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Abstract. From the fact that the unique solution of a homogeneous iinear algebraic 
system is the trivial one we can obtain the existence of a solution of the nonhomogeneous 
system. Coefficients of the systems considered are elements of the Colornbeau algebra U of 
generalized real numbers. I t is worth mentioning that the algebra R is not a field. 
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l . INTRODUCTION 

We shall consider the systems of linear equations 

auxi+ ai2x2+ . . . + almxm= bi, 

a2xxi+ a22x2+ ... + a2mxm= b2, 

< U ) : : : 
aniXi+ a.,l2X2+ ... + anrnxm = bn, 

whereOij (i = 1, 2,. . . ,n, j = 1,2,,.. ,m), bi (i = 1,2,.. .,n) and Xj (j = 1,2,... ,m) 

are elements of the Colornbeau algebra i of generalized real numbers. The coeffi

cients a.ij, i = l ,2 , . . . ,n , j = 1,2,...,m, and bi, i = l ,2 , . . . ,n , are given, while 

Xi,X2,- • • ,xm are to be found. The multiplication, the summation and the equality 

of two elements from R are meant in the Colornbeau algebra sense. After extending 

these operations in a natural way to matrices and vectors with entries from R we 

can rewrite the system (1.1) in the equivalent matrix form 

(1.2) Ax = b. 
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It is well-known that i is a commutative algebra with the unit element and it is 
also well-known (cf. [4, pp. 6-7] or [3, Section 37]) that most of the theory known for 
determinants of matrices of real or complex numbers are applicable to determinants 
with elements in commutative rings with the unit element. In particular, if X is 
a commutative ring with the unit element, X" is the space of column n-vectors 
with entries from X, A is an n x ??i-matrix whose columns are elements of Xn and 
6 e X", then the determinant olet(A) of A is defined in such a way that the following-
assertions are true: 

1.1. Proposition . Ifm = n and det(A) possesses an inverse element (det(A)) - 1 

in X, then the given nonhomogeneous system (1.1) has a unique solution x for any 
right-hand side and this solution is given by 

Xi = det(^i)(det(yi))"\ i = 1,2.. . . ,m, 

where Ai stands for the matrix obtained from A by replacing the i-tb column by the 
column b. 

(For the proof see [4, p. 6].) 

1.2. Proposition. Ifm = n and the homogeneous system 

(1.3) Ax = 0 

possesses a nontrivial solution, then det(^4) is not invertible in X. 

(For the proof see [4, Proposition 1.1.2].) 

1.3. Proposition. The system (1.3) possesses a nonzero solution if and only if 
there is a nonzero element A of X such that Adet(A) = 0 (i.e. det(A) is a divisor of 
the zero element 0 in Xj. 

(For the proof see [3, Corollary of Theorem 51].) 
The aim of this paper is to prove some additional theorems on existence and 

uniqueness of solutions of the system (1.2). In particular, from the fact that the 
unique solution of the system (1.3) is the trivial one we obtain the existence and 
uniqueness of solutions of the system (1.2). The results of this paper will be applied 
in the investigation of boundary value problems for generalized differential equations 
in the Colombeau algebra (see [2]). 



2. ALGEBRA OF GENERALIZED NUMBERS 

Let us recall here some basic facts concerning the Colombeau algebra of generalized 
numbers which are needed later on. For more details see e.g. [1]. 

As usual, we denote the space of real numbers by R, while N stands for the set of 
natural numbers (N = {1,2,...}). 

Let 5t(U) be the set of all C°° functions R i-+ R with a compact support. For 
a given q 6 N we denote by .e/, the set of all functions ip e @(R) such that the 
relations 

I ip(t) At = 1, and j tk<p(t) At = 0 for any 1 sj k sC q 

hold. We have 

sfq i -^9+1 f° r a n y 1 € ^ and Q sr/q = 0. 

For given <p e 3(U) and e > 0, <ps is defined by 

Ve(0 = M j ) -

Now, we denote by S0 the set of all mappings from s&\ into R. Obviously, when 
equipped with naturally defined operations, S0 is a commutative algebra over the 
field R of real numbers and the mapping ip G s/1 H4 1 e R is its unit element. In 
particular, the product i?i • R2 of the elements Ri and Rx of S0 is given by 

i i r f i i ^ e M r t Ri(<p)R2(<p) e R. 

Furthermore, we denote by SM the set of all moderate elements of S0 defined by 

SM = {ReS0:3(N eN)V(ipe s/N) 3(c > 0,/to > 0) 

V(ee(a,vo))-\RM\Hce-N}. 

Clearly Su is a linear subspace and a subalgebra of ff0. 

By F we denote the set of all increasing mappings a: N t-+ R+ such that 

lim a(q) = eo 



and we define an ideal S? of £M by 

ST = {R e S0: 3(N e N,a € T) V(g ^N,ipe stfq) 

3 ( c > 0,/JO > 0) V(e e (0,po)): | J?fe) | sC cea^-N}. 

The factor algebra 

is called the algebra of generalized numbers (cf. [1, Sec. 2.1]). For a given i £ i 

we denote by Rx its representative (Rx e <?M) and write usually a; = [Rx] (% = 

/?! 4- &)• Obviously, R is a commutative algebra with the unit element 1 = [Ri]t 

where Ri(<p) = 1 for any tp e JO/I, and the zero element 0 = [Ro], where Ro(<p) = 0 

for any ip € ml\. Let us recall that for given x, y € R we have 

OTJ = [Rt • Ry] = RX • Ry + ,f. 

Furthermore, it is worth mentioning that R possesses nonzero divisors of the zero 

element. In fact, let o = [Ra] € R and o* = [Ra.] e R be given by 

(2.1) Ra(џ) = 

and 

(2.2) Я a - Ы = 

1 if if 6 s&ik-i \ &?2k for some k 6 

0 otherwise 

0 if ip 6 •s*2*-j \ irf-2k for some k e I 

1 otherwise. 

Obviously jR0 • Ra- 6 J ' and i? a, -Rae &, i.e. aa* = a*o = 0, while both a and a* 

are nonzero. It follows immediately that R is not a field. In fact, let a and a* 6 R 

be given respectively by (2.1) and (2.2) and let x £ R be such that ax = 1. Then 
0 = (a*a)x = a*(ax) = o* would hold, while a* ^ 0 according to the definition (2.2), 

On the other hand, the algebra R possesses the following helpful property. 

2 .1 . Proposi t ion. If a € R is not invertible, then a is a divisor of the zero 

element 0 off . 

For the proof of Proposition 2.1 the following lemma is helpful: 

2.2. Lemma.-, Let us assume that 

(2.3) 3 (q* 6 N ) V ( v > e 4 ) ] (o>,„, > 0) 3 (rk,,„ > 0) 

V(eG(0,v,v.)): 1^(^)1 ^d»*.«'e'"-



Then the element a = [Ra] € R is invertible in R. 

P r o o f . Let the assumptions of the lemma be satisfied. Let us put 

/ RTUP) i f 'p ~ ^ f o r s o m e ^ e '0 '* a n c J £ e (°'%*,v)' 

We shall show that then 
Ra • Ra. -RieST, 

3(N £M,a€r)y(q^N,i>G s/q) 3 ( c > 0,7/ > 0) 

V(e€(0,r/)) : \Ra(ipc)Ra> (A) ~ l | $ ce" 1 ' ) " " . 

Indeed, let us put N = q* and let a be an arbitrary element of T. Then for any 

q >- iV and any ip e sfq we have ^ € ^9» • By the assumptions of the lemma there is 

an Vq'.ip > 0 such that 

Ra(ipc)Ra-(i>e) = 1 for any e € (0, v , * ) -

Thus, if we put 
C = 3 ^ T a n d */ = V,*> 

we complete the proof of the lemma. D 

P r o o f of P r o p o s i t i o n 2.1. Let us assume that (2.3) does not hold, i.e. 

(2.4) V ( m e N ) 3 (y?H e ^ m ) y (c > 0, tj > 0) 

3(ee(0,ti)):\Ra(V$nl)\<$em. 

As P| j?4 is empty, for any m £N there exists rm eMU {0} such that 
o=i 

¥>H e^ m + T , „ \ .0r m + , . m + 1 . 

Obviously, for any m 6 N there is an /vT e M U {0} such that 0 <. rvT ^ r m and 

V W , v , [ m + i j ) . . . ; ^ [ m + r - ] € ^ ^ ^ ^ m + r m + 1 , 

while 

^ • m + ^ + l ) ^ . < i + r j > i \ ^ m + r i n + 1 . 



Let us put 

(2.5) ,/,['»] = ip[^+^] for m e f*y. 

Clearly, since according to our definition 

^[m+TZ+l] ^ ^[m) for . m y m e N> 

we have 
^[m+l] j . ^[m] for a n y m £ N . 

Furthermore, (2.4) implies that 

(2.6) V(m € H,c>Q,n € (0,1)) 3(J3m G (0/;;)): | # « ( ^ j ) | < £ (ftn)"'4"^. 

(Let us notice that without any loss of generality we can assume that the relations 

^M = ^[m+l] = . . . = ^[m+r^] = ^[m] 

hold as well.) 

Now, let us define a sequence {mt}fL1 by 

f 1 if £ = 1, 

| m j _ i + » W 7 + 1 if CG N and £>-2. 

Clearly, m*+i > m» holds for any £ G N and 

lim m£ = oo. 

Furthermore, for any I G N we have 

¥>K] = VP[m/+11 = • • • = flm'+¥^] = V tm ' ], 

i>lmt] € .<, (+?^\«^mH-r,„,+ l C .0/
m, + „„, \M„„+r,„,:+l, 

^Im^+r^+J] ^ .< , , , + T,„i \ < l , + r,„( + i 

and in virtue of (2.6) the sequence {V-*1"1'1}!^! possesses the following property: 

(2.7) V(«e N , o o,»; e (0,1)) 3(A„, e (o,»?)): \Ra{^)\ <\{pm,)mt+Y^. 
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Let us put c = 2 and t) = i and let {/3m,}£i be the corresponding sequence from 
(2.7). Let us put for <p 6 M and e > 0 

(-1 if v> = ^J and |/?„ ( ^ ) | < i (e/9,„,)m '+7r,:7 

(2.8) J?A(%) = < for some f 6 N, 

I, 0 otherwise. 

We claim that 

(2.9) Rx $ ST. 

Indeed, if R\ 6 S? then 

(2.10) 3 (N e N, a e T) V (g >- AT, v> e .</,) 3 (c, 5? > 0) 

V ( e e ( 0 , - ) ) : | / . A ( v e ) l < ^ o W - W -

Let arbitrary fixed N €N and a € T be given such that (2.10) holds. Without any 
loss of generality we may assume that 

(2.11) a(N)>N 

is true as well. Let e0 e N be such that 

(2.12) mt + uZ^N for any t 6 N, i >• e0. 

Then for any I € N such that f ^ f t w e have 

(2.13) 3 ( 5 ? > 2 , i j , e ( 0 , l ) ) V ( e e ( 0 , » 7 . ) ) : 

I^((4"1'%„„)|<^(^l,)
a<m'+^'""-

Now, let {rjk}^=1 be an arbitrary decreasing sequence in (0,1) such that 

(2.14) lim 'i)k = 0. 

According to (2.7) we have 

(2.15) V(e&N,ke N) 3(/?W e (0,%)): \Ra<1>[$)\ < = {it])™'^'7 • 

In particular, the relations (2.14) and (2.15) imply that 

(2.16) lim /?W = 0 for any i 6 N, £ >. e0, fixed. 



Thus, if we put 
0 

£kt~~— for k,te h, 
Pm, 

we obtain 

\M&ki!)cj\~\M*[;£)\ 

According to the definition (2.8) this means that for all <p = ij.Mn'\ k e ^ and f e N 
such that ( ^ (Q we have 

(2.i7) Rx{vtk.,)=M(4::X,J=^g) = i-

On the other hand, (2.13) yields 

\RX(Vcij\<wmrimr+r^N 

for any k, I € N such that l^t0-

Consequently, as by (2.11) and (2.12) we have a(rni+f~^) > N and thus by (2.16) 

lim Q(/4*ir(m '+5^'V = 0, 

we obtain that for any f ^ l'o there is a kg such that 

\Rx(ipt-,,,,)\ < 1 for any k ~£ ko, 

which contradicts (2.17). This proves the relation (2.9). 

Now, we will prove that the relation 

(2.18) Rx-Rae.sr 

is true as well. To this purpose let us define a mapping a*: N H- R+ = (0, oo) as 
follows; 

- (l + ^—) if 1 ^q^m2, 
2 V rn-2 ' 

a*(q) = { 
(q - me)(me+i - me) 

mt-i -i if me < q ^ mt+i and t £• 2. 
me+i - me . 

Since obviously 

a* (mi) = a*(l) = | and a*(me) = m*_i for ('• = 2 , 3 , . . . , 



it is easy to verify that a* € V. Furthermore, according to the definition (2.8) we 
have for any <p 6 s/j 

(
R„(<p£) if V = V{j"j} and 

for some /' € W, 

0 otherwise. 

Let arbitrary N,q e N be given such that <_ .3 N, then there is a unique ( e N such 
that q eND (me,mt+i}. Since !im, < 1, it follows that for all <p 6 a/,t and e e (0,1) 
we have 

\Rx{<pc)Ra{<Pc)\ < e""+r^ < e""- ' < £«-M-N. 

(Let us recall that e/q C •£/„.,_, in such a case.) Consequently, if we choose N e N 
arbitrarily (e.g. Ar = 1) then for all q 6 N such that q ^ TV, any <p e •(/,, and any 
e 6 (0,1) we get 

\Rx(v>c)RaCPe)\^^'M-N, 

i.e. (2.18) is true. D 

2.3. Vectors and matrices of generalized numbers . Let us put 

I " = R x ••• X R. 

The elements of l " will be considered as column n-vectors, i.e. 1 x n-matrices of 
generalized numbers. For a given n x m-matrix A of generalized numbers, its entries 
will be denoted by a._; (A = («,_.) = (a.ij) t : ) . Given an n x m-matrix A of 

generalized numbers and an m x fc-rnatrix B of generalized numbers, their product 
AB is the n x fc-matrix of generalized numbers defined in the natural way and the 
transpose of .4 is denoted as usual by AT. 

Obviously, if A = (a._.) i = 1 n is a given matrix of generalized numbers, then 

x = (x\, x2,.. •, xm)T € U is a solution of the system (1.2) if and only if it satisfies 
the system of relations 

Ran • RXI + Ra,2 -RX2 + ... + R,,„n • Rx,„ - /?;,,. 6 S, i = 1,2,..., n, 

For a given q e N, the symbol Nq denotes the subset {1,2,... ,q) of N. For a given 
subset It of N, we will denote by ;/(H) the number of its elements. Let A = (UJJ) be 



an n x ro-matrix (n, m > 1) of generalized numbers and let it C Nn and 23 C Mm be 
given such that u(ii) ^ n - 1 and iA23) < m — 1. Then the symbol Au,w stands for 
the matrix obtained from the matrix A by deleting the rows with the indices i € il 
and the columns with the indices j e 23. If iX = {i} and 23 = {j}, then we write 

Au,<n = Aij. 

We say that the minor det(Au,<n) of the matrix A is of the fc-th order if k > 0 and 
n - v(it) = m — f(93) = A. For a given r e N such that 1 ^ r ^ min(n,m), the 
symbol AM stands for the submatrix (oy) i = 1 r of the matrix A = («y) i = 1 

Let an n x n-matrix A and a couple i, j € Nn of indices be given. Then we define 
the cofactor @ij of a{j in A by 

^ = (-l) i+->det(A;,;). 

The n x (m + l)-matrix obtained when we attach a column b € I f to the columns 
of a given n x ro-matrix A of generalized numbers will be denoted by (A, b). 

If A has not only zero elements, then the highest order r of nonzero minors is 
called the rank of A and will be denoted by rank(A). If A is the zero matrix, we put 
rank(A) = 0. 

3. MAIN RESULTS 

Before formulating the main results of the paper let us give several simple examples 
indicating that under our assumptions the situation is even in the case m = n = 1 
more complicated than in the classical case. 

Let a G R and b G R be given and let us consider the equations 

(3.1) ax = b 

and 

(3.2) ax = 0. 

a) If o is given by (2.1), then a ^ 0 and as mentioned above there exists a nonzero 
generalized number a* 6 R (cf. (2.2)) such that aa* = a*a = 0. This shows 
that the homogeneous equation (3.2) with a ^ 0 may in general possess nonzero 
solutions. 

b) Furthermore, it was also mentioned above that if a is given by (2.1), then a is 
noninvertible, i.e. the equation (3.2) possesses for 6 = 1 no solutions, though a 
is nonzero. Let us notice that in this case we have 

rank(A) = rank(A,6) = 1. 



c) Let a be given by (2.1) and let b = a. Then (^4,6) = (a,a), rank(^4) = 
rank(A, b) = 1 and x = 1 is evidently a solution to the equation (3.1) (i.e. ax = 
a). 

Our main results are the following theorems. 

Theorem 3 .1 . Let m = n and let the zero vector be the unique solution of the 
system (1.3) in U . Then the system (1.2) iias exactly one solution x in W for any 

b e l " . 

Theorem 3.2. Let us assume that rank(A) = rank(A,6) = r > 1 and that there 
are subsets ii and 23 of the set Nmm(„;TO) such that y(U) = f (33) = r and det(Au,4j) 
is invertible in R. Then the system (1,2) has at ieast one solution i E l " . 

Theorem 3.3. Let us assume that the system (1.2) has a solution x e W \ Then 

(3.3) rank(,4) = rank(yl,&). 

4. PROOFS 

P r o o f of T h e o r e m 3.1. Let m = n and let x = 0 e R" be the only solution 
of the homogeneous system (1.3). 

Let us assume that det(A) is not invertible in R. Then by Proposition 2.1, det(^) 
is a divisor of the zero element, in R and hence by Proposition 1.3 the system (1.3) 
possesses a nonzero solution. This being contradictory to our assumptions, it follows 
immediately that under the assumptions of the theorem det(A) has to be invertible 
in R. The proof of Theorem 3.1 is now easily completed by making use of Proposi
tion 1.1. D 

P r o o f of T h e o r e m 3.2. Without any loss of generality we may assume 
that det(A(r>) ^ 0 and det(j4M) is invertible in i . Furthermore, let us assume that 
r < m. The modification of the proof in the case r = m is obvious. 

Let an arbitrary vector A = (At, A2,. . . , Am_ r )
T e Rm T be given. Let us denote 

bi = bi - ^2 aikh-T for í = 1,2,... ,j 

b = (bub2,...,bт) 



By Proposition 1.1 there exists the unique solution y = (t/i, J/2, • • •, 2/r)T to the system 

A^y = b 

and this solution is given by 

Vj = det(4' ' ))(det( J4M))-1 , j = 1,2,... ,r, 

where for a given j = 1,2,..,, r, the symbol A^ denotes the matrix obtained from 

the matrix A^ by replacing the j - th column by the vector b. If r = n, then x = y is 

a solution of the given system (1.2) and the proof of the assertion of the theorem is 

obvious, of course. If r < n then analogously to the classical case (when Uij, h € R) 

for any t = r + 1, r + 2 , . . . , n and any A 6 R ' w e obtain 

(4.1) NT aijyj - b^j det(A{r>) = ]Ta , ; j det(4' r )) - h det(A<r>) 
S'=i I j=i 

= -det(4 r ' i ,& i) , 

where the (r + 1) x (r + l)-matrix (AT^,b') is given by 

fo,ц 012 • • Olr tл 
0 2 1 022 • • «2r Ь2 

\ O i i 

Or2 • 

Oű • 

• . O г т 

• . öir 

řľr 

(Л'-ť,Ь*). 

It is easy to verify that if we denote by (AT'\ b') the (r +1) x (•;• + l)-matrix given by 

(0.ц Ol2 ••• Oir Ьi \ 

Q21 «22 • • • 0 2 r Ь2 

(AT'\¥) = 

Orl Qr2 
V a л ai2 

arr bт 

then the following x'elation is true: 

det(AT-\bi) = det(AT'\bi). 

By the assumption of the theorem we have 

det(AT'\¥) = 0, 
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of course. Consequently, since det(j4W) is assumed to be invertible, it follows easily 

from the relation (4.1) that the relations 

OiiVi +a.2l/2 + ••• + airyr = bi, i = l,2,...,n 

are true. Thus, if we set 

Xi = y-i for z = l , 2 , . . . , r and a'» = \i-r for i = r + l , r + 2 , . . . ,n, 

then the vector x = (xi,x2,.. .,xn)
T is the desired solution to the given system 

(1.2), • 

P r o o f of T h e o r e m 3.3. Let us assume that the system (1.2) possesses 
a solution x = (x\,x2,... ,xm)T 6 R . Let us put again r = rank(j4). If r = m 
or r = 0, then the proof of the theorem is obvious. Let us assume 0 < r < in. 
Furthermore, without any loss of generality we can assume that 

det(Air)) + 0 

holds. 

Obviously we have 

(4.2) vwk(A,b)^r. 

Let us denote y = (x\,x2 ..., xr)
T and b = (b\, b2,..., bT)T. Then the relation 

AW» = 6 = 5 - ( JT OyX,-)._ 

is true. Analogously to the proof of Theorem 3.2 we could show that for any i = 
r + 1, r + 2 , . . . , m the determinant of the matrix (AT'*, b{) vanishes. Consequently, 
we have rank(4, b) < r wherefrom with respect to (4.2) our assertion immediately 
follows. • 
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