te>-V2 —== 
JAL JG, JG(AЄ) - G(u) 

Now it is easy to see that A£ -» —oo as e -+ +oo (in fact " y ' ^ G(AS)). On the 

other hand, since limsup (^—G(u)j = +oo, there exists a sequence An ->• —oo 

such that 
2(G(An) - G(u)) <A2

n-u
2i{An<u<.0. 

Since Ae is a continuous function of s, it takes arbitrarily (negative) large values, in 
particular it assumes the values An for large n. But then, if e is such that AE = An, 
we have 

r / ° du „ t d« 

^ / / > 2 / /--
•!*« ^G(A.) - G(u) J*~ VAl - «2 

= 7 1 , 

contradicting (2.6). Hence the lemma is proved. D 
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We are now in a position to state and prove our first multiplicity result. 

Theorem 7. Assume that G satisfies (G2), (G3), and the following growth as­

sumption on g: 

(G4) There exist a,b>0 such that \g(u)\ <. a |«| + b, u 6 R. 

Let one of the following conditions hold: 

1. g(u) <.0foru<,0. 

2. There exists S < 0 such that g(u) <. 0 for u <. S, and h > 0 in [0, it]. 

Then the problem (2.1) has at ieast two solutions. 

P r o o f . The remark after Lemma 5 implies that we can take a negative solution 
of (2.1) v such that v < 0 in (0, it), v'(0) < 0 and V'(K) > 0. 

For each e e R, denote by m = m(e) the number of zeros of z(-,e) := «(•, e) — v(t), 
i.e. the number of intersections of the graphs of u and v in (0,7t). For e # f'(0), by 
the uniqueness theorem and the fact that z(-,e) is nontrivial, the orbits of v and u 
intersect transversally and m < +co. 

With our hypotheses z(t,e) and z'(t,e) depend continuously on e and t, uniformly 
with respect to t 6 [0,n]. It follows from the uniqueness theorem that the zeros of 
z(-,e) (with e 5̂  v'(0), noting that z(-,v'(0)) = 0) are all simple and hence they 
depend continuously on e. By the elementary implicit function theorem (see Kaper 
and Kwong [9], Lazer and McKenna [11], Dinca and Sanchez [6]), if m(e) # m(e') for 
some e' > e > v'(0), then there exists e > v'(0) (e < e < e') such that u = u(-,e) = 
v + z(-,e) is a solution of (2.1). If m(e) < m(e') then 

e = inf {£ > £: z(t, i) has at least m(e) + 1 zeros in (0,it)}. 

If m(e) > m(e') then 

? = sup{f > e: z(t,e") has at least m(e) zeros in (0,it),Ve <. e" <. i}. 

Therefore v and u are distinct solutions of (2.1). 

Now, it is enough to prove the assertion when m(s) = m(e') for all £,£' > v'(0). 

Assuming without loss of generality that 5 < minu we can prove repeating the 
[0,it] 

argument of Lemma 6 (Step 1) that there exists £] > v'(0) such that m(e) >. 1 for 
£ >• E\. Hence, by Lemma 6, for some e > v'(0), m(e) >• 1 and «(•,£) has exactly one 
root in (0, it]. Therefore, in case that m(e) = m for all e > v'(0), m >. 1 and m is 
an odd number. Since z(t,e) -¥ 0 uniformly in [0,rc] when e -+ v'(0), we can choose 
£ > v'(0) sufficiently small such that u < 0 in (0,7t]. Then 

u" + g(u) = h(t) in (0, it), u(0) = 0 and U(K) = ^(it) <_ 0, 

48 



and therefore u is a lower solution of (2.1). By the lower and upper solutions method, 

using the same argument as in Lemma 5, we conclude that (2.1) has a solution v\ >- u, 

nonpositive in ( 0 , K ) . Since u is strictly bigger than v in some neighbourhood of 0 

(u'(0) = 0 and v'(0) < 0), vr is a solution of (2.1) distinct from v. D 

Theorem 2 stated in the introduction follows from this theorem. 

We observe that the case g = g(t,u), for t £ [0,n] and u € R, can be treated by 

variational methods (as we do in the next section). 

3. T H E /V-DIMENSIONAL CASE 

Let n be a bounded domain in R-^. Consider the Dirichlet boundary value problem 

(1.1), where h e C 0 ' a ( n ) (with 0 < a < 1) is a nonnegative and nonzero function in 

n , and ( / i f l x R - r R i s a C 1 function that satisfies the condition 

(3.1) S ( i , 0 ) = 0 , V i e n 

and the following growth hypothesis: 

(Gs) There exist a,b > 0 such that \g(x,u)\ <. a|u| + b in n x R. 

Let Ai, A 2 , . . . , A j , . . . be the sequence of eigenvalues of the linear problem 

Au + Xu = 0 in n 

u = 0 on an, 

with each A; (i € H) occuring in the sequence as often as its multiplicity. Let 

Vi) V2, • • •, fi, • • • be the corresponding sequence of eigenfunctions. 

By the Krein-Rutman theorem, 0 < A i < A 2 < . • • • < A; <.••• and we can assume 

that ¥>! > 0 in n and ^ < 0 on dtt, where n(x) is the outward pointing normal to 

8Q. 

L e m m a 8. Assume that 

(Qe) l imsup — ^ — < Ai uniformly in Ti. 

Then problem (1.1) admits at ieast a nonpositive solution. 

P r o o f . Consider the modified problem 

Au + g(x,u) = h(x) i n n 

M = 0 on an, 
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where g(x,u) = g(x,u) if u < 0 and g(x,u) = 0 if u >. 0. By hypothesis (G6), the 
functional J e C^Cff^ft), R) defined by 

J(u) = J f-*!!-! _ G(x,u) + h(x)uj dx 

has an absolute minimum, where G denotes the primitive 

G(x,u) = / g(x,s)ds. 
Jo 

By well known regularity results the minimum is attained at a function v(x) of class 
C2 which is a solution of (3.2). An elementary form of the maximum principle shows 
that v <. 0 in ft. Therefore, v is a nonpositive solution of (1.1). • • 

R e m a r k . If one of the following hypotheses holds: 
(i) g(x,u) < 0, Vx e ft,Vu <. 0, 

(ii) g(x,u) >. 0, Vr € ft,Vu <. 0, 
(iii) S<£j2!l ^.\1: Va: £ ft, Vu ^ 0 and inequality holds in a subset of ft with positive 
measure, 

then v < 0 in ft and | ^ > 0 on 9ft. 
Therefore, assuming one of the above conditions together with the hypotheses of 

the last theorem, problem (1.1) has at least one negative solution. 

Let H = H&(Sl) and let J: H -+ R be the functional defined by 

J(u) = J (J-^-L - G(x, u) + h(x)u) dx. 

It follows that J e C 1 (H, R) and 

J'(u)v= / (Vu-Vv-g(x,u)v + h(x)v) dx 
Jo. 

for u,v e H, where we denote by (•, •) the inner product in H and by VJ(u) the 
gradient of J at a point u 6 H. Actually the solutions of (1.1) are the critical points 
of J. 

We introduce in H the norm ||u|| = (/n |Vu|2dx\ 

Lemma 9. Assume (Gs) and 
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(GT) A. < /3(x) = hm -G(x'u> uniformly in il. 

(Gg) There exist ft, ft € £°°(n) such that 

liminf 2 i2 - - ) = A W i l i m s u p gfelHi = A ( , ) 
u-++oo « u-»+oo « 

uniformiy in O. 

(G9) 0 = A or 0 = ft. 

(G10) limsup ' < Ai uniformly in fi. 

If g(x,u) <. 0 for « ^ 0 then the functional J satisfies the Palais-Smale condition 

((PS) for short) in H. 

R e m a r k . This lemma is reminiscent of another one by Marino, Micheletti and 

Pistoia [12, (1.6) Remark]. We sketch the proof for completeness. 

Proof. Consider the case /3 = ft. For the case /3 = ft the proof would be similar. 
Here we introduce «+ = max(«, 0) and u~ = max(—«, 0) for « e R. 

Let («„) be a sequence in H such that J'(un) -> 0 and (J(un)) is bounded. To 
prove that (u„) possesses a convergent subsequence it is enough to show that (u„) 
is bounded (see Rabinowitz [14]). 

By the hypothesis 

(3.3) J ' (u„) -4 0 

there exists M > 0 such that || J ' (u„) | | <. M for all neN. Then 

| J ' («„)«-1 < A f | | « - | | , V n e N . 

Since g(x, u) < 0 for u <. 0 and g(x, un)u~ = g(x, -u~)un, it follows from hypothesis 

( d o ) that 
0 <. -gr(a;,«„)«- < a(u~)2 + C 

for some a < Ai and C > 0. By the Holder and the Poincare inequalities we obtain 

| J ' ( u „ ) u - | = I J ( |Vu- | 2 + g(x,«»)«- - h(x)u~) dx\ 

nf-^flK-ll-C 

Hence (u~) is bounded. 
Assume by contradiction that (u„) is not bounded or equivalently that (u+) is not 

bounded. Then for some subsequence, ||u+|| -> +oo (here and below, we keep the 
same index to denote subsequences). 
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Let un = TS—- There exists a subsequence un —>• u for some u e H. From (3.3) 
we get J'(un)v —> 0 for all v e H. In particular, 

(3.4) -~-r J'(un)v -> 0, V» € ff. 
IKH 

Observe that, for v e H, 

'j'(Un)v=f(vun.Vv-^v)dx 
\\ut\\ Ja V ||u+|| / 

- TT̂ r-r / (Vu~ • VD - h(x)v) dx. 
l|Un || /n 

Since (un) is bounded in H and ||u+|| -» +oo, (3.4) yields 

(3.5) / (v^.Vv-ik^A^te^o 
Ja \ \\uZ\\ J 

for each v 6 H. By (G5) we get 

\ 9 ± ^ \ < a M + b = a ^ n + u ^ \ b ^ 

Thus f-jj-ffi-j is bounded in £2(f2) and for a subsequence, 9<fc+?? - 1 g0 for some 
30 6 L2(0). From (3.5) it follows that 

(3.6) f (Vu • Vv - g0v) dx = 0, Vv e H. 
Jn 

Since g satisfies the condition (3.1) we have 

g(x, un) = g(x, u+) + g(x, -un) 

and it is easy to prove that g j x ' " " ' -* g0. 
By standard argument based on assumption (G5) (see e.g. Berestycki, Figueiredo 

[2] or Gossez, Omari [8]), g0 can be written as 

g0(x) = m(x)u(x) 

where the L°° function m satisfies 

(3.7) (3(x) ^ m(x) ^ p2(x) a-e- « ^. 
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Consequently, by (3.6), u is a solution of 

Afi + m(x)u = 0 in fi 
(3.8) • ' 

fi = 0 on 3fi. 

The proof will be completed by the argument from Marino, Micheletti and Pistoia 
[12]. 

From the hypothesis (3.3) it follows that -^-TJ'(ti„)u+ -+ 0. Then we have 

(3.9) / m(x)u2 dx= J g0u = 1, 
Ja Jn 

which yields by (3.6), taking v = u, \\u\\ = 1. 
Since (J(un)) is bounded we get 

(3.10) - L - - («„ ) - , - . 
IKII 

Also we may assume that C |" '~>^ -> 0 a.e. in fi so that 

Ja \\utf J'n 2 

then (3.10) yields /Q/?(:r)fi2 = 1. From this equality, (3.9) and (3.7) we conclude 
that 

m(x)u(x) = P(x)u(x) a.e. in fi. 

Thus, from (3.8), fi is a solution of 

Afi + 0(x)u = 0 in fi 

fi = 0 on 9fi. 

If fi 7̂  0 then by an elementary form of the maximum principle, fi > 0 in fi (since 
fi >. 0 in fi), but then by the theory of positive operators (see Zeidler [16]) we obtain 
a contradiction with hypothesis (G7). Therefore fi = 0, a contradiction. D 

Applying the Poincare inequality it is easy to prove the following result. 

Lemma 10. Assume hypothesis (G7). Then J(t(pi) -+ -00 when t -f +00. 

P roo f of T h e o r e m 1. According to the remark following Lemma 8, it is 
easy to see that the negative solution v yields a local minimum of J with respect to 
the norm of Cg(fi). A theorem of Brezis and Nirenberg ([4]) implies that in fact J 
attains a local minimum at v. By lemmas 9 and 10 we can invoke the mountain pass 
theorem to conclude. D 
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