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Abstract. The problem of existence and asymptotic behaviour of solutions of the quasi-
linear and quadratic singularly perturbed Neumann's problem as a small parameter at the 
highest derivative tends to zero is studied. 
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1. INTRODUCTION 

In the paper [2] the author established sufficient conditions for the existence and 

uniform convergence of the solutions of a semilinear singularly perturbed differential 

equation ey" + ky = f(t, y) to a solution of the reduced problem ku = f(t, u) as the 

small positive parameter £ tends to zero. The purpose of this paper is an extension 

of Theorem 1 of the above cited paper to more general cases. We will consider 

Neumann's problem 

ey" = F(t,y,y'), a < t < b, 

y'(a,e)=0, y'(b,e) = 0, 

where F e C 1 ([a, b] x R2) and e is a small positive parameter. The proofs of the 

theorems are based upon the method of lower and upper solutions. 

As usual, we say that a e C2([a,b]) is a lower solution for (NP0) if a'(a,e) ^ 

0, a'(b,e) sj 0, and ea"(t,e) ^ F (t,a(t,e),a'(t,e)) for every t e [a,b]. An up

per solution /3 e C2([a,b]) satisfies f3'(a,e) ^ 0, ff(b,e) ^ 0, and £&"(t,e) ^ 

F(t,/3(t,e),/3'(t,e)) for every t e [a,b]. 



Definition 1. We say that a function F satisfies the Bernstein-Nagumo con

dition if for each M > 0 there exists a continuous function hM : [0, oo) -> [aM, oo) 

with aM > 0 and /0°° hJ^ ds = oo such that for all y, \y\ <, M, all t e [a, b] and all 

z e R we have 

\F(t,y,z)\<hM(\z\). 

R e m a r k . As a remark we conclude that the functions of the form F (t,y,y') = 

f(t,y)y' + g(t,y) and F(t,y,y') = f(t,y)y 2 + g(t,y) satisfy the Bernstein-Nagumo 

condition. 

L e m m a 1. If a, 0 are lower and upper solutions for (NP0) SUCJJ that a(t,e) ^ 

P(t,e) on [a,b] and F satisfies the Bernstein-Nagumo condition, then there exists a 

solution y of (NP0) with a(t, e) ^ y(t,e) ^ (5(t, e),a<.t<.b. 

N o t a t i o n . Let 

Ds(u) = {(t,y) e R2 :a<.t<.b,\y-u(t)\ < 5}, 

Ds,a(u) = {(t,y) e R2 :a<.t<_a + 6,ye U}nDs(u), 

Ds,b(u) = {(t,y) G R2 :b-6 <.t <.b,y£ R}<lDs(u), 

and 

where 6 ^ 6 — a is a positive constant and u = u(t) is a solution of the reduced 

problem F (t, u, u') = 0 defined on [a, b] such that u e C2([a, b]). 

Let h(t,y) denote F(t,y,u'(t)). 

2. QUASILINEAR NEUMANN'S PROBLEM 

In this section we consider the quasilinear Neumann's problem 

ey" = f(t, y)y' + g(t, y), a < t < b, 

y'(a,e)=0, y'(b,e) = 0, 

where f,g 6 C1(Ds(u)). Concerning the behaviour of solutions of ( N P ^ for e -> 0+ 

we have the following result. 

T h e o r e m 1. Consider the problem (NPi) . Let there exist a soJution u £ 

C2 ([a, b]) of the reduced problem. Let 6, m be positive constants such that dhil
t'y> > 

m for every (t,y) G Ds(u). Let f(t,y) ^ 0 and f(t,y) >- 0 for every (t,y) e Ds<a(u) 
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and (t,y) e Ds,b(u), respectively. Then there exists e0 such that for any e € (0,so\ 

the problem (NPi) has a solution satisfying the inequality 

\y(t,e) - u(t)\ sC Vl(t,e) + v2(t,e) + Ce 

on [a, b], where 

ti , i „ M exP [-v tT(6 ~ *)J + exP [ - - / f (f - fe)J 
^^ e ) = l«WI^(e-p[^(6-a)]-cxp[-^(6-a)]) ' 

, , , i ,/MI exp[-v/f(a-t)]+exp[-1/f(t-a)] 
"2(M = « (6) nw/r nn(u VI r fnriu TlT 

V T ( e xP [Vr(b - a)\ - e x P [-Vr(b - a)\) 
and C is a positive constant. 

P r o o f . We define the lower solutions by 

a(t,e) = u(t) - vi(t,e) - v2(t,s) - F(e) 

and the upper solutions by 

P(t,e) = u(t.) +vt(t,e) + v2(t,e) + T(e). 

Here E(e) = --•, where 7 is a constant which will be defined below. One can easily 

check that the functions a, 0 satisfy the boundary conditions required for the lower 

and upper solutions of (NPi) and a ^ 0 on [a,b]. Now we show that ea"(t,s) ^ 

f(t,a(t,e))a'(t,e) + g(t,a(t,e)) and ef3"(t,e) < f(t,0(t,e))/3'(t,e)+g(t,0(t,e)) on 

[a, b]. By the Taylor theorem we obtain 

ea" - F(t,a,a') 

= ea" - (F (t, a, a') - F (t, u, u')) 

= ea" - [(F(t,a,u') - F(t,u,u')) + (F(t,a,a')-F(t,a,u'))] 

= e a " - [ ^ ^ ( a - u ) + f(t,a)(a'-u')} 

= eu" - ev'l - ev2 + ~^~- («l + «s + H + f(t, a) (v[ + v'2) 

^ eu" - ev" - ev2 + m(v\ + v2 + T) + f(t, a) (v[ + v'2) 

= eu" + £7 + f(t, a) (v[ + v'2) 

^ -e \u"\ + e-y + f(t, a) (v[ + v'2) 

and 
F (t,í3,l3') - ep" > -e\u"\+ £1 + f(t,/3)(v[ + v'2), 
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where (t,n(t,e)) is a point between (t,a(t,e)) and (t,u(t)), (t,n(t,e)) € Ds(u) for 

sufficiently small e. 

Let u'(a) / 0, u'(b) ^ 0 (if u'(a) = 0 or u'(b) = 0, we proceed anal

ogously). Prom the above assumptions we obtain that f(t,a)(v[ + v'2) >• 0 and 

f(t, 0) (v[+v2) >- 0 on [a, a + 6] U [b - 6, b] for e £ (0, a] where 6 = min {6,6i} , 

and 6i,£i are such that v[ + v2 < 0 (v[ + v'2 > 0) on [0,0 + ^ ] ([b — 6i,b]) and 

(t,a) C Ds(u), (t,P) C Ds(u) for e € (0 ,e j ] . On the interval [a + 6,b - 6] we 

have \f(t,a) (v[ + v'2)\ ^ cie and \f(t,/3) (v[ +v'2)\ < cxe for sufficiently small e, for 

instance if e e (0 ,e 0 ] , £0 ^ £1 and ci is a suitable positive constant (if u'(a) = 0 

(u'(b) = 0) then \f(t,a) (v[ +v'2)\ < cxe and |/(. , /3) (v[ +v'.2)\ <, ae on [a,b - 5] 

([a + 5,6]). 

Thus if we choose a constant 7 >• c\ +max{ |u" ( i ) | ,t e [a, b]} then ea"( i ,e ) ^ 

f(t,a(t,e))a'(t,e) + g(t,a(t,e)) ands(3"(t,e) < f(t,0(t,e))f3'(t,e)+g(t,P(t,e)) on 

[a, 6]. The existence of a solution of (NPi) satisfying the above inequalities follows 

from Lemma. This completes the proof. D 

E x a m p l e 1. As an illustrative example we consider the (NPi) for the differ

ential equation ey" = yy' — (t — | ) on [0,1]. General solution of the reduced problem 

uu' - (t - i ) = 0 is u2 = t2 - t + k, k 6 R; however, only u(t) = t - \ satisfies the 

assumptions asked on the solution of the reduced problem. On the basis of Theo

rem 1, there is e0 such that for every e e (0,e0] the problem has a solution satisfying 

\y(t,£)-(t-\)\<.vi+v2 + aeon [0,1]. 

3. QUADRATIC NEUMANN'S PROBLEM 

Now we will consider the quadratic Neumann's problem 

£</" = f(t,y)y'2 + g(t,y), a<t<b, 
(NP2) 

y ' (a,e) = 0, y'(b,e) = 0, 

where f^eC1 (Ds(u)). 

Theorem 2. Consider the problem (NP2) . Let there exist a solution u e 

C2 ([a, b]) of the reduced problem. Let 6, m be positive constants such that hi,^ >-

m for every (t,y) £ Ds(u). Let f(t,y) <_ 0 (f(t,y) =s 0J for (t,y) 6 Ds,a(u) when 

u'(a) > 0 (u'(a) < 0) and f(t,y) <, 0 (f(t,y) >. 0) for (t,y) e Ds,b(u) when u'(b) < 0 

(u'(6) > 0;. Then there exists e0 such that for any e G (0, e0] the problem (NP2) has 

a solution satisfying the inequality 

\y(t,e)-u(t)\ <.vi(t,e) + v2(t,e)+CE 
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on [a, b] where v\, v2 are the functions from Theorem 1 and C is a positive constant. 

P r o o f . The idea of the proof is essentially the same as in the proof of Theorem 

1. Let us define the lower solutions by 

a(t, e) = u(t) - vi (t,e)- v2(t, e) - r(e) 

and the upper solutions by 

0(t,e) = u(t) + vi(t,e) + v2(t,s) + r(e). 

Analogously as in Theorem 1 we obtain 

ea" - F (t, a, a') >- -e \u"\ + je - f(t, a) (a'2 - u'2) 

= — s \u"\ + 7 6 + f(t, a) (v[ + v'2) (2u' - v[ — v'2) 

and 

F(t,(3,P') - eP" >- -e \u"\ + 7 e + f(t,0){0'2 - u'2) 

= -e \u"\ + 7 £ + f(t,P) (v[ + v'2) (2u' + v[+ v'2). 

Similarly as in the previous theorem we conclude (for u'(a) ^ 0, u'(b) ^ 0) that 

f(t, a) (v[ + v'2) (2u' - v[ - «4) ^ 0, f(t, 0) (v[ + v'2) (2w' + v[+v'2)>-0 

on [a, a + 8] U [b — 6, b] and 

\f(t, a) (v[ + v'2) (2u' -v[-v'2)\ ^ C2E, 

\f(t, j5) (v[ + v'2) (2u' + v[+v'2)\ ^ c2e 

on [a + 8, b - 6] for e e (0, e0], sufficiently small 8 > 0 and a suitable positive constant 

c2. Therefore, for 7 >- c2 + max{ |u"( i ) | , t 6 [a,b]} we have 

ea"(t,e) >- f(t,a(t,s))a'2(t,s)+g(t,a(t,e)) 

and 

e0"(t,e) < f(t, 0(t, e))0'2(t, e) + g(t, 0(t, e)) 

on [a,b]. Hence Theorem 2 is proved. • 
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E x a m p l e 2. Consider problem (NP2) for differential equation ey" = yy'2 _ 

(t + 1) on [—2,1]. Obviously u(t) = t + 1 is the only solution of the reduced problem 

uu! - (t + 1) = 0 satisfying the assumptions of Theorem 2. Hence, there is e0 such 

that for every e £ (0, Eo] the problem has a solution satisfying 

\y(t,e)-(t + l)\ ^vi+v2+c2e 

on [-2,1]. 

References 

[1] V. Seda: On some non-linear boundary value pгoblems foг oгdinary diffeгential equa-
tions. Arch. Math. (Brno) 25 (1989), 207-222. 

[2] R. Vrábef: Upper and lower solutions for singularly perturbed NeumanĽs probleш. 
Math. Bohem. 122 (1997), 175-180. 

Author's address: Róbert Vrábel] Department of Mathematics, Slovak Technical Uni-
versity, 91724 Trnava, Slovakia, e-mail: vrabelвsun.mtf . stuba.sk. 


		webmaster@dml.cz
	2020-07-01T13:29:30+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




