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ESSENTIAL NORMS OF A POTENTIAL THEORETIC BOUNDARY 

INTEGRAL OPERATOR IN Ll 

JOSEF KRÁL, DAGMAR MEDKOVÁ, Praha* 

(Received June 25, 1997) 

Abstract. Let G C Rm (m >. 2) be an open set with a compact boundary B and let a >. 0 
be a finite measure on B. Consider the space L (a) of all CT-integrable functions on B and, 
for each / S L1(a), denote by fa the signed measure on B arising by multiplying a by / 
in the usual way. Ma f denotes the weak normal derivative (w.r. to G) of the Newtonian 
(in case m > 2) or the logarithmic (in case n = 2) potential of fa, correspondingly. Sharp 
geometric estimates are obtained for the essential norms of the operator J\fa — al (here 
a eU and / stands for the identity operator on L1(a)) corresponding to various 
L (a) inducing the topology of standard convergence in the mean w.r. to a. 
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1. I n t r o d u c t i o n . 

In what follows G C Um(m >• 2) is an open set with a compact boundary dG = B. 

Hk denotes the fc-dimensional Hausdorff measure (with the usual normalization, so 

that Hm coincides with the Lebesgue measure in Rm) . We denote by 

Br(z) := {xe Rm; \x-z\ <r} 

the open ball of radius r > 0 centered at z € Rm and put 

2nim 

(1) S-.^дB^O), Am:=Hm-i(S) = 
Г(łm)' 
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We fix a Radon measure a > 0 on R m whose support coincides with B, spt a = B, 

and dehote by L1(a) the Banach space of all (classes of) cr-integrable functions / on 

B with the usual norm 

(2) ll/IUҷ.) :- / 1/1 
Jв 

àff. 

The space of all signed Radon measures in Rm with support in B will be denoted 

by C'(B). Given / £ Ll(a) we denote by af £ C'(B) the signed measure which 

is absolutely continuous w.r. to a and whose Radon-Nikodym derivative w.r. to a 

coincides with / a.e.: 

« ! = / , -a .e . 
da 

In what follows hz will stand for the fundamental harmonic function in Rm with a 

pole at z £ Rm whose value at x £ Rm \ {2} is given by 

we put hz(z) = +00. For each u £ C'(B) the potential 

Uu(x) := f hz(x)du(z) 
JB 

is well-defined for x £ Rm \ B and represents a harmonic function d o i i G c Rm 

whose first order partial derivatives dih,... ,dmh are Lebesgue integrable over each 

bounded Borel set contained in G. This makes it possible to consider the so-called 

weak normal derivative of h w.r. to G which is useful in connection with the Neumann 

boundary value problem (compare [9], [2], [7], [12]). This weak normal derivative 

Nah is a distribution defined over the space V of all infinitely differentiable functions 

<p with a compact support in Rm by 

{Nah,<p) := f iV^djh • djV\ dHm, <peV. 

The reason for this definition is motivated by the divergence theorem which permits, 

for smoothly bounded G and grad h = [dih,... ,dmh] continuously extendable from 

G to G U B, to transform (Nah, ip) into 

/ tpn • grа.dhďHm-i = / íp—ďHm-i, 
Jв Jв дn 

where n : B -> S is the unit exterior normal to G (cf. [16]). It is easy to see that for 

each u G C'(B) the distribution NGUu has its support contained in B (cf. [7], §1) 



and it is natural to inquire under which conditions on G it is possible to represent 
this weak normal derivative NGU/i by a signed measure v^, € C'(B) in the sense that 

{NcUfi, ip) = í (pdf„, Vp e V; 
JB 

if this is the case, then v^ is uniquely determined and will be identified with NaUfi = 
v^ For this purpose it appears useful to consider the so-called essential boundary of 
G. Denoting by d(x, M) the upper density of M C Rm at x € Rm defined by 

-M , ,N ,• nm[Br(x)DM} 
d(x,M) :=l^snP J - ^ 

we introduce the essential boundary of G by 

<9eG := {x 6 Rm; d(ar, G) > 0, d(x, Rm \ G) > 0}. 

This essential boundary deG = Be is a Borel subset of 8G = B. Given z € R*™ and 
8 e S, consider the intersection of the half-line issuing at z in the direction of 9 with 
the essential boundary 

(3) Ben{z + t6; t > 0 } , 

and denote by n(z,8) the total number of points in (3) (0 ^ n(z,8) ^ +oo). It 
appears that, for fixed z £ Um, the function 

8^n(z,8) 

is ?.'Tn_1-measurable on S, so that it is possible to define 

v(z):= J n(z,8)dnm-l(8). 

It turns out that v(z) < +oo implies the existence at z of a well-defined density of G 

U\ A t \ u Um[Br(z)nG} 
{ 4 ) «fc(-):=hm Hm[BAz)] • 

Now the necessary and sufficient condition guaranteeing NaUn € C'(B) whenever 
V 6 C'(B) consists in 

(5) supt>(z) < +oo. 
ZEB 
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This condition (5) is also necessary and sufficient for validity of the implication 

f&Ll(a)^NGU(af) eC'(B) 

(cf. [8]). If besides NGU(af) e C'(B) we want this weak normal derivative to 

be absolutely continuous w.r. to a for each / e L1 (a) (and, consequently, to be 

representable by a g; e L1 (a) in the sense that 

(6) (N°Щ*f),<p) = J m 
Лa 

for each ip eT>) then it is necessary and sufficient to require, besides (5), the validity 

of the implication 

(7) (M cBr. a(M) = 0)^nm-i(M) = 0 

for each Borel set M. Let us also recall that (5) implies 

(8) sup v(z) < +co. 
zgR"' 

Assuming both the conditions (5) and (7) we can identify N°U(af) with a certain 

<// £ Ll(a) verifying (6) whenever / £ Ll(a); we thus arrive at a linear operator 

. . ANGU(af) 

which turns out to be bounded on Lx(a). Under the assumptions (5), (7) it is natural 

to interpret the weak Neumann problem for G with a boundary condition in L1 (a) 

as follows: 

Given g e L1(a), determine an / e L1(a) such that J\faf = g. Denoting by / the 

identity operator on L1(a) and defining the operator T on Ll(a) by 

i(/ + r)=A/; 

we may reduce the weak Neumann problem with a prescribed boundary condition 

g £ Ll(a) to the equation 

(9) (I + T)f = 2g 

for an unknown / 6 Ll(a). (For the case when a = "Hm-ilfl,, arises as the restriction 

of the Hausdorff measure Hm-i to the essential boundary of G this equation has 

been treated in [13], [14].) In connection with (9) the knowledge of the essential 
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spectral radius of the operator T is important. According to [6] for its evaluation it 

is sufficient to determine, for each of the norms p on L1(a) topologically equivalent 

to that given by (2), the corresponding p-essential norm UJP(T) of T which is defined 

as the distance (measured w.r. to p) of T from the subspace Q of all compact linear 

operators Q acting on Ll(a), i.e. 

(10) up(T) := inf{p(T - Q); Qe Q}. 

It is the purpose of this paper to show that the essential norm (10) can be estimated 

and sometimes even precisely evaluated in geometric terms connected with G. For 

this purpose we denote by p' the norm on L°°(a) which is dual to p, 

(11) p'(u) := sup [J^uf da; f e L1(a),p(f) < l}, ueL°°(a). 

Let 

(12) L°° := {« e L°°(a); p'(u) < 1} 

be the unit ball in L°°(a) corresponding to p ' . Let us consider cr-essential majorants 

q € L°°(a) of Lf enjoying the property 

(13) u e L°° => u <. q cr-a.e.; 

among them an important role is played by the cr-essential supremum of L°°, to be 

denoted by p*(e L°°(a)), which is the least cr-essential majorant of L°° characterized 

by the requirement 

p* < q cr-a.e. 

for each cr-essential majorant q fulfilling (13) (cf. [15], II.4.1). This supremum p* is 

determined almost uniquely w.r. to a and we may suppose that p* is a non-negative 

bounded Baire function on B (this can be achieved by changing p* eventually in a 

set of points of cr-measure zero). 

Given a bounded Baire function q >• 0 on B we introduce for z 6 R"\ r > 0, 6 G S 

the sum 

(14) nr(z,e):=^2q(z + tB), 0 < t < r, z + td £ Be, 
t 

counting, with the corresponding weight given by q, all points in the intersection 

Be n {z + t6; 0 < t < r}. For fixed z e Rm and r > 0, the function 

(15) 6^>nq
T(z,8) 
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is integrable on S w.r. to %m-\ so that we may define 

(16) «?(.) = -j- I n?(_,0)dttm-i(*). 

(This quantity is not sensitive to changing q in a set of <7-measure zero. Note also 

that for q = 1 and r = +oo this v\J(z) reduces to v(z) as defined above.) We are 

going to prove that the functions 

(17) vf :y^vf(y) (yeB) 

belong to L°°(a) and permit to obtain the estimate 

(18) w-(T) < 2Mj/(vf)\ 

besides that, the sign of equality holds in (18) for certain (e.g. weighted) norms p 

under suitable assumptions on the measure a. 

2 . N o t a t i o n . We denote by dG = B the so-called reduced boundary of G 

consisting of all the points z e R ™ for which there exists an n e S such that 

(19) d(z, { i £ R m ; ( i - z ) - i i < 0 ) n G ) = 0 = d(z, [x e Rm; (x - z) • n > 0} \ G). 

The corresponding vector n = nG(z) is uniquely determined and is termed the inte

rior normal of G at z in the sense of Federer; if there is no n e S satisfying (19) we 

agree to denote by nG(z) = 0 (e Rm) the zero vector in Rm . Then 

z t-¥ nG(z) 

is a Borel measurable function on Rm (cf. [4]) so that, in particular, B is a Borel set 

contained in Be; besides that (cf. [5]), 

(20) Hm-1(Be)<oo=>'Hm-i(Bc\B) = 0. 

3. Lemma. Assume (5) and consider a bounded Baire function q >. 0 on B. 

Given z £ Rm , r > 0 and $ e S, define nl(z,6) by (14). Then, for fixed z e R m and 

r > 0, the function (15) is integrable w.r. to Hm-\ on S and defining v}(z) by (16) 

we have 

(21) vf(z)= [ q(x)\nG(x)-gradh,(x)\dnm-1(x). 
JBr\B,.(z) 
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For any fixed r > 0, the function 

(22) « « : - • - » «*(_) 

is bounded and lower semicontinuous on Rm . 

P r o o f . For any 2 e Rm denote by V(z) the class of all non-negative Baire func

tions q on B for which the corresponding function 9 P-» n ^ ( 2 , # ) is "Hm-i-integrable 

on 5 and satisfies 

(23) J nl,(z,6) dHm-^6) = Am J q(x)\nG(x) • gradftz(_)| d « m - i ( s ) . 

As shown in Lemma 3 of [10] (p. 280), V(z) contains all positive bounded lower 

semicontinuous functions on B. In particular, the constant function equal to 1 on B 

belongs to V(z) so that 

„ ( - )__ _ L f n1
00(z,e)drlm-1(6)= J |n G (x) -gradf t z (x) |d-H m _i(_) , 

Am JS JB 

which is a bounded function of the variable z € Rm , because our assumption (5) 
implies (8) (cf, [7]). Consequently, for any fixed 2, the function 

(?>-> 71^(2 ,0) 

is integrable (Hm-i) on 5 . This permits us to conclude that V(z) contains the limit 

of any pointwise convergent uniformly bounded sequence of its elements. Indeed, 

given such a sequence qn - V(z), \qn\ ^ c (€ R), qn —> q pointwise on B, then all 

functions 

9*+n*(z,0) 

have 

0 f* cnlefaff) 

as a common Wm_i-integrable majorant on S and converge to 

0>-> 71^(2,0) 

almost everywhere CH m - i ) on 5 ; passing to the limit under the integral sign we get 

(23) showing that q e V(z), as asserted. These properties of V(z) guarantee that 

V(z) is rich enough to contain all bounded Baire functions q >• 0 on B. Given such 

a q and denoting by XB,.(.) the characteristic function of Br(z) we may apply (23) 

with q replaced by q • XB,.(Z), which results in (21). It remains to verify that, for 

any fixed r > 0, the function (22) is lower semicontinuous. Consider an arbitrary 
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convergent sequence of points zn e Rm tending to z as n -> oo. For x £ B \ {z} we 

have then 

<l(x)XB,.(z)(x)\nc\x) •gradft2(x)| < liminf q(x)xB,.(z„)(x)\nG(x) • grad/iZr l(x)| . 

Integrating dW m _i(x) we get by Fatou's lemma v$(z) 4 liminf v*(zn), which com

pletes the proof. • 

4 . R e m a r k . The formula (21) shows that the quantity v'<.(z) is not influenced 

by changes of q in a set of points whose intersection with B has vanishing Wm-\-

measure. The implication (7) guarantees that changing q in a set of points which 

meets B in a set of vanishing cr-measure does not afflict v^.(z), either. In what follows 

we always assume (5), which implies (8) and guarantees the existence of the density 

(4) at any z € Rm (cf. [7] Theorem 2.16, Lemma 2.9). We also assume validity of 

the implication (7) for any Borel set M. We denote by TLm-\ the restriction of the 

Hausdorff measure Hm-i to the reduced boundary B = dG which is defined on Borel 

sets M by 

(24) nm-1(M)='Hm-i(MriB). 

Since (8) implies finiteness of Hm-\(Be) (cf. [7] Theorem 2.16, Theorem 2.12, [5] 

Theorem 4.5.6), in view of (20) replacing the reduced boundary B by the essential 

boundary Be in the definition (24) does not change the measure fim-\ which, as a 

consequence of the assumption (7), turns out to be absolutely continuous w.r. to a. 

Accordingly, the Radon-Nikodym derivative 

is meaningful; we may and will assume that h is a Baire function defined and non-

negative everywhere on B = dG and vanishing on B \ B. It has been proved in [8] 

that, for / € L1(a) and cr-almost every x € B, the integral 

(26) / h(x)na(x)-giadhy(x)f(y)da(y) 
JB\{X} 

converges and represents a function which is cr-integrable w.r. to the variable x € B; 

the operator Jsfa is bounded on Ll(a) and transforms each / e L1(a) into a function 

which is given by the formula 

(27) Kf(x) = dG(x)f(x) - J h(x)na(x) • gmdhy(x)f(y)da(y) 
JB\{X} 

for <T-a.e. x € B. 
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5. Proposi t ion. Let p be a norm on Ll(a) which is topologically equivalent to 

that given by (2) and suppose that the norm p' on Lx(a) which is dual to p (cf. 

( l l ) j has the property 

(28) (u, v € L°°(cr), \u\ < v) => p'(u) sj p'(v). 

(Note that this is true if p satisfies the requirement p(\f\) ^ p(f), f £ Ll(a).) 

Denote, as above, by p* the a-essential supremum of Lx (cf. (12JJ and consider, for 

each r > 0, the corresponding function (17) (which is known from Lemma 3 to be 

bounded and lower semicontinuous on B). Let I be the identity operator on L1(a). 

Then for a e U 

(29) up(M„ - al) ^ Wj/fei -> \da(y) - a\p*(y) + vf (y)] 

< p'fo •-• \da(y) - a\p*(y)} + W p ' W ' ) . 

If, in addition 

(30) a({y G B; dG(y) * §}) = 0, 

then 

(31) up(Afa - al) £ | i - a\p'(p*) + inip'(vf). 

P r o o f . If p ( | / | ) ^ p(f) whenever / e Ll(a) and if u,v e L°°(a) satisfy |u| < v, 

then by (11) 

p'(u) ^ sup { J \u\ • | / | da; f e Ll(a), p(f) ^ l } 

^ sup{ / vgda; g 6 Ll(a), p(g) ^ l | =p'(v) 

and (28) is verified. In what follows we assume validity of (28). Fix r > 0 and choose 

an infinitely differentiable function yr on Km such that 

6 < 7- < 1, 7 r (Bj r (0) ) = {0}, 7 r ( R m \ Br(0)) = {1}. 

It has been proved in [8] (cf. Corollaire, pp. 153-154) that 

[x,y] ^nG(x) • gradhy(x)h(x) 
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represents a function of Baire on B x B \ A where A = {[x, x]\ x G B} and that, for 

each / G L1(a), the integral 

/ / \nG(x) • gradftv(s)| • \f(y)\h(x)da(x)da(y) 
J JBXB\£L 

is convergent. Consequently, also the function 

[x, y] >-T 7r(x - y) nG(x) • grad hy(x)h(x) 

which we extend by 0 to A represents a function of Baire on B x B and, for any 

/ 6 L1(a), the functions 

Trf(x) = - J h(x)lr(x-y)na(x)-^dhy(x)f(y)da(y), 
JB 

Vrf(x) = - / ft(s)[l - 7 r (x - y)]nG(x) • Sr-Ahy(x)f(y)da(y) 
JB 

are defined for cr-a.e. i 6 f l and are integrable (a). In view of (27) we have 

(32) (K - al)f(x) = [da(x) - a]f(x) + TTf(x) + VTf(x) 

for cr-a.e. x e B. Using the properties of ~/T it is easy to verify the estimates (where 
x,y,yjeB, j = l ,2) 

7 r ( x - y ) | n G ( x ) - g r a d f t B ( x ) K y l - 1 ( i r ) 1 - m , 

(33) | 7 r ( i - ? / i ) - 7 r ( x - ? / 2 ) | ^ | y i - ? / 2 | m a x { | g r a d 7 r ^ ) | ; - 2 e i ? m } , 

-yr(x-yj)\gr-Ahyi(x)-gra.dhy2(x)\ =? (m + \)A^\y,-m\(\r)-m for |j/i - y2 | ^ \r. 

Denoting by T'r the dual operator to Tr we have for u E L°°(a) and <j-a.e. y £ B 

Tru(y) = - / ft(x)7r(z - y)nG(x) • gradhy(x)u(x) da(x) 
JB 

= - I ir(x-y)nG(x)-graAhy(x)u(x)dnm-1(x). 
JB 

Hence we conclude by virtue of (33) that T'r maps the unit ball in L°°(a) into a 
family of uniformly bounded functions satisfying the Lipschitz condition with the 
same coefficient on B . By Arzela's theorem, this family is relatively compact in 
L°°(a). We have thus verified that 

Tr: f*+Trf 



is a compact operator on Lx(a). Defining 

UTf(x) = [dG(x)-a]f(x) + VTf(x) 

we may rewrite (32) in the form 

Ma-al = UT + Tr. 

Since TT is compact, we have 

ojp(Ua-aI)^p(UT)=p'(U'T), 

where U'T denotes the dual operator to UT sending any u e L°°(a) into a function 

determined for a-a.e. y 6 B by 

U'Tu(y) = [dG(y) - a)u(y) - f u(_)[l - lr(x - y)]nG(x) • g™dhy(x)h(x) da(x) 
JB\{y} 

= [dG(y) - a]u(y) - [ u(x)[l - lr(x - y)]nG(x) • grad/ .y(x) _ « - . _ , (x). 
JB 

If _ € L°° then 

\u\ ^ p* 

c-a.e. on B and, in view of (7), the same inequality holds % m _i-a .e . on B. Taking 

into account that 

1 - lr(x -y)=0 for x 6 Rm \ B r(y) 

we obtain from Lemma 3 for u e L°° and a-a.e. y e B that 

|[/>(2,) | < \dG(y)-a\p*(y) + f P*(x)\nG(x) • gradhy(x)\ _ « _ , ( * ) 
^Bnflr(s) 

= | d G ( y ) - « | p * ( i / ) + < * ( 2 / ) , 

whence using (28) we get 

p'(UT) = sup p ' ( L » ^ p'[y -4 |_G(y) - a | p ' ( i / ) + of" (</)] 
-_Lf 

^ p ' b ^ | d G ( y ) - a | p * ( y ) ] + p ' « ' ) 

for any r > 0, which implies (29). Assuming (30) we obtain 

p'[y M- |_G(2/) - a\p*(y)] = If ~ a\p'(p*), 

which completes the proof. • 
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6. N o t a t i o n . If w is a function on M C B then its cr-essential supremum on 

M is defined as 

inf {A e R; a({x <E M;w(x) > A}) = 0}; 

it will be denoted by the symbols 

a- sup w s a- sup w(x). 
M xeM 

7. Corol lary . Let q be a function of Baire on B satisfying a-a.e. on B the 
inequalities 

(34) Cl <. q <_ c2 

for suitable constants 0 < ci <. c2 < +oo, and define a norm p on L1 (a) by 

(35) p(f) = f q\f\da, f e L\a). 
JB 

Then for any a e R 

[ vq(x)i 
\dG(x) -a\+ r ' <. cr- sup \dG(x) - a\ 

Q\X] J T ( = R 

+ inf (T- sup 

q(x) 

vq(x) 

q(x)-

If (30) holds, then 

vq(x) 
uJAfa - al) < \a — i\ + inf a- sup , / . P 2 >->° xeB q(x) 

P r o o f . If p is defined by (35) then the dual norm of any u e L°°(a) is given by 

M 
(36) p (u) = a- sup — 

B 9 

(cf. (11)). We see that q e Lf° so that, denoting by p* the cr-essential supremum of 

the family Lf°, we get 

q ^ p* cr-a.e. 

On the other hand, in view of (13) we obtain from the cr-essential minimality of p* 

the inequality 

p* ^ q a-a.e., 
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so that 
p* = q cr-a.e. 

We may thus replace p* by q in Proposition 5 and (36) yields 

up(K - al) < inf a- sup \\dG(x) -a\ + ^ 1 
r > 0 X<=B l q\x)J 

vq 

<, cr- sup I d o M — a\ + inf a- sup —. 
XSB

 r>° q 

If (30) holds, then (31) combined with (36) and p'(p*) <. 1 yield 

vq 

up(Na - al) <. \\ - a\ + inf a- sup —, 

which completes the proof. • 

The following simple lemma will be useful in the course of the proof of our main 
theorem. 

8. Lemma. Let q he a finite function of Bake on B and let qa associate with 

each x e B the a-essential limes inferior of q at x which is defined as the supremum 

of all A e R, for which there exists an r > 0 such that 

(37) a({y G Br(x) n B; q(y) < A}) = 0. 

Then qa is a lower semicontinuous function on B and 

(38) a({xeB; q(x)<qa(x)})=0. 

P r o o f . Let x e B and A0 < qa(x). Then there are A > A0 and r > 0 

satisfying (37). Pu t g = | r and consider an arbitrary x0 e Be(x) n B. Since 

Be(x0) n B C Br(x) n B we have 

" ( { } 6 B 8 ( i o ) n B , q(y)<\}) = 0, 

whence 

$a(a;o) ^ A > A0. 

We have thus shown that for each A0 < q0 (x) there is a Q > 0 such that 

x0 e Be(x)nB^> qa(x0) > A0, 

which proves the lower semicontinuity of qa at x. 

431 



Since both q and g„- are functions of Baire we see that 

{x e B; q(x) < qa(x)} 

is a Borel set. Admitting that its <r-measure is positive we obtain from Luzin's 

theorem the existence of a compact 

K C{xe B; q(x) <q„(x)} 

with a(K) > 0 such that the restriction of q to K is continuous. The set consisting 

of all x e B for which a(BT(x) n K) = 0 for suitable r = r(x) > 0 has vanishing 

<7-measure. Consequently, there is an x0 e K such that 

(39) a(Be(xo)nK)>0 

for each g > 0. In view of q(x0) < q^(x0) there are A > q(x0) and r > 0 such that 

(40) a({y e BT(x0) n B; q(y) < A}) = 0. 

Since the restriction of q to K is continuous we can choose g e (0,r) small enough 

to have 

yeBe(x0)nK^\>q(y), 

which together with (40) violates (39). Thus (38) is established. • 

9. Theorem. Let q be a function of Baire on B satisfying a-a.e. on B the in

equalities (34) where 0 < c\ ^ c2 < +00 are constants, and define a norm p on L1 (a) 

by (35). Assume that a satisfies (30) and does not charge singletons: 

(41) a({y}) = 0 for each y e B. 

Then 

(42) wp(Na - 2-0 = inf <r-sup — • 

P r o o f . As we have seen in the course of the proof of Corollary 7 the dual 

norm p'(u) of any u e L°°(a) is given by (36) and q coincides <r-a.e. on B with the 

(j-essential supremum p* of the family L°°. We have to verify the inequality 

(43) uJAfa - U) Z inf a- sup - - ; 
PV 2 ' r>0 g g 
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the rest will follow from Corollary 7. 
According to (27), (30) we have for / 6 L1(a) and cr-a.e. x e B 

(44) (Л. - !_)/(_) = - / Л(_)n°(_) • gгadЛ,(_)/(y)d<r(y). 
-B\{x} 

Fix an arbitrary e > 0. According to Theorem 10 and Corollary 11 in Chap. VI, §8 in 
[3] there are mutually disjoint Borel sets M\,..., Mn C B and functions gi, • • • ,gn G 
L1 (a) such that the finite dimensional operator 

(45) T-.f^Yaj t fda 
U Jмs 

acting on L1 (a) satisfies 

(46) p(/v_ - §1 - T ) < e + _P(A. - £/). 

We infer from (44) that the operator (A/-- — |_ ) ' which is dual to (A/-- - | / ) sends 
any u £ L°°(a) into a function in -""(c) whose values for cr-a.e. y £ B are given by 

(/v. - \l)'u(y) = - [ u(x)nG(x) • grades)dftm__(_). 
- B 

Denoting by m^ the characteristic function of Af,- on B we obtain from (45) that the 
operator T" dual to T has the form 

(47) f : i i B T ' « = y in, / ugj da, u g L°°(<T) 
І = I •'-, 

In view of the equality 

(48) p ( A A , _ ! / _ r ) = p ' ( A ^ - i / - r ) ' 

it will suffice to derive a lower estimate for p'(A_ — 1_ — T1)'. Choose c > 0 small 
enough to have c < q cr-a.e. on B and fix a 6 > 0 such that for any Borel set M C B, 

(49) _-(A_)<<5=>/ g|0i|do-<--, j _ . l , . . . , n . 

According to our assumption (41) we can fix r > 0 small enough to guarantee that 

(50) y S B -*.<-(_. n_V(y)) <<5. 
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Observe that any u 6 L°°(a) with p'(u) ^ 1 vanishing outside the ball Br(y) centered 
at an' y e B satisfies 

|(Г ""IWKÉ^W/ q\9j\da<, 
J = 1 JBnBriv) 

for a-a.e. i 6 B , so that 

(51) p'(T'u) < e. 

Put Hx := {a e B\ q(x) < qa(x)} and recall that a(Hx) = 0 by (38). Given 

y e B\HX and A; > <,(?/) we thus have 

(52) a({x e B T ( J / ) D B\ q(x) < k}) > 0, r > 0. 

Putt ing H2 := {x £ B\ dG(x) £ §} , H0 := # x u H-2 we conclude from (30) that 

a(H0) = 0. 

Fix now an arbitrary y e B\H0 and fc > <j(?y). We are looking for a u e L°°(a) with 

(53) p'(u)^l,u(B\Br(y)) = {0} 

such that 

According to (21) we can fix Q e (0,r) small enough to have 

/ q(x)\na(x)-gvadhy(x)\dnm^(x)>vq
r(y)-ek. 

JBn[B,(y)\Ba(y)} 

Next define 

-q(x) sgn[7iG(x) • g r a d M * ) ] for z e B n [Br(y) \ Be(y)\, 1 0 for the other l i n B . 

For (T-a.e. z e Be(y)P\B we then have 

^(M, -§ / ) '« ( - ) = 

- L / g(o:)sgii[nG(x) - g r a d M * ) ] • [n G ( i ) • grad/iz(x)] d H m - i ( x ) . 
? W VBn[B,.(!/)\B„(!/)] 
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As z approaches y along the set 

{zeBD [Be(y) \ Ho]; q(z) < k} 

(which, in view of (52), intersects any ball BT(y) with r e (0, Q) in a set of positive 

a-measure), the corresponding functions 

x^rna(x)-gia.dhz(x) 

converge (even uniformly w.r. to x) in [BT(y) \ Be(y)] to 

x^,nG(x) -gra,dhy(x), 

whence 

/ q(x) sgn[nG(x) • gradh y(x)] • [nG(x) • gradhz(x)} dnm-i(x) 

JBn[Br{y)\B, iy)] 

-+ [ q(x)\nG(x)-grndhy(x)\dnm-1(x) > vr(y) - ek. 
JBrMB,.lTir B„M] I Bn[B,.(3,r,B1,(y)] 

We see that the function 

ш»£jyt.-W*) 
remains above the quantity ^^- - e on the set 

{z£[BT(y)\H0]nB; q(z) < k} 

of positive <r-mea*sure for sufficiently small T € (0, Q). Consequently, 

p'((M„ - Шu) >- yҢy) 
k 

Since (53) implies (51) we have 

p'((K - |1)' - T') >- p'((K - \I - T)'u) > p'((Ma - §/)'«) - p'(T'u) 

^m-2e. 

As k can be chosen arbitrarily close to q(y) we obtain 

for y e B \ He, i.e. for <r-a.e. y 6 B. In view of (46), (48) we arrive at 

p > ? ) <, p(Ma -\l-T)+2e<. u>p(Afa - i / ) + 3e, 

so that 

inf p'(vT) ^ uv(N„ - \I) + 3e, 

which yields (43) because e > 0 was arbitrary. Combining this inequality with that 

obtained for a = | from Corollary 7 we arrive at (42). • 
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R e m a r k . In [ l l ] , [l] examples have been constructed of simple sets G C R3 

arising as unions of finitely many rectangular boxes such that for the operator Ma 
corresponding to the surface measure a = W2I90 and the standard L1-norm p\ given 
by (2) the inequality uiPi(J\f<7 - al) ^ |a | holds for all a e R while for a suitable 
norm p given by (35) the estimate uif(Ma - \I) < \ is true. 
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