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Summary. The theorem of Edmonds and Fulkerson states that the partial transversals 
of a finite family of sets form a matroid. The aim of this paper is to present a symmetrized 
and continuous generalization of this theorem. 
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1. INTRODUCTION 

There are two classical results concerning both the transversal theory and the 

matroid theory. The first is the theorem of Rado [17], who established a necessary 

and sufficient condition for a finite family of sets to possess a transversal which is 

independent in a given matroid. The second result, stated by Edmonds and Fulkerson 

[4] (and also proved independently by Mirsky and Perfect [14]) states that the set 

of partial transversals of a finite family of sets form a matroid. There are many 

variations and generalizations of these two theorems. A comprehensive survey of 

this field can be found in the books of Mirsky [13] and Welsh [20]. 

In [8] and [9] we introduced .^-systems of representatives and ^-poly t ransver-

sals. They present a new concept joining transversals and matroids. An Jt'-system 

of representatives of a finite family srf = (At: t £ T) of subsets of a finite set 5 is 

a family (xt: t € T) of elements of S such that xt 6 At for any t e T and, for any 

s G S, the set {t e T; xt = s} is independent in a given matroid Ms. Furthermore, 

the |S | dimensional vector (us: s G S) where us = \{t e T; xt = s}\ is called an 

*This research was partially supported by Grant of Slovak Academy of Sciences No. 
2/1138/94 and by EC Cooperation Action IC 1000 "Algorithms for Future Technolo-
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Jt'-polytransversal of st?'. In [9] we proved that the set of ^-polytransversals of srf 

forms the set of integral independent vectors of a polymatroid. This generalizes the 

theorem of Edmonds and Fulkerson. 

Other generalizations of transversals and the theorem of Edmonds and Fulkerson 

are presented in [7] and [21]. 

Now we prove a symmetrized and continuous analogue of the results of [9]. As a 

motivation let us recall two theorems from transversal theory. We will express them 

in the language of bipartite graphs. A finite bipartite graph G = (S, T; E) consists of 

two finite disjoint vertex sets S, T and a set E of edges joining the vertex sets S and 

T. If X C S and Y C T we say that X = { x i , . . .xk} can be matched into Y in G if 

there exists a set of edges joining each Xi to a distinct member of Y (in other words 

if the subgraph of G determined by X U Y has a matching which covers every vertex 

of X). If X C S then dX is the set of vertices of T which are endpoints of an edge 

whose other endpoint is in X. The following theorem was proved by Brualdi [2]. 

Mirsky [13] calls it a symmetrized version of Rado's theorem. 

T h e o r e m 1. Let G = (S,T;E) be a finite bipartite graph. Let Mi, M2 be 

matroids on S, T with rank functions Q\, Q2, respectively. Then there exists X C S 

with \X\ = k such that X is independent in Mi and X can be matched into an 

independent set Y of M2, if and only if for all X C S, 

Qi(s\x) + Q2(ax)>k. 

The next theorem was proved by Perfect [15] (see also [20]) and generalizes the 

theorem of Edmonds and Fulkerson. 

T h e o r e m 2. Let G = (S, T; E) be a finite bipartite graph. Let M be a matroid 

on T with rank function Q. Then the collection 

{X: X C S, X can be matched in G into an independent set of M} 

is the set of independent sets of a matroid Mi on S with rank function QI such that, 

for any X C S, 

Qi(X) = min(Q(dA) + \X\A\). 
ACX 

The aim of this paper is to show that symmetrized and continuous analogues of 

^-polytransversals form a polymatroid. Our results generalize Theorems 1 and 2 

but also the results from [7], [8], [9] and [21]. 

We assume familiarity with matroids and transversals. The main literature is 

the book of Welsh [20] where all basic results regarding matroids, polymatroids and 

transversals can be found. As other sources let us note [1], [5], [13] and [18]. 
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2. PRELIMINARIES 

Let R+ (Z + ) denote the set of nonnegative real (integer) numbers. If S is a finite 

set, then denote by R+ (Z + ) the space of real (integer) valued nonnegative vectors 

with coordinates indexed by S. Similarly, if also T is finite, then R +
x T ( Z +

x T ) de­

notes the space of real (integer) valued nonnegative vectors with coordinates indexed 

by S x T. For example 

Us
+ = {u = (us: s e S); ws £ R + } , 

1% = {u = (u s : seS);use Z+} , 

Rf x T = {u = (u s , t : seS, teT);uStte R + } . 

For each x e R+ and s € S denote the sth coordinate of x by x(s). For x e R j 

and A C S we define x(A) = Y^ x(s)> a n d x|yl denotes the restriction of x to A. 
seA 

We call the quantity |x| = x(S) = 2 x ( s ) t n e modulus of x. 
ses 

A polymatroid P (on S) is a pair (S, Q) where S, the ground set, is a non-empty 
finite set and Q, the ground set rank function, is a function Q: 2S -> R+ such that 

(i) e(0) = o, 
(2) i f i C B C S then gA $ ^B , 

(3) if A, B C S then £A + QB }t Q(A U B) + Q(A n _ ) . 

(Items (2) and (3) state that Q is monotone and submodular, respectively.) Then a 

vector u G R+ such that u(X) ^ QX for all X C S is called an independent vector 

of P. . 

If £: 2 s -+ Z+ then P = (S, g) is called an integral polymatroid. Furthermore, if 

Q({S}) = 0,1 for any s € S then P is called a matroid. One of the most important 

properties of polymatroids is expressed in the following theorem (see [3], [12]) known 

as the polymatroid intersection theorem of Edmonds. 

T h e o r e m 3. Let Pi = (S, Qi) and P2 = (S, Q2) be polymatroids and let k e R+. 

Tijen there exists a vector u € R+ independent in both Pi and P2 and with modulus 

at least k if and only if for all subsets X C S 

Qi(X) + Q2(S\X)^k. 

Furthermore, if both Pi, P2 are integral we may insist that the vector u be integral. 

If P = (S,Q) is a polymatroid and k £ R+, then it is easy to check that P<fc> = 

(S,QW) such that QW(X) = min{k,QX} (X C S) is polymatroid. We call P<fc> the 

truncation of P at k. 

97 



If P = (S, g) is a polymatroid and 0 # X C S then pW = (X, g(x>) (where gW 
is the restriction of g to X) is a polymatroid. We call PW the restriction of P to X. 

Let I, Si (i 6 I) be finite sets, S.nSj = 0 for any i ^ j and let P, = (Si, p;) (i 6 J) 
be polymatroids. Let S = \J St and g: 2s -¥ R+ be such that for any X C S, 

<€/ 

0(x) = V>(xnSi) . 
ie/ 

Then P = (S, e) is a polymatroid. We call P the product of the polymatroids Pi 
(i 6 /) and denote it by fl P.-

ie/ 
Clearly, if P is integral and k G Z+ then P ^ and PW are integral. If Pi (i G /) 

are integral then Y[ Pi is integral, 
ie/ 

Finally, if k G R+, denote by U*,s the polymatroid (S,g) such that gX = &|X| 
for any X C S. 

Now we introduce the main notions of this paper. Throughout the paper let S, T 
be two disjoint finite sets. Let 0>s = (P. = (T, gs): se S), 9>T = (Pt = (S, gt): 
t G T) be systems of polymatroids, let P2 = (T, g2) be a polymatroid and X C S, 
J C T . 

A vector a = (a,,.: s G X, t G J) G R j x j is called an (X, J, ^ s , £»T, P2)-sysiem 
of representatives (in abbreviation (X, J, ^ s , ^ T , P2)-SiJ) if: 

- the vector as = (as,(: t G J) G R+ is independent in Ps for any s 6 X, 
- the vector a.t = (as,(: s G X) £ R£ is independent in Pt for any t G J, 
- the vector v = (vt = J] sex ^ M : t G J) G R+ is independent in P2. 

Furthermore, the vector u = (us = 5Z(eJ°s.'; « G X) G R+ is called an 
(X, J, &>s, &T, P2)-polytransversal. In this case a is called an (X, J, 0>s, 0>T, P2)-
origin of u. 

Moreover, if Pi = (S, gi) is a polymatroid, then a vector a' = (a'st: s G X, t G J) G 
R**'7 is called an (X, J, ^ s , ^T , Pi> Pi)-system of representatives (in abbreviation 
(X,J,0>s,^T,PuP2)-SR)ii: 

- the vector a' is an (X, J, 0>S,0>T, P2)-SR, 
- the vector u' = (u's = J^teJ a's,t: s G X) G R* is independent in Pi. 

The notions of transversals and systems of distinct representatives and also 
their generalizations introduced in [7], [8], [9], [10] and [20] are in fact integral 
(X, J, 0>s, @>T, P2)-polytransversals and (X, J, 0>s, 0>T, Pi, P2)-systems of represen­
tatives for special classes of X, J, 0"s, 0>T, P\ and P2. The main distinction 
introduced here is that we deal with vectors whose coordinates are from R+ and 
not only from Z+. In this way we obtain a "continuous" analogue of transversals 
and systems of representatives. On the other hand our results presented in the next 



section (Theorems 4 and 5) remain true if we deal only with integral vectors and 
integral polymatroids. Thus we generalize the results from [7], [8], [9], [10], [20] and 
[21]. 

At the end of this section we introduce another notation. Let Z C S x T. Then 
denote 

(4) Z/s = {teT: (s, t) e Z} for any s e S, 

(5) Z/t = {seS: (s,t)eZ} for any teT. 

3. THE MAIN RESULTS 

Primarily we generalize the operation product of polymatroids. 

Lemma 1. Let / , Si (i e I) be finite sets, S; n Sj = 0 for anyi^j. Let Pj = 
(Si, Qi) (i e I) and P' = (I,Q') be (integral) polymatroids. Take S = (J S{ and Q: 

i€I 
2s -+ R+ such that for any X CS, 

(6) Q(X)=min(e'(I\L) + ^2Qi(XnSi)). 
LQ' V i£L ' 

Then P = (S, Q) is an (integral) polymatroid. Moreover, a vector a = (as: s e 
S) e R+ is independent in P if and only if it is independent in T[ Pi and the vector 

iei 
u = (Ui = Y, a*: » e I) e R+ is independent in P . We will denote P by Pi T[ P;. 

seSi ie/ 
Proof . It is easy to check that Q is monotone and £>(0) = 0. Let X (X') be a 

subset of S and let L (V) be the subset of I for which the minimum occurs in (6). 
Then using the monotonicity and submodularity of Q' , Qi (i € I) we get 

QX + QX' = Q'(I \ L) + VJ Qi(X n Si) + Q'(I \ V) + VJ Qi(X' n Si) 
i£L iSL' 

^ Q'(I\(LnL')) + e'(I\(LUL')) 

+ £ Qi((Xux')nSi)+ 53 ftpni')ns;) 
iSLOL' i6LuL ' 

^ s(XuI') + ^ n r ) . 

Thus p is submodular and P = (S, Q) is a polymatroid. 
Take tp: S -> I such that ¥>(x) = i iff x e S, (i 6 / ) . Let gi: 2 s -> R+ be such 

that ei(X) = Q'(<p(X)) for any X C S (<p(X) = {< (̂x); X 6 X}). Then it is easy 
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to check that Pi = (S, Qi) is a polymatroid and that a = (as: s € S) e Rf is 
independent in Px iff ( 2 as: i e I) e Ri is independent in P'. Finally, let P2 = 

seSi 
(S, Q2) denote the polymatroid T[ Pi- Then for any X C S, 

.€/ 

(7) e(J f )=mjn( f t (X\ .4) + e2(A)). 

Let a e Rf be independent in P. Then a(X) < QX and it follows from (7) that a 
is independent in both Pi and P2. On the other hand let a be independent in both 
Pi and P2. Then, for any X C S, a\X is independent in both p[x) and P2

X) (the 
restrictions of Pi and P2 to X, respectively), and from Theorem 3 and (7) it follows 
that a(X) ^ QX. Thus a is independent in P. 

Finally, if Q', Qi (i e /) are integral then also g is integral. D 

Now we generalize Theorem 1 to (S,T, 2PS, &>T, Pi, P2)-systems of representatives. 

Theorem 4. Let S, T be finite sets, let &>s = (P, = (T, g,): s e S), &>T = 
(Pt = (S, pt): t € T) be systems of (integral) polymatroids, let Pi = (S, Qi), P2 = 
(T, Q2) be (integral) polymatroids and let k e R+. Then there exists an (integral) 
(S,T, 2?s, &>T, Pi, P2)-system of representatives with modulus at least k if and only 
if 

xð%т^вl{S^X) + Є2{T^J) 

+ mtai Í^Q.{Z/s) + Y^Qt({{XxJ)\Z)/t))) > k. 
\sex KJ )) 

Proof . Take Ts = ({s} x T, Q'S) such that Q'S({S} x J) = QS(J) (s G S, 7 C T) 
and P; = (S x {t},g't) such that Q[(X x {<}) = et(X) (t e T,X C S). Take the 
polymatroids P s , Pr on S x T such that P s = Px| fj P', and PT = P2| n P.- Then 

,es (6T 
a e RfxT is an (S,T, &>s, &T, P1)P2)-SR iff a is independent in both P s and PT, 
and the theorem follows from Theorem 3. • 

The following theorem is a generalization of Theorem 2 but also results from [7] 
and [9]. 

Theorem 5. Let S, T be finite sets, let @>s = (P, = (T, Q,): s e S), &>T = 
(Pt = (S, Qt): t e T) be systems of polymatroids and let P2 = (S, 02) be a polyma­
troid. Then u = (u,: s € S) e Rf is an (S,T, 3»S,0>T, P2)-polytransversal if and 
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only if it is an independent vector of the polymatroid P = (S, g) such that for any 
X CS, 

g(X) = min L ( T \ J) + gfc ( £ e.(Z/s) + £ ft (((X x J) \ Z)/t))). 
~ \ ~ \s€X tsJ / / 

Rirthermore, if P2 , P. , P t (s G S, £ 6 T) are integral then also P is integral. If 
also u G Z^ is an integral (S,T, g?s, &T, P2)-poly transversal, then u has an integral 
(S, T, ^ s , ^ T , P2)-origin. 

P r o o f . It is easy to check that g is monotone and g(Q) = 0. We prove submod-
ularity. 

Let X, y C S. Choose J C T , J f C T , Z C X x J, V CY x K such that 

e ( X ) = g2(T \ J ) + £ e . ( Z / . ) + £ ft(((X x J) \ Z),t), 
sex tej 

g(Y) = g2(T \K) + J2 Qs(V/s) + £ gt(((Y x K) \ V)/t). 
s£Y t£K 

Take the partition of (X U Y) x ( Ju if) into ten sets A\, A2, ..., Aw: 

Ax = znv c(xnY) x (JnK), 

A2 = ((X nY) x (J n K)) \ Au 

A3 = (X\Y) x(JnK), 

A4 = (Y\X) x (JnK), 

Ar, = (XnY)x(J\K), 

Ae = (X\Y)x(J\K), 

A7 = (Y\X)x(J\K), 

As = (XnY)x(K\J), 

Ag = (X\Y)x(K\J), 

A10 = (Y\X)x(K\J). 

Denote, for any i 6 { 1 , 2 , . . . , 10}, 

Zi = ZnAi, 

Vi = vnAi. 

Clearly Z = Zj U Z2 U Z3 U Z5 U Z6 , V = Vx U V2 U V4 U V8 U V10. Vx = Zx = 
A\, but Vi n Zi = 0 for any i G { 2 , 3 , . . . , 10}. (See a symbolic representation of 
A\,A2,..., A10 in Fig. 1. Subsets of S and T are expressed as segments of the axis 



к 

X 

Aв 

Zв Уl 

A3 
A9 

=Zъ. '-^2 = =jA2 A8 

^==ЦЩß^=\ 

A7 A4 

VIO 

Aю 

>Y 

Ai=Zx = Vx R== W =111111 
Fig. 1 

and subsets of 5 x T are depicted as parts of the plane in this figure. For instance 
Z and V are depicted as circles, Ai as the intersection of the circles and A3,..., Aio 
as squares.) 

Choose R, W and B(, i € {2,3,. . . , 10}, such that 

R = Z1UZ2UZ5UV2UV8 (C(XnY)x(JuK)), 

W = Z1UZ3UVi (C(XuY)x(JnK)), 

Bi = Ai\ (Zi U Vi). 

Then we can check (see e.g. Fig. 1) that 

((X fl Y) x (J U K)) \ R = B2 U Bs U Bs, 

((X UY) x (J n K))\W = B2U B3U BAU Z2U V2. 

The sets Ai (= Zx = Vx), Z2,Z3,Z^,Z(,,V2,Vi,V8,Vx0, B2,...,B10 are pairwise 
disjoint. Using this fact and the submodularity and monotonicity of 02, Qs, Qt (s e S, 
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t e T) we get 

Q(X) + Q(Y) 

= Q2(T \J) + 52 Qs(Z/s) + 52 Qt(((X x J) \ Z)/t) 
.ex teJ 

+ Q2(T \K) + 52 Q.(V/S) + 52 Qt(((Y x K) \ V)/t) 
.eY teK 

= &(T\J) + Q2(T\K)+ 52 Q.((Z3UZ6)/S)+ 52 Q.((V4UV10)/S) 
.ex\Y seY\x 

+ 52 Qs((z1uz2uz5)/.)+ 52 Q.muv2uvs)/S) 
.exnY sexnY 

+ 52 Qt((B5uB6)/t)+ 52 Qt((B8UB10)/t) 
teJ\K teK\j 

+ 52 Qt((B2UB3UV2)/t)+ 52 Qt((B2uB4UZ2)/t) 
teJnK teJnK 

>Q2(T\(JnK))e2(T\(JuK))+ 52 Qs((Z3)/s)+ 52 Q.((V4)/S) 
sex\Y .eY\x 

+ 52 fo((.?i)/.)+ 52 Qs((Z1UZ2uZ5uV2UVg)/.) 
sexnY .exnY 

+ 52 Qt((Bs)/t)+ 52 Qt((B8)/t) 
teJ\K teK\j 

+ 52 Qt((B2)/t)+ 52 Qt((B2UB3UB4UZ2UV2)/t) 
teJnK teJnK 

= Q2(T\(JUK)) + 52 Q.(R/S)+ 52 Qt(((XHY)x(JuK)\R)/t) 
sexnY teJuK 

+ Q2(T\(Jni<)) + 52 Q.(W/S) 

sexuY 

+ 52 Qt(((XuY)x(JnK)\W)/t) 
teJnK 

> e(XuY) + s(XnY). 

Thus Q is submodular and P = (5, Q) is a polymatroid. 
Replace the polymatroid Pi in Theorem 4 by Vk,s where k is sufficiently 

large (e.g., let k = £ QS(T) + £ Qt(S)). Then it is easy to check that any 
.es teT 

( X , 7 , ^ , S , ^ T , U * ; , S , P 2 ) - S R is just an (X, J, &s, 3"T, P2)-SR and that QX is the 
maximal modulus of an (X,T, 3»s, &>T, P2)-SR (polytransversal). 

Therefore, if u e R^ is an (S,T, PS^T, P2)-polytransversal, then u|X is an 
(X,T,&>s, ^r,P2)-polytransversal, and \i(X) ^ QX for any X C S. Thus u is 
independent in P. 
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Let u = ( « s : s e S) e R^ be independent in P. Then denote by 2?s the system 

of polymatroids (P,™"' = (T,QS
U')): s e S). Note that Q^"\j) = min{u s , £ s ( J )} 

( J C T, s e S). Let m denote the maximal modulus of an (S,T, &>s
u), 0*>T, P2)-

polytransversal. Then replacing Pi by Vk,s (k sufficiently large) and 0>s by 3?s 

in Theorem 4 and applying the above argument we get 

m = min L(T \ J ) + min ( V > ( - > ( Z / s ) + ^ > (((S x J ) \ Z ) / f ) ) ) 
- v ^ s e s teJ ' ' 

= min (Q2(T\J) + min f V m i n { « s , Qs(Z/s)} + £ > ( ( ( S X J) \ Z ) / t ) ) ) . 

Let X = { s e S ; « s > £ s ( Z / s ) } . Then we can easily check that 

m = u(S\X) + min(ft!(:r\J) 

+ziTxj (-C «-(-y->+£ «* («* x J> \ z>/« 
^ sgx teJ 

= u ( 5 \ X ) + ft(X) ^ u ( S \ X ) + u(X) = |u|. 

Since g, (T) ^ us (s e S) then the inequality m ^ |u| is possible iff u 

is a (S,T, 0*s , 2?T, P2)-polytransversal with modulus m. Thus u is also an 

(S,T, &>s, &>T, P2)-polytransversal. 

Therefore u € R | is an (S,T, &>s, @>T, P2)-polytransversal if and only if u is 

independent in P. 

Furthermore, if P2 , P s , Pt (s e S, i e T) are integral then P is integral. If 

also u is integer valued then all polymatroids we have dealt with in the proof are 

integral. Thus, by Theorem 4, we can take an integer valued (S, T, &>s
u), @>T, P2)-SR 

a of modulus m, then it must be an (S,T, 0>s
u), @>T, P2)-origin of u, and also an 

(S, T, PS^T, P2)-origin of u, concluding the proof. D 

4. CONCLUDING REMARKS 

Note that Theorem 4 is equivalent with the intersection theorem of Edmonds 

(Theorem 3). But as pointed out by Schrijver [19], Theorem 3 is equivalent to many 

problems from combinatorial optimization. Thus our results are equivalent to them, 

too. 

As pointed out by Poljak [16], especially interesting is the similarity with the 

following flow model of Lawler and Martel [11], By a polymatroidal flow network & 

we mean a directed multigraph G = (V, E) with a source s, a sink t and a collection 
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of polymatroids P+ = (A+, Q+), P~ = (A~,Q~) where D g V a n d A+ (A~) denotes 

the set of arcs directed into (out of) D. B y a flow in & we mean any vector / ~ R^. 

A flow / is called feasible in JF if it satisfies the following conditions: 

/ ( A + ) = / ( A ~ ) for a n y » e V \ {s,t}, 

/ | A + is independent in P+ for any v ~V, 

/ | A ~ is independent in P~ for any u ~ V. 

By a ua/ue of a feasible flow / we mean the quantity v = / ( A ~ ) - / ( A + ) = / ( A + ) -

/ (A (~). A polymatroidal network flow is called integral if P+ and P~ are integral for 

any v e V. 

An arc-partitioned cut (S, T, L, U) is defined by a partition of vertices into two 

sets S and T with s e S, t £ T and by a partition of the arcs directed from S to T 

into two sets L and U. The capacity of an arc partitioned cut is defined as 

c(S, T,L,U) = Y,Sv(UnAv) + J2 st(L n A + ) -
ves VZT 

In [11] it is shown that this flow model has the max-flow min-cut property. 

T h e o r e m 6. Let & be an (integral) polymatroidal How network. Then the 

maximal value of an (integral) feasible flow is equal to the minimum capacity of an 

arc-partitioned cut. 

It is easy to check that Theorem 4 follows from Theorem 6. On the other hand 

Theorem 6 follows from Theorem 3 (see e.g. [19]) and, thus, also from Theorem 4. 

Therefore Theorems 3, 4, and 6 are pairwise equivalent. 

Note tha t there exists no analogue of Theorem 5 in flow theory. On the other hand 

it presents a very natural generalization of results from transversal theory, especially 

those of Edmonds and Fulkerson [4], Mirsky and Perfect [14] and Perfect [15]. 

Theorem 5 describes in fact an operation on polymatroids. This "transversal" 

operation creates the polymatroid P from a polymatroid P2 and finite systems of 

polymatroids 2?s and 3^T (thus we can call P the polymatroid of (S,T, @>s, @>T, P2)-

polytransversals). It is easy to check that the operation from Lemma 1, the operations 

truncation and restriction on polymatroids, the polymatroid sum (see [18, pages 351-

352]) and thus also the product of polymatroids can be characterized as special cases 

of the "transversal" operation. 

It is well known (see e.g. [20], [1] for more details) that not eveiy matroid can 

be characterized as a transversal matroid. Nevertheless, every polymatroid P = 

(S, Q) can be characterized as an (S, T, £?s, S?T, P2)-polytransversal. It suffices 

to set T = {1}, &>T = (Pi = P), &s = (P. = Ufc.s: s ' S) and P2 = Vk,T, 
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where k is sufficiently large. Then it is routine to check that the polymatroid of 
(5, T, £?>s, 3?T, P2)-polytransversals is equal to P. The situation could change if we 
required some restrictions for polymatroids from @>s and &T. For instance what will 
happen if @>s and &>T are systems of polymatroids of uniform matroids? This could 
generalize the characterization of transversal matroids (see [20] for more details). 
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