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ON 2-EXTENDABILITY OF GENERALIZED PETERSEN GRAPHS 

N. B. LIMAYE, MULUPURI SHANTHI C. RAO, Bombay 

(Received September 13, 1994) 

Summary. Let GP(n,k) be a generalized Petersen graph with (n, k) = 1, n > k >. 4. 
Then every pair of parallel edges of GP(n, k) is contained in a 1-factor of GP(n, k). This 
partially answers a question posed by Larry Cammack and Gerald Schrag [Problem 101, 
Discrete Math. 73(3), 1989, 311-312]. 
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A simple loopless graph G with an even number of vertices is said to be 2-extendable 

if G has a pair of parallel edges and if every such pair is contained in a 1-factor of 

G. Let k < n be natural numbers. The generalized Petersen graph GP(n, k) is the 

graph with a vertex set V = {u;, u;: 1 ^ i ^ n} and the edge set O U / U C, where 

O = {« ;u ; + i : 1 ^ i < n}, I = {vtvi+k : 1 ^ i ^ n} and C = {u;U;: 1 ^ i < n } . 

Here i + 1 and i + k are taken modulo n. The edges in O, I and C are referred to as 

the outer edges, the inner edges and the spokes, respectively. 

In 1989, G. Schrag and L. Cammack [1] proved that 

(i) GP(n, 1) is 2-extendable if and only if n is even, 

(ii) GP(n, 2) is 2-extendable if and only if n # 5,6,8, 

(iii) GP(2k, k) is not 2-extendable for all k >• 2, 

(iv) GP(3k, k) is not 2-extendable for all k >- 3, 

(v) if 3 ^ k < 7, then GP(n, fc) is 2-extendable if and only if n ^ 3k. 

(vi) if k >• 4, then any pair of parallel edges containing a spoke can be extended 

to a 1-factor, and 

(vii) GP(n, k) is 2-extendable for all k >- 2, n >. 3fc + 5. 
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They conjectured that GP(n, k) is 2-extendable for all k >• 3 and n # 2k, 3k. In 

this note we prove that GP(n, k) is 2-extendable for all n, k >. 4 such that (n, k) = 1. 

While many cases considered here are covered by [1], we give a uniform treatment 

which covers several additional cases including the important cases n = 2fc+l, 3fe — 1, 

3fc + l . 

T h e o r e m . If n, k >. 4 are natural numbers such that (n, k) = 1, then GP(n, k) is 

2-extendable. 

P r o o f . Let e and / be two given parallel edges of GP(n, k), where (n, k) = 1. 

We divide the problem into six possibilities: 

P(l):e,feO, P(2):eeO,f el, P(3): e e 0,f 6 C, 
P(4):e,fel, P(5):eeI,feC, P(6):e,feC. 

In P(6) , the set C consisting of all spokes is the required 1-factor. Moreover, since 

(n, k) = 1, O and I play the same role in GP(n, k). Hence we have only to consider 

P ( l ) , P(2) , P(3) . If k> n/2, then GP(n,k) is isomorphic to GP(n,n - k). Thus 

we can assume that k < n/2. Without loss of generality, we can take e = u iu 2 . We 

shall denote the desired 1-factor containing e and / by F. 

Case 1: n is even 

In this case, I as well as O can be written as a union of two disjoint 1-factors. 

Moreover, if we remove two adjacent points from either O or I, then the resulting 

path, which is of odd length, has a unique 1-factor. 

P ( l ) : Let / = u r u r + i , Z4.r4.n-1. 

If r is odd, then F is obtained by taking the 1-factor of O containing u iu 2 and 

u r u r + i together with any one of the two 1-factors of I. 

If r is even with r + k - 1 ^ n, then let F = Fx U F2 U P 3 U P 4 , where Ei is the 

unique 1-factor of / - u r _i — vr-i+k, 

P 4 = {u r + i tU r + i t+ l ,U r +A ; + 2U r+ f c+3, . . . ,UlU2, . . . ,U r_3U r_ 2}, 

P 2 = {ur_il>r_i,Ur_i+fci;r_l+fc}, P 3 = {u rU r + 1 ,U r+2U r + 3 , . . . ,U r+A:-3U r+fc_2}. 

If r is even with r + k — 1 > n, then clearly r + 2 — k >• 3. Again F is obtained by 

taking Ei U F2 U F3 U F4, where F\ is the unique 1-factor of I — vr+2 — vr+2-k, 

F2 = {u r + 2u r+2,u r + 2- / tD r+2-fc}, E3 = {u r +3_fcu r +4_j ; , . . . ,u r u r +i} , and P 4 = 

{u r + . 3U r +4,U r + 5U r+ 6 , . . . ,UiU2, • . . ,Ur-kUr-k+1}. 

P(2): Let / = vrvr+k, 1 ^ r ^ n. 

In this case F is obtained by taking the union of the 1-factor of O containing u iu 2 

and the 1-factor of _ containing vTvr+k. 
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P(3) : Let / = urvr, 3 <. r <. n. 

Let 2. be the greatest even integer less than r and s = min{2., 2fc}. We can now 

take P to be Pi U P 2 U P 3 , where 

Pi = {um: i 5- s, s - 1 , . . . , s - 2k + 1}, 

P. = {u sU s_i,U s_2U s-3,..-,U s_2/t+2U s_2fc+l}, 

P3 = {usVs_fc,Us_iJ;s_fc_i,...,Us_A;+iDs_2Ji+l}. 

Clearly / is in Pi and e is in P 2 . 

Case 2: n is odd 

In this case, O — Ui as well as I - vt have a unique 1-factor for each i. 

P ( l ) : Let / = UrUr+i, 3 ^ r sC n - 1. 

If r is odd, then take . = n. If r is even, then take i = 3. Let P = P x U P 2 U P 3 , 

where Pi is the unique 1-factor of O - Ui, P 2 = {utvt} and P3 is the unique 1-factor 

o f / - D ; . 

P ( 2 ) : Let / = vrvr+k, K r ^ n . 

In this case, n ^ 2fc + 1. Here we have to handle the cases n = 2fc + 1, 

2fc + 3, 3fc - 1, and n = 3fc + 1 carefully. In what follows, P x will always be 

the set of all spokes not on points of P 2 and P 3 . For n ^ 3fc — l,3fc + 1, we 

take P = Pi U P 2 U P 3 with P 2 = {mui+t^jUj+i^i+kUi+i+k^j+kUj+x+k}, P 3 = 

{viVi+k,Vi+iVi+i+k,VjVj+k,Vj+iVj+i+k}, where i and j are given in the following 

table: 

i І 
n = 2ifc + 1 r Є {&,_ + -, fc + 2 , fc + 3} 

r £ {1,2, fc, к + 1, fc + 2, fc + 3, n, n - 1} 

fc + 2 

1 

fc 
r 

2fc + 3 < n 

n^3fc + l,3fc + l 

rЄ{fc + l,fc + 2,n-fc + l ,n-fc + 2} 

r £{l,2,fc,fc + l,fc + 2,n-fc 

n-fc + l,n + 2 - fc,n} 

n + 1 -fc 

1 

fc + 1 

r 

n = 2fc + 3 r = 2fc + 3 fc + 4 fc + 2 

See figure 1 for the case fc = 5, n = 2fc + 3 = 13, r = n - fc = 8 and Figure 2 for 

the case fc = 5, n = 2fc + 1 = 11, r = n - 1 = 10. 

Here the cases / = ->it>i+,t, v2v2+k are not considered since these edges appear 

along with the edge U1U2 in most of the 1-factors given by the table. Also, the cases 

/ = vkv2k (when n / 2 H 1), vn-kVn (when n 7̂  2fc + 3), vnVk are not considered, 

since these edges appear along with the edge u iu 2 in the 1-factor for the values 
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" l u2 

Fig. 1 

r = fc — 1, n — k— 1, n — 1 respectively, given by the table. For several values of r, 

this table in fact gives two distinct 1-factors containing u iu 2 and vrvr+k. 

Let n = 3fc - 1. 

If r 6 {2,fc + l , n - k + 1 = 2fc}, we take F2 = {uiu2,uk+iUk+2,U2kU2k+i}, 

E3 = {v2kVi,v2Vk+2,Vk+iV2k+i}. If r € {l,fc + 2 , n - f c + 2 = 2fc + 1}, we take 

F2 = {uiU2,Uk+lUk+2,U2k+lU2k+2}, F3 = {viVi+k,V2k+lV2,Vk+2V2k+2}-
I f r 0{l,2,fc,fc + l,fc + 2,2fc = n-fc+l ,2fc + l , n - f c = 2 f c - l , n } , we can take F 2 = 

{u1U2,UrUr+i,Ui+kU2+k,Ur+kUr+1+k}, E3 = {VlVl+k,V2V2+k,VTVr+k,Vr+iVr+l+k}. 

Here it may appear that the cases / = VkV2k, vn-kVn, vnvn+k are not considered. 

But we note that these edges appear along with uiu2 in the 1-factors for r = fc — 1, 

n — k — 1, n — 1, respectively, except when fc = 4, r = n — fc = 7. But in this case the 

edges UiU2 and v7vn appear in the 1-factor 

{UiU2, U4U5, U6U7, U8«g, U10Un, U3U3, V7Vu, U4U8, V1V5, VgV2, U6U10} 

Finally, let n = 3fc + l . 

If r e {2,fc + l , n + l - fc = 2fc + 2, }, we take F2 = {u1u2,UA;+1Ufc+2,u2fc+1u2fc+2}, 

E3 = {v2+2kVl,V2+kV2,Vk+lV2k+l}. 

If r G {l,fc + 2 , n - fc + 2 = 2fc + 3}, we take F2 = {u1u2,Uk+iUk+2,u2k+2u2k+3}, 

F3 = {VlVk+l,Vk+2V2k+2,Vn+2-kV2}. 

If r 0 {1,2, fc, fc + 1, fc + 2, n - k = 2fc + 1,2fc + 2,2fc + 3, n } , we take F2 = 

{uiU2,UrUr+i,Ui+kU2+k,Ur+kUT+i+k}, F3 = {viVi+k,V2V2+k,VrVr+k,Vr+iVr+i+k}. 

Again the edges / = vnv2k,v2k+ivn,VkVn appear along with the edge uiu2 in the 

1-factors for r = fc - 1,2fc, n - 1, respectively. 

P(3) : Let / = urvr, 3 ^ r ^ n. 

If r is odd, then take i = r and F as in P ( l ) . 

If r is even, consider four points Uk+i, uk+2, un+i-k, un+2-k. Since n is odd, 

fc + l # n + l - f c a n d f c + 2 ^ n + 2 - f c . Moreover, n > 2fc - 1 implies that 



k + 1 # n + 2 — k. If u r is different from Uk+i,Uk+2, take i = k + 1. If u r is one 

of Uk+i, Uk+2 but r 5- n - k + l , n - fc + 2, we take t = n + 1 - fc. We then let 

E = {uiU2,UiUi+i,V\Vi,V2Vi+i} U {UjUj : j ^ l , 2 , t , t + 1}. 

Finally, suppose r = k + 2 = n + I - k. Here fc = r — 2 and hence it is even. Let 

F\ = {uiU2,urvr,u3v3,unvn,viVk+i = vivT-i,v2v-l+2-k = i)2Ur+i}. To construct 

E2, consider the path from u 4 to u r _ i in the cycle O. This path contains fc —2 points, 

where fc — 2 is even. Hence this path of odd length has a unique 1-factor. Similarly, 

the path from u r + i to u n _ i on the cycle O also has unique 1-factor. Take F2 to be the 

union of these two 1-factors. Let F3 = {v4Vi+k,v5v5+k,.. • ,vr-2vr-2+k = vkv2k}-

Now let F = Ei U E2 U F3. See Figure 3 for the case fc = 6, n = 2fc + 1 = 13, r = 8. 

Fig-3 

This completes the proof of the theorem. • 

R e m a r k . We have assumed fc ^ 4 but the construction given here can be 

suitably modified for the cases (i) fc = 2, n ^ 7, n odd and (ii) fc = 3. Note that the 

Petersen graph GE(5,2) is not 2-extendable. 
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