Mathematica Bohemica

Dănuţ Marcu

On colouring products of graphs

Mathematica Bohemica, Vol. 121 (1996), No. 1, 69-71

Persistent URL: http: //dml.cz/dmlcz/125938

Terms of use:

© Institute of Mathematics AS CR, 1996

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

ON COLOURING PRODUCTS OF GRAPHS

DÅnuţ Marcu, Bucharest
(Received August 17, 1994)

Summary. In this paper, we give some results concerning the colouring of the product (cartesian product) of two graphs.

Keywords: graph colouring, product of graphs
AMS classification: 05C40

Introduction

Graphs, considered here, are finite, undirected, without loops or multiple edges, and [1] is followed for terminology and notation. The product (also called cartesian product [2]) $G_{1} \times G_{2}$ of two graphs G_{1} and G_{2} with vertex sets V_{1} and V_{2}, respectively, has the cartesian product $V_{1} \times V_{2}$ as its set of vertices. Two vertices (u_{1}, u_{2}) and (v_{1}, v_{2}) are adjacent, if $u_{1}=v_{1}$ and u_{2} is adjacent to v_{2} or $u_{2}=v_{2}$ and u_{1} is adjacent to v_{1}.

Let $V_{1}=\left\{v_{11}, v_{12}, \ldots, v_{1 p_{1}}\right\}, V_{2}=\left\{v_{21}, v_{22}, \ldots, v_{2 p_{2}}\right\}$, and let q_{i} denote the number of edges of $G_{i}, i=1,2$. The graph $G_{1} \times G_{2}$ has $p_{1} \cdot p_{2}$ vertices and $p_{1} \cdot q_{2}+p_{2} \cdot q_{1}$ edges. This graph, which is isomorphic to $G_{2} \times G_{1}$, contains p_{2} disjoint "horizontal" copies $G_{11}, G_{12}, \ldots, G_{1 p_{2}}$ (ordered from top to bottom) of G_{1} and p_{1} "vertical" copies $G_{21}, G_{22}, \ldots, G_{2 p_{1}}$ (ordered from left to right) of G_{2}. A horizontal copy $G_{1 i}$ and a vertical copy $G_{2 j}$ have only one vertex ($v_{1 j}, v_{2 i}$) in common.

The vertex-chromatic number $\gamma(G)$ of a graph G is the minimum number of colours required to colour the vertices of G in such a way that no two adjacent vertices have the same colour. The edge-chromatic number $\gamma^{\prime}(G)$ is defined similarly. The totalchromatic number $\gamma^{\prime \prime}(G)$ of G is the minimum number of colours required to colour the elements (vertices and edges) of G in such a way that no two adjacent elements
(two vertices or two edges) and no two incident elements (a vertex and an edge) have the same colour.
By a proper colouring of, for example, vertices of G we mean an assignment of colours to vertices of G in such a way that adjacent vertices receive different colours. The colour of an element e of G will be denoted by $c(e)$. The notation $c(u, v)$ will be used for the colour of the point (u, v). We mention the well known result:

$$
\gamma\left(G_{1} \times G_{2}\right)=\max \left\{\gamma\left(G_{1}\right), \gamma\left(G_{2}\right)\right\} .
$$

Main results

Let $\Delta(G)$ denote the maximum degree among the degrees of vertices of G. Concerning $\gamma^{\prime}(G)$, Vizing [3] has shown that

$$
\Delta(G) \leqslant \gamma^{\prime}(G) \leqslant \Delta(G)+1
$$

Since

$$
\Delta\left(G_{1} \times G_{2}\right)=\Delta\left(G_{1}\right)+\Delta\left(G_{2}\right)
$$

we have
Corollary. $\Delta\left(G_{1}\right)+\Delta\left(G_{2}\right) \leqslant \gamma^{\prime}\left(G_{1} \times G_{2}\right) \leqslant \Delta\left(G_{1}\right)+\Delta\left(G_{2}\right)+1$.
If the edge-chromatic number of $G_{i}, i=1,2$, equals its maximal degree, we shall show that $\gamma^{\prime}\left(G_{1} \times G_{2}\right)$ equals the maximal degree of $G_{1} \times G_{2}$.

Theorem 1. If $\gamma^{\prime}\left(G_{i}\right)=\Delta\left(G_{i}\right), i=1,2$, then $\gamma^{\prime}\left(G_{1} \times G_{2}\right)=\Delta\left(G_{1}\right)+\Delta\left(G_{2}\right)$.
Proof. Clearly, we have

$$
\gamma^{\prime}\left(G_{1}\right)+\gamma^{\prime}\left(G_{2}\right) \leqslant \gamma^{\prime}\left(G_{1} \times G_{2}\right)
$$

The converse is true for every pair of graphs G_{1} and G_{2}. To see this, colour the edges of each horizontal copy, properly, with colours $1,2, \ldots, \gamma^{\prime}\left(G_{1}\right)$ and each vertical copy, properly, with colours $\gamma^{\prime}\left(G_{1}\right)+1, \gamma^{\prime}\left(G_{1}\right)+2, \ldots, \gamma^{\prime}\left(G_{1}\right)+\gamma^{\prime}\left(G_{2}\right)$.

Assuming that $\gamma^{\prime}\left(G_{i}\right)=\Delta\left(G_{i}\right), i=1,2$, one might think that $\gamma^{\prime}\left(G_{1} \times G_{2}\right)=$ $\Delta\left(G_{1}\right)+\Delta\left(G_{2}\right)+1$. Let $G_{1}=G_{2}=K_{5}-x$, where K_{n} is the complete graph of order n, and $K_{n}-x$ denotes K_{n} minus one edge. Thus, $\gamma^{\prime}\left(G_{1}\right)=\gamma^{\prime}\left(G_{2}\right)=\Delta\left(G_{1}\right)+1$. But $\gamma^{\prime}\left(G_{1} \times G_{2}\right)$ is shown to be $\Delta\left(G_{1}\right)+\Delta\left(G_{2}\right)=8$. The graph $\left(K_{5}-x\right) \times\left(K_{5}-x\right)$ is the smallest graph with the above property.

Given two graphs G_{1} and G_{2}, we have $\gamma\left(G_{1}\right) \leqslant \gamma^{\prime \prime}\left(G_{2}\right)$ or $\gamma\left(G_{2}\right) \leqslant \gamma^{\prime \prime}\left(G_{1}\right)$. Suppose that $\gamma\left(G_{1}\right)>\gamma^{\prime \prime}\left(G_{2}\right)$. Then

$$
\gamma^{\prime \prime}\left(G_{1}\right) \geqslant \gamma\left(G_{1}\right)>\gamma^{\prime \prime}\left(G_{2}\right) \geqslant \gamma\left(G_{2}\right)
$$

imply $\gamma\left(G_{2}\right)<\gamma^{\prime \prime}\left(G_{1}\right)$.
Theorem 2. If $\gamma\left(G_{1}\right) \leqslant \gamma^{\prime \prime}\left(G_{2}\right)$, then we have

$$
\Delta\left(G_{1}\right)+\Delta\left(G_{2}\right)+1 \leqslant \gamma^{\prime \prime}\left(G_{1} \times G_{2}\right) \leqslant \gamma^{\prime \prime}\left(G_{2}\right)+\gamma^{\prime}\left(G_{1}\right)
$$

Proof. The first inequality is obvious. Colour the elements of G_{21} and the edges of each horizontal copy, properly, with colours $1,2, \ldots, \gamma\left(G_{1}\right), \ldots, \gamma^{\prime \prime}\left(G_{2}\right)$ and colours $\gamma^{\prime \prime}\left(G_{2}\right)+1, \gamma^{\prime \prime}\left(G_{2}\right)+2, \ldots, \gamma^{\prime \prime}\left(G_{2}\right)+\gamma^{\prime}\left(G_{1}\right)$, respectively. Suppose that $c\left(v_{11}, v_{21}\right)=1$. Then, colour the vertices of G_{11} with colours $1,2, \ldots, \gamma\left(G_{1}\right)$, properly, in such a way that the vertex $\left(v_{11}, v_{21}\right)$ receives colour 1. Next, consider $G_{2 j}, j=2,3, \ldots, p_{1}$ and let e be an element of $G_{2 j}$. There is an element e^{\prime} of G_{21} corresponding to e. Let $c(e)=c\left(v_{1 j}, v_{21}\right)+c\left(e^{\prime}\right)-1\left(\bmod \gamma^{\prime \prime}\left(G_{2}\right)\right)$. Now, it is an easy matter to check that this colouring is a proper colouring of the elements of $G_{1} \times G_{2}$, completing the proof.

The bounds given in Theorem 2 cannot, in general, be improved, that is, for two positive integers m and n there exist two graphs G_{1} and G_{2} with $\gamma^{\prime}\left(G_{1}\right)=m$, $\gamma^{\prime \prime}\left(G_{2}\right)=n$ and $\gamma^{\prime \prime}\left(G_{1} \times G_{2}\right)=\gamma^{\prime}\left(G_{1}\right)+\gamma^{\prime \prime}\left(G_{2}\right)$. Indeed, let $G_{1}=K_{1, m}$ and $G_{2}=K_{1, n-1}$, where $K_{m, n}$ denotes the complete bipartite graph of order $m+n$. Incidentally, for these graphs, $\Delta\left(G_{1}\right)+\Delta\left(G_{2}\right)+1$ equals $\gamma^{\prime \prime}\left(G_{1} \times G_{2}\right)$, too.

The second inequality in the theorem cannot be changed to an equality, as can be seen by considering $C_{4} \times C_{4}$, where $C_{n}, n \geqslant 3$, denotes the cycle of length n.

If $\gamma\left(G_{1}\right) \leqslant \gamma^{\prime \prime}\left(G_{2}\right)$ and $\gamma\left(G_{2}\right) \leqslant \gamma^{\prime \prime}\left(G_{1}\right)$, then we have

$$
\gamma^{\prime \prime}\left(G_{1} \times G_{2}\right) \leqslant \min \left\{\gamma^{\prime \prime}\left(G_{2}\right)+\gamma^{\prime}\left(G_{1}\right), \gamma^{\prime \prime}\left(G_{1}\right)+\gamma^{\prime}\left(G_{2}\right)\right\}
$$

References

[1] F. Harary: Graph Theory. Addison-Wesley, Reading, 1969.
[2] G. Sabidussi: Graph multiplication. Math. Z. 72 (1960), 446-457.
[3] V. G. Vizing: On an estimate of the chromatic class of a p-graph. Diskretnyj Analiz 3 (1964), 25-30. (In Russian.)

Author's address: Dănuţ Marcu, Str. Pasului 3, Sect. 2, 70241-Bucharest, Romania.

