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Summary. Given a finite family of cliquish functions, 21, we can find a Lebesgue func­
tion a such that / + a is Darboux and quasi-continuous for every / € 21. This theorem 
is a generalization both of the theorem by H. W. Pu h H. H. Pu and of the theorem by 
Z. Grande. 
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In 1987 H. W. Pu and H. H. Pu [3] proved the following theorem. 

T h e o r e m 1. Let 21 be a finite family of Bake one functions. Then there is a 

Baire one function f such that f + g is a Darboux function for each g e 21. 

This theorem was generalized in 1992 by Z. Grande [1]. 

T h e o r e m 2. Let fi,...,fk be cliquish functions. There is a Baire one function f 

such that / # 0 only on a null set and all sums f + fi, i € { 1 , . . . , k}, are Darboux 

functions. 

In this paper I prove that given a finite family of cliquish functions, 21, we can find 

a Lebesgue function a such that / + a is Darboux and quasi-continuous for every 

/ G 21. Clearly we cannot require that a j ^ O only on a null set. 

First we need some notation. The real line ( - co , co) is denoted by R and the set 

of positive integers by N. The word function means a mapping from R into R. The 

words measure, summable etc. refer to the Lebesgue measure and integral in R. The 

Euclidean metric in R will be denoted by Q. For every set A C R let c l A be its 
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closure and |A | its outer Lebesgue measure. A symbol like JA f will always mean 
the Lebesgue integral. 

Let / be a function and let A C R be non-empty. We will write sup(/, A) for 
sup{/(a:): x € A} and we denote inf(f,A) = - sup(-/, A). The oscillation of f 
on A will be denoted by to(f,A), i.e., uj(f,A) = sup(/,A) - inf(/,yl). Similarly, 
the oscillation of f at a point x G R will be denoted by u(f,x), i.e., u(f,x) = 
lim ui(f, \x-r,x + r]). The set of points of continuity of / will be denoted by C(f). 

We say that a function / is quasi-continuous (cliquish) at a point x G R if for each 
e > 0 and each open set U B x we can find a non-empty open set V C U such that 
ui(f, {x} U V) < £ (u(f, V) < e, respectively). We say that / is quasi-continuous 
(cliquish) if it is quasi-continuous (cliquish) at each point I E R . Cliquish functions 
are also known as pointwise discontinuous. 

We will use the following well-known (and easy to prove) facts. 
• A function / is quasi-continuous iff for each x G R there exists a sequence 

xi,x2,... G C(f) such that xn -> x and f(xn) -+ f(x). 
• A function / is cliquish iff C(f) is residual. In particular, every Baire one 

function is cliquish. 
We say that x G R is a Lebesgue point of a function a if a is locally summable 

at x and lim ff r \a — a(x)\/r = 0. We say that a is a Lebesgue function if each 
r-+0 x 

x G R is a Lebesgue point of a. 
The proof of the next lemma is straightforward. (Cf. also Lemma 3.3 of [2].) 

Lemma 3. Let I be a compact interval, let functions gi,. • • ,gk be cliquish, K C R 
nowhere dense, L >- n >. sup{cj(g;,/): i G {1,. . . ,k}}, and e > 0. Tiien there is a 

k 

nowhere dense perfect set F C I n f| C(g{) \c\K and a continuous function a 
i=i 

such that \a\ < L + n, a = 0 on clK U (R \ / ) , / , \a\ < e, and (gt + o)(F) D 
[inf (gt, I) - L,sup(s;, /) + L] for i 6 {1,. . . ,k}. • 

Theorem 4. Let / i , . . . , fk be cliquish functions and n>0. There is a Lebesgue 
function a such that fi + a is Darboux and quasi-continuous for each i 6 {1 , . . . ,fe}, 

C(a) D fl C(fi) and|a| < sup{w(/.,.-): . € {1, . . . ,*} , a; € U} + n. 

k 

Proof . Denote C = f| C(U). Set JJ0 = sup{uj(fi,x): i G {l,...,k}, x G R}, 
i=i 

a0 = 0 and B0 = F0 = 0. We will proceed by induction. Fix an n e M. 
Put r)n = n/2n+1 and Bn = {x G R: uj(fux) >- nn for some i G {1 , . . . , fc}}. 

(Clearly we may assume that 171 < To-) Find a family of non-overlapping compact 
intervals ln = {/n,m : t n € N } such that \JXn = R \ Bn and each x $ Bn 



to the interior of the union of some two elements of ln. Since each J„,m is compact 

and _ ' ( / . , - ) < 7?n for each x e In,m and i e { 1 , . . . , k}, and a n _ i is continuous out 

of _?n_i, so we may assume that max{w(/i + a n _ i , Jn,m): i e { 1 , . . . , k}} < 7i„; we 

moreover assume that \Jn,m\ < g(Jn,m,Bn). 

Fix an m e N. If 7?„_i < +00, then set L„ , m = 7?n_i. Otherwise set L n , m = 

2max{sup( | / i + a n _i | ,_" n , m ) : i e {l,...,k}} + m. (This case is possible only if 

n = 1.) Use Lemma 3 to find a nowhere dense perfect set F n , m C In,m n C \ En_i 

and a continuous function a n , m such that 

(1) | a „ , m | < L„,m + nn on _"„,„,, 

(2) a „ , m = 0 on F n _ i U (R \ _"n,m), 

(3) / | a „ , m | < 2-™|/„,m | , 

and 

(4) (/i + a „ _ i + a „ , m ) ( E n , m ) 

D [inf(/i + an_i,_"„,m) - L„ , m , sup( / ; + a„ - i , / „ , _ , ) + L„,m] 

f o r i e {l,...,k}. 

Define Fn = F n _ i U |J En,m and a n = a n _ i + £_ a„ , m - It is easy to show that 
m=l m _ l 

each x e Bn is a Lebesgue point of a n . Since a n is continuous on R \ Bn, so a „ is a 

Lebesgue function. Note that a „ = 0 on Bn U F n _ i . 

By (1), the sequence (a„) is uniformly convergent, so its sum, which we denote 

by a, is a Lebesgue function. By the construction, C(a) D f\ (R \ Bn) = C, while 
„=i 

| a | < 7?o + 2 f_ ?7n = 770 + 77. 
„=i 

Suppose that ft + a is not Darboux for some i e {l,...,k}. Let a ,6 ,y e R be 

such that (fi + a)(a) < y < (fi + a)(b) but (f{ + a)(x) = y for no x between a and 6. 

Assume that, e.g., a < b. (The other case is analogous.) Set x0 = sup{„ e [0,6]: 

(/i + a ) (J) < y for each i . [ a , i ] n C } . By the definition, either ( / ; + a)(x0) < y 

and there is a sequence (U) of elements of C such that ti \ „ 0 and (/,• + a)(U) > y 

for each I e N, or ( / . + a ) ( _ o ) > y and there is a sequence (..) of elements of C such 

that £/ Z1 x0 and (/i + a)(_/) < y for each / e M. We will consider the first case only. 

(The other case is analogous.) 

One can easily see that x0 £ C(ft). So x0 e B „ \ _?„_i for some n . M . 

If 7jn_i = 00, then take an m > \y\ with 7 n ,m C [<_,&]. Then by (4), there is an 

x € En,m C [0,6] with (fi + a„)(_) = y. However, by (2), at(x) = 0 for each I > n, 
s o (/i + a)(x) = y, contradicting our assumption. 
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If nn-i < oo, then there is a 6 e (0, b - x0) with w(/i + an~\, [x0, x0 + _]) < nn-i. 

Let te(x0,x0 + _/4) n C be such that ( / ; + a)(t) > y. We will show that 

(5) (fi + Qfc_i)(t) > y for each k >. n. 

Indeed, suppose that this condition fails. Since by (1), (/, + ak)(t) > y for each 

sufficiently large k, there is a k >. n with 

(6) (/ , + a „ _ i ) ( « K y < ( / , + a*)(t). 

Let m e H be such that t e Ik,m. Then y > inf(/i + ak-X,Ik,m) - Lk,m, so by (5), 

there is a z £ Fk,m with 

(7) (/i + ak)(z) = sup(/i + ak-UIk,m) + Lk,m < y. 

Let z e -_+i,p . Since (1) and (6) yield 

sup(fi + ak,Ik+1,p)+nk >- (fi + ak)(z) + nk = sup(/i + ak-.uIk,m) + Lk,m +nk 

>. (ft + a f c_i)(t) + Lk,m +Vk> (fi + ak)(t) > c, 

so (7) and (4) imply that there is an a; £ Fk+i,p C [x0,b] with (fi +ak+i)(x) = y. It 

follows that (fi + a)(x) = y, contradicting our assumption. 

The condition (5) implies, in particular, that (fi + a n _ i ) ( t ) > y. Let m e N be 

such that t e -n,m- Using t e (x0,x0 + 5/4) D C, we obtain 

sup(/i + a n _ i , I n , m ) + 7jn-i > (fi + a „ - i ) W > y > (fi + a n _ i ) ( - o ) 

> (/i + a n _ i ) ( t ) - 7 7 n _ i 

>. inf(fi + a n - i , In,m) ~ »7n-i • 

Hence by (4), there is an x e Fn,m with (fi + an)(x) = y. So x e [a,b] and 

(fi + a)(x) =y, contradicting our assumption. 

We have shown that fi + a is Darboux. Now we will prove that for each interval / 

we have 

(8) (fi+a)(I) = (fi + a)(InC). 

The inclusion "_>" is evident. To prove the converse inclusion fix an interval / and 

take an x0 _ / \ C. Arguing as above, we can find n,m e N and x 6 Fn,m C / such 

that (fi + an)(x) = (fi + an)(x0). So (8) holds. This condition yields that ft + a is 

quasi-continuous, which completes the proof. • 



The next corollary is a generalization of Theorem 4.2 of [2]. 

Corollary 5. Given a cliquish function f, we can find a quasi-continuous Lebesgne 
function a such that f — a is Darboux and quasi-continuous and C(a) D C(f). 
Moreover, we can require a to be bounded provided f is bounded. 

P r o o f . Use Theorem 4 for the family {- /, 0}. • 
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