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AND LOCAL STABILIZATION OF NONLINEAR SYSTEMS 
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Summary. The existence of the normalizing transformation completely decoupling the 
stable dynamic from the center manifold dynamic is proved. A numerical procedure for 
the calculation of the asymptotic series for the decoupling normalizing transformation is 
proposed. The developed method is especially important for the perturbation theory of 
center manifold and, in particular, for the local stabilization theory. In the paper some 
sufficient conditions for local stabilization are given. 
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1. I N T R O D U C T I O N 

Consider the system 

(1) 

-r-x = Ax + Ф(x,ў), 
at 

-£Ў = Bў + Щзi,ў), 

where 

• (x,y) 6 R m x R n , Rn denotes the n-dimensional Euclidean space, 

, A € R m x m and A = -AT, 

• the eigenvalues of B 6 Unxn have negative real parts, 

• $ and >P are at least C2 functions which vanish together with their derivatives 

at the origin, i.e., 

# e C f c ( R m x R" ,R m ) , §(0,0) = 0, d§(0,0) = 0, 

f e c ' j r x Rn,Rn), §(o,o) = 0, df(o,o) = o, 
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where k ^ 2, d $ = (§ f , §f ) and Ck(Um x R", Ue) is the class of all functions 

C: Rm x Rn -> Ue 

which have continuous derivatives of order k. 

To investigate the dynamic of the system (1) in a neighborhood of the origin 

we apply the center manifold theory which mainly consists of the following three 

theorems. 

T h e o r e m 1.1 [4, 8]. Given the conditions (2), there exists a center manifold 

Mc = {(x,y)eBs(0)xUn;y = h(x)}, 

l 
where Bs(0) = {x G R m ; \x\ < 5}, \x\2 = (x,x) and (x,z) = £ x{Zi for x,z e Ul, 

t = i 
h e C f c _ 1 (R m , Un), h(0) = 0 and 5 is a sufficiently small real positive number. 

It is convenient to use the following notation: 

f(x,y) = (Ax + §(x,y),By + $(x,y))T, 

etf denotes the flow generated by the vector field / ; etf (x,y) is the point drifted by 

the flow etf at time t from the point (x,y). 

The zero solution is said to be stable, iff for every neighborhood W of the origin 

there exists a neighborhood V of the origin such that 

etfV CW Vf. ^ 0, 

where etfV = {etf(x,y); (x,y) e V}. The zero solution is asymptotically stable, iff 

it is stable and there exists a neighborhood S such that 

lim etf(x,y) = 0 

for all (x, y) e S. 

The flow on the center manifold Mc is governed by the system 

(3) z = Az + $(z,h(z)). 

The next theorem tells us that (3) possesses all the necessary information needed to 

determine the asymptotic behavior of (1) in a neighborhood of the origin. 



Theorem 1.2 [4]. 
(a) If the zero solution of (3) is stable (asymptotically stable) (unstable), then the 

zero solution of (1) is stable (asymptotically stable) (unstable). 
(b) If the zero solution of (3) is stable, then there exists a neighborhood Vof the 

origin such that for every (x0,yo) G V one can find z0 such that 

erf(xo,yo) = {z(t,z0),h(z(t, -o))) + O(e-T'), 

where 7 > 0 is a constant, z(t,z0) is the solution of (3) with the initial condition 
z(0,z0) = z0. 

The center manifold can be approximated to any degree of accuracy. For C 1 

functions <p: Rm -> Rn define the nonlinear operator 

(M<p)(x)= d<p(x)[Ax + $(x,<p(x))] -B<p(x)-y(x,<p(x)). 

For the function h(x) defining the center manifold Mc we have (Mh)(x) = 0. 

Theorem 1.3 [4]. Let <p be a C1 mapping of a neighborhood of the origin in Rm 

into Rn with <p(0) = 0, d<p(0) = 0. Suppose that (M<p)(x) = 0(\x\") as x -+ 0, 
where q > 1. Then \h(x) - <p(x)\ = 0(\x\q) as x -> 0. 

The main results of this paper occupy the place of Theorem 1.2 among these three 
theorems. In fact, Theorem 1.2 can be replaced by two stronger theorems (Theorem 
2.2 and Theorem 3.1), which are the core of the theory proposed here. At the same 
time, the method developed here together with Theorems 1.1, 1.3 give us a powerful 
tool for the investigation of stability and stabilizability of nonlinear systems. 

For small (x, y) we prove the existence of the decoupling normalizing transforma
tion 

x = x + u(x, y - h(x)), v(x, 0) = 0, du(0,0) = 0, 
( 4 ) - - u-\ 

y = y-h(x), 
under which the system (1) has the form 

(5) 
—x = Ax + Ф(x,h(x)), 
dř 

—ÿ = Bў + Ф(í,ў), 

where h(x) is the function from Theorem 1.1, $(£, h(x)) is from (3), 4(5,0) = 0 for 
all x sufficiently small and d*(0,0) = 0. If $, * are Ck functions, then v(x, y - h(x)) 
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is a Ck~2 function. v(x, y) can be approximated by some known function. We will 
show how to calculate this approximation in the third section of this paper. To know 
v(x,y,) is important, both for the investigation of the stabilization and for the design 
of a stabilizing feedback. To illustrate that, we will prove several sufficient conditions 
for local stabilizability of nonlinear systems with noncontrollable linearizations and 
propose a stabilizer design procedure for a bilinear system. 

2. EXISTENCE OF DECOUPLING NORMALIZING TRANSFORMATION 

Here we prove the existence of the decoupling normalizing transformation (4). The 
proof is analogous to the proof of Theorem 1.1 [8]. 

It is more convenient to rewrite the system (1) in the new coordinates' 

x = x, 

y = y- h(x), 

where h(x) is from Theorem 1.1. Under the coordinate transformation the system 
(1) assumes the form 

x = Ax + $(x,y), 
(b) 

y = By + $(x,y), 

where 

4>(x,y) = $(x,y + h(x)), 

V(x,y) = dh(x)($(x,h(x)) - $(x,y + h(x))) + $(x,y + h(x)) - $(x,h(x)). 

Now for the system (6) we prove the existence of the function v(x, y) such that under 
the transformation 

i: = x + v(x, y) 

y = y 

the system (6) becomes (5). 

Theorem 2.1. Let$(x,y), i(a;,y) beCk functions (k ^ 3) which vanish together 
with their derivatives at the origin, i.e., 

*(0,0) = 0, d*(0,0) = 0, d*(0,0) = 0 
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and, in addition, 

- (_ ,0 ) = 0 for a/i (_, 0) -Q, 

where Q is a neighborhood of the origin. Then there exist a neighborhood Q CQ of 

the origin and a Ck"2 function v(x,y) such that 

i/(_,0) = 0 V ( _ , 0 ) e Q , d;/(0,0) = 0, 

and under the normalizing transformation (7) the system (6) assumes the form (5). 

P r o o f . Introducing the scalar change of variables (_,y) —¥ (\x, \y) and mul

tiplying <£, 4- by u>(\x\2 + \y\2 + K\2) where K is a sufficiently large positive constant 

and ui(r) is a C°° real valued function satisfying 

0<._>(r) ^ l V r ^ O , 

u(r) = 1 V 0 < . r < . | , 

_>(r) = 0 VI <.r < oo, 

we obtain 

(8) 

where 

and for A 5- 0 

x = Ax + $(x,y,\), 

y = By + ^(x,y,\), 

$(_,«/, 0) = *(_,2/,0) = 0, 

_ (_, y, A) = JOJ(\X\2 + \y\2 + K\2)*(\x, \y), 

-*(-,!/, A) = Y^(N 2 + M2 + K\2)V(\x,\y), 
A 

and the following conditions hold: 

(ai) $ (_ ,y , A), \-(~,y, A) exist and are continuous for all (_,y,A) and for each fixed 

A they are Ck functions in (x,y). 

(aii) $ (0 ,0 , A) = 0, for any fixed A we have d . (0 ,0 ,A) = 0, d*(0,0,A) = 0. There 

exists a real positive value <5 > 0 such that * ( _ , 0 , A) = 0 V_ e Rm , |A| < S. 

(aiii) $ , -" = 0 V|„ | 2 + | j / | 2 >. 1, where | • | represents the Euclidean norm corresponding 

to the usual scalar product (•, •) on pairs of vectors. 

(aiv) ( ^ n ^ n * , * ) —>0 uniformly in (x,y) e Rm x R" as A-> 0 for |i| + | j | <. k; 

(__N7-ty _ il\h... !_fLy~ (±Y ... (Ay-
\dx) \dy) \dxj \dxm) VdyJ \dyn) ' 
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where i = ( i i , . . . , im), j = ( j i , . . . , j„) are an m-tuple and an n-tuple of non-

negative integers respectively, \i\ = i\ H Yim, \j\ = j i H 1- in-

If A / 0, then the systems (6) and (8) are locally (near the origin) related by a 

scalar change of variables. Therefore it is sufficient to prove Theorem 2.1 only for 

the system (8). 

The function v(x, y) is a solution of the following equation in partial derivatives. 

(9) Av - ~Ax - ^By = | ^ * ( ~ , l / , A) + ^ * ( x , W, A) + * (* ,» , A) - * ( - + v, 0, A), 

f ( a : , 0 ) = 0 V i e R ™ , 

d i / (0 ,0 )=0 . 

To solve the equation (9) we take into account that 

(10) -^t[eM(e-tfyv(x,y)} = eM(e-tfy[$(x,y,\)-$(x + v,0,\)], 

where f = (Ax + $(x,y,\), By + 9(x,y, A))T, fte
M = AeM, eM\t=0 =1,1 is the 

identity matrix, 

(etfyv(x,y)=<p(etf(x,y))*t£R. 

Integrating (10) with respect to t we obtain 

(11) etA(e-tf)*v(x,y)-v(x,y)= f eAT(e~TSy[^(x,y, A) - #(x + v,0,\)}dr. 
Jo 

Since A = -AT and the eigenvalues of B € R n x " have negative real parts, there 

exists a compact convex set A C Rm x Rn such that 

{(x,y)e Rm x R"; \x\ + \y\ <£ 2} C A 

and 

e " A c Л Vť^o. 

For a proof see e.g. [11]. 
Consider the Banach space 

T ; = {v = v(x,y) satisfying ( b i H b i i i ) l -

(bi) v is a real vector-valued function such that „. u" 1 x Kn -* R m and ^v(x,y) is 
a C' function, 

(bii) i/(x,0) = 0 V i e R m , di/(0,0) = 0. 
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(Mil) 

HHI = m a x SUP l ^ - ) (-^r) v(x,y)\<oo. 
\i\+\)K'(x,y)efi"'xii"\\dxJ \dy) . v ,y'\ 

11 verk~2, then 

(12) | i /(x,y)| = I / -§-v(x,e)dO\ < \\v\\ • \y\ V(x,y) € Rm x R". 
* Jo vy > 

In accordance with condition (aii) we have 

— #(a: ,sy,A)ds) j / 

and (aiv) yields 
f1 d 
I — * ( z , s y , A ) d s -» 0 

jo »y 
uniformly in (a, y) e Rm x Rn as A -» 0. 

We can choose a positive real value 5 such that, for |A| < 5, 

(13) ft(e'/(i,!/))|<a(()-e<-''+*')<Vt>0, (x,y) e Rm x Rn, 

|/3(A)| < /., 

where 
. P s : r x R » - + r , Py(z,y) = y; 
• a( t ) is a polynomial in t with positive coefficients; 
• /3(A) > 0 is continuous in A and /3(A) -» 0 as A -» 0; 
• fi = \ min{| Re21; z is from the set of eigenvalues of B}. 
For a proof of (13) see Lemma 3 on page 552 of [8] or Lemma 1 on page 23 of [4], 
Therefore (12), (13) imply, for v e T*" 2 , 

(14) \e"At(etfyv(x,y)\ <. a(t)e{-»+sw)t\\v\\ Vf > 0, (x,y) e Rm x Rn, 

where a(t) is a polynomial in t with positive coefficients which does not depend on 
verk~2. 

Thus if v e T f c- 2 , then it follows from (11), (14) that 

v(x,y) = J eAT(e-Tf)*\$(x,y,X) -$(x + v(x,y),0,X)] dr. 

Consider the nonlinear operator 

Txv(x,y)= J eAT(e-Tf)*[$(x,y,X) - 4>(x + v(x,y),0,X)]dT 
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which is defined, for |A| < <5, on the Banach space Tfc 2. 
The conditions (aii)-(aiv) imply 

*(x,y, A) - $(z + v(x,y),0, A) 6 Tfc"2, 

whenever $ is a Ck function and v ~ Yk~2. 
Since the eigenvalues of A all have zero real parts, (14) implies 

\a-M(-tfr[9(x,y, A) - $(z + v(x,y),0,\)]\ 

<a(t) • e^+KW • \\$(Px(-),Py(-),\) - $(PX(-) + v(Px(-),Py(-)),0,\)\\, 

where Px: Rm x Rn -» Rm, Px(x,y) = x. 
In what follows, 

\(Txv)(x,y)\ < oo V ( i , y ) e R m x R n 

for all v ~ T*-2 and |A| < S. 

We now prove the existence of 6 > 0 such that, for |A| < S, 

(15) ll(e ( /)l < &(t) • e(-"+rt*»' Vi ^ 0, 

where IKe*-̂ )* || is the norm of the operator 

{etfy.rk-2^rk-2 j 

and &(t), 4(A) are of the same type as 5(t), a(t), (9(A) from (13), (14). 
Introduce the notation 

«3«-(s)'(|)''-(«"(->»-
Then {(^fs(i),Y4

<,,jW)}|,-,+,;,Kt_1 is the solution of the system 

x(t) = Ax(t) + $(x(t),y(t),\), 

y(t)=By(t) + y(x(t),y(t),\), 

lxii(t) = AXxi(t)+t^(^S(x(t),yW,X), 

d,„-, , . , „,„•,,., fd\*/d\i. -y-; j ( i) = BYH(i) + ( - ) * ( _ ) ' *(x(t),y(t),\), 
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where |.| + \j\ %k~l, x(t) = Px(e
tf(x,y)), y(t) = Py(e

tf(x,y)) and 

X'x%(0) = 0, Y*?y(0) = 0 for |*| + bl > 2, 

lp*vf(*,v))\t^=o, |pK(y>(^))L0=o, 

where 7m £ R1"*™, /n g R"*n are identity matrices. Using induction with respect 
t 0 1*1 + b'l — ' we can prove the existence of 6 > 0 (which may depend on (i,j)) such 
that for |A| < 6 

ЯІ(å)'(å)'««""""»l (16) (»,y) I 

<a( t ) -e(-"+^A» ' , K | . | + | i K f c - l 

where a(t) is a polynomial in t with positive coefficients, /3(A) >. 0 is continuous in 
A and /?(A) ->• 0 as A -> 0, j . is defined in (13). 

Step 1. Let |t| + | j | = 0. Then 

y(t) = By(t) + J ^(X(t),sy(t),X) ds • y(t) 

and the eigenvalues of B have negative real parts. Therefore there exists a positive 
real value 5 > 0 such that for |A| < 5 and |i| + b'| = 1 the inequality (16) holds. For 
a proof see Lemma 3 on page 552 of [8] or Lemma 1 on page 23 of [4]. 

Step 2. Let the inequality (16) hold for all |i| + b'| < /. Consider the case | t |+ | j | = /. 

-£*&(*) = BY%(t) + ^9(x(t),y(t),X) • Y%(t) 

+ —<I>(x(t),y(t),\)-X>x'iy(t) 
(17) d_ 

+ dx 
+ Z({Xii(t)}mlJ\<i, {^(*)}|<|+|J|<.,A), 

where X°<°(t) = x(t), Y°;°(t) = y(t) and the function =(•, •, A) satisfies the conditions 

H({X«(t)}|.|+|il<.>0,A)--0, 

mxii(t)}mjl<l,{Y:p)hil+ul<l,o) = o, 
233 



Due to (aiii), (aiv) and the induction hypothesis there exists 6 > 0 such that 

sup { |2({^(«)} | i | + | j | < i ,{y^( t )} | i | + u | < i ,A) | + ||;*(s(«),y(«),A) • * " ( « ) 

(.,!/) U i i ox 
(18) ^ a(t) • e'.-v+PM)'- Vt >. 0 |A| < 5, 

where 5(4) is a polynomial in t with positive coefficients, /3(A) >- 0 is continuous in 
A and /3(A) -> 0 as A -> 0. The estimate for 

^-9{x(t),v{t),*)Xii(t) 

follows from the fact that X^y(t) satisfies 

i ^ W = AX^it)+Qi{^)J^ii),yit),X) 

and y(t) is exponentially decreasing as t -> oo. 
Thus (17) and (18) imply (16) for |i| + | j | = /. 
The inequality (16) yields (15). 
Since the conditions (aii)-(aiv) imply 

$(~,y,A)-$(~,0,A)GT f c-2 

we have 

$(~, y, A) - $(~ + u(x, y),0, A) e 1k~2 

whenever $ is a Ck function and v e Tfc~2. Thus we obtain 

| t*(P.(0,P«(0,A)-#(P,(0 + «/(Px(0,Py(0).O,A)|| 

^| |*(P.(0,P»(O.A)-#(P.(0,0,A)| | 

+ ||$(P.(0,O,A) - *(P.(0 + «'(P.(0,Pv(0).O,A)|| 

^ | |*(P.(0,Py(0,A)-$(P.(0,O,A)| | 

+ JD,-||$(P.(-),0,A)||^-(IHI + l)fc-1, 

where k >• 3, the constant Dk depends only on k and 

| |$(P.(.),0,A)| |c t=max sup |(|-Y<I>(z,0, A)|. 
\iKk .£R'» I VOX/ I 
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Thus, taking into account (15), we obtain, for |A| < S, 

IITAHK /°O«(r)e(-"+«A))Tdr-(||*(PB(0,Py(0,A)-*(Pc(0,0,A)|| 
Jo 

+ D,.||$(P:c(0,O,A)||ct-(l + |HI)';~1) 
v.er'-2, 

where &(t) is a polynomial in t with positive coefficients, 

(aiv) implies 

lim ( / " °°d(T)e ( - ' ' + / 5 ( A ) ) r dr - ( | | $ (F 3 ; (0 ,P ! / (0 ,A) -$(Px(0 ,O,A) | | 
*-*> I Jo 

+Dk • | |*(Px(0,O,A)| | c . • (1 +r)k~1) j = 0 

for any positive real value r. Hence, for any r > 0, there exists S(r) > 0 such that 

T\:Br-+Br for |A| < S(r), 

where BT = {v e T * - 2 ; \\v\\ <. r } . 
We now prove the existence of r > 0 such that, for all vi,v2 £ Br, 

(19) \\TxVi - Txv2\\ <. i • \\Vl - v2\\ for |A| < S(r). 

It follows from (15) and the definition of T\ that 

(20) 

\\T\vx - Txv2\\ <. [°° a(T)e(-K+Kx»T d r • ||*(P»(-) + n , 0 , A) - $(PX(-) +i*, ,0 , A)||. 
Vo 

It is easy to see that 
(21) 

$ (x + i/x(x,y),0, A) - $(a; + v2(x,y),0, A) 

=/ i^* ( a ; +^+ ( i-^'o 'A ) d sr(i i ' i ( a ; ' ' )"i i / 2 ( a ; ' ' ))^ 
Due to (aiii) we obtain from (21) that W i , f2 6 Br, 

(22) | | * ( P x ( ) + ^ , O , A ) - * ( P c ( ) + ^ , O , A ) | | < C ( r ) | | * ( P I ( 0 , O , A ) | | c . - 1 | | t ' 1 - ^ | | 

where C(r) is a constant depending only on r. 

Thus (22) together with (20) and (aiv) yield (19). We have proved the existence 

of r > 0 and 5(r) > 0 such that, for |A| < S(r), T\ is a contraction mapping 
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on Br C Tk~2. Therefore, according to Banach's contraction principle [6], there 
exists a single function v(x,y) e Tffc_2 such that v = T\v. The function v(x,y) 
was constructed by the following procedure: if v(x,y) fulfils (9), then v(x,y) fulfils 
v = T\v. The opposite implication follows from the fact that, according to Banach's 
contraction principle [6], v = T\v has unique solution. D 

Theorem 2.1 can be reformulated in terms of the original system (1). 

Theorem 2.2. Let §(x, y), $(*, y) be Ck functions (k ^ 3) which vanish together 
with their derivatives at the origin, i.e., 

f (0,0) = 0, #(0,0) = 0, d$(0,0) = 0, df (0,0) = 0. 

Then there exist a neighborhood Q of the origin, a Ck~2 function v(x,y) and a Ck 

function h(x) such that 

v(x, 0) = 0 V (x, 0) G Q, di/(0,0) = 0, h(0) = 0, dh(0) = 0, 

and under the normalizing transformation 

x = x + v(x,y-h(~)), 

y = y- h(x), 

the system (1) Assumes the form 

—x = Ax + $(x, h(x)), 

—y = By + V(x,y), 

where *(i,0) = 0 V(i,0) 6 Q, d*(0,0) = 0. 

R e m a r k . A decoupling normalizing transformation is not unique because of 
non-uniqueness of the center manifold. 
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3. APPROXIMATION OF THE DECOUPLING NORMALIZING TRANSFORMATION 

The function C(s>5) = v(x,y — h(x)) can be approximated to any degree of accu

racy. To show that we introduce the nonlinear operator 

J(n) =A»- L-ffi + $(x + n, h(x + /.)) - $ (x, y), 

where Ljfi is the Lie derivative, i.e., 

h(x) is the function from Theorem 1.1. We recall that 

g(x,y) = 0((\x\ + \y\)« • \y - h(x)\) as (x,y) -> 0, 

iff there exists a neighborhood of the origin W such that 

\g(x,y)\ < C • (\x\ + \y\)« • \y - h(x)\ V(x,y) € W, 

where C is a positive real constant. 

T h e o r e m 3 . 1 . Suppose ft is a Ck~2 (k >• 3), function such that dp(0,0) = 0 

and, for some Q > 0, fj,(x,h(x)) = 0 \/\x\ < Q- Moreover, assume 

J(H) = 0((\x\ + \y\)" • \y - h(x)\) as (x,y) -> 0 

where q>-\. Then 

(23) C(2,9) - M(*.l7) = 0((\x\ + \y\r • \y - h(x)\) as (x,y) -+ 0. 

P r o o f . Following the proof of Theorem 2.1, it is sufficient to prove (23) only 

for the system (8) with A sufficiently small. Take the function 

U M A * , A y ) . w ( | z | 2 + M 2 + i a 2 ) f o r A # 0 , 
(24) 6x(x,y) = \ 

[0 for A = 0, 

where x = x, y = y — h(x) and w(r) is the truncated function introduced in the proof 

of Theorem 2.1. Then 0* 6 Tfc~2 and there exist r > 0 and A > 0 such that 

6x e IrABr = {ue T * " 2 ; \\v\\ < r} V|A| < A. 
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define a mapping Sx: Tk 2 -> Tk 2 by 

Sxz = Tx(z + 9x)-9x. 

Since there exists 5(r) > 0 such that Tx is a contraction mapping on Br for | A| < 5(r), 
Sx is a contraction mapping on 

S(A,9) = {<p € T*"2; y + 6x\\ < r,\<p(x,y)\ < K• ((|*| + |y|)< • |V|) 

V(s,j/)e Rm x Rn}, 

where A" is a positive real constant. Indeed, it is sufficient only to show that 

Sx:S(\,q)-+S(\,q). 

KipeS(\,q), then 
||5AV + ^ | | = ||rA(v> + ^ ) | | < r , 

where the last inequality follows from 

Tx:Br^Br. 

Thus it remains to prove that, for all (x,y) e Rm x Rn, 

M*,y)|_<tf-((|.-| + hr|)«-|vl) 

yields 
\(Sxv)(x,y)\^K-((\x\ + \y\y\y\) 

for some positive K. 

The function 9x(x,y) can be represented as 

-9x(x,y) = -J° -±(eAT(e-Tfy6x(x,y))dT = - J° eAT(e-Tf)*(A6x-Lf6x)dT. 

Since, for q >• 1, 

l i m \AdX-Lfdx + §(x + 6x,0,\)-§(x,y,\)\ = 

x-.o (|o;| + |y|)« • |j/| 

uniformly with respect to (x,y), we have 

\A9X - Lfex + $(x + 6X,0,\)- *(x,y, A)| < fl(A)((M + |»|)» • |y|), 
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where R(\) >• 0 and R(\) -+ 0 as A -> 0. Therefore, we obtain 

-6x(x,y) = -J eAr(e-Tfy{mx,y,\)-t>(x + Ox,0,\)] + N(x,y)}dT, 

where 

N(x, y) = A6x - Lf9x + *(s + t9A, 0, A) - *(*, y, A) and 

\N(x,y)\^R(\)((\x\ + \y\)"-\y\). 

Thus 

r° 
(SX<p)(x,y) = J eAr(e-Tfy[i(Px(-)+ex,0,\)-^(Px(-)+Ox+'P,0,\)-N(x,y)]dT. 

Since 

|*(z + t?A, 0, A) - >$(x + Ox + f, 0, A)| 

= l ( / ^ * ( * + tfA + *V,0)A)da)-v'(i-,v)|<ll*(/>x(0,0,A)||o...«-(|i-| + |y|)«.|y| 

and the eigenvalues of .4 all have zero real parts, we have 

\e-At(etfy(*(x + ex,o,\)-$(x + $x + <p,0,\)-N(x,y))\ 

<a(t) • (|#(P.(.),0,A)||tn K + R(\j) • |(e")*((M + |y|)» x |y|)| 

for t > 0, (x,y) 6 Rm x Kn, 

where a(t) is a polynomial in t with positive coefficients. Using (13) we obtain the 
existence of C > 0 and 6 > 0 such that 

a(*)-|(e*/r((M + lvl),-|wl)|<C(M + lvi),.|v| 

for all t > 0, |A| < 6 and (x,y) € Rm x Rn. Thus it follows from (aiv) that there 
exists 5 > 0 such that 

C(\\*(Px(-),0,\)\\ciK + R(\))<K 

for all |A| sj 6. Therefore 

\(Sx<p)(x,y)\^K-(\x\ + \y\Y-\y\ 

for all (x,y) and |A| ^ 5. The proof is completed. • 
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Now using Theorem 1.3 and Theorem 3.1 we can approximate the decoupling 
normalizing transformation 

x = x + v(x,g-h(x)), 

y = g- h(x), 

to any degree of accuracy, where v(x,0) = 0, h(0) = 0, di/(0,0) = 0, dh(0) = 0. 
Consider more thoroughly the numerical procedure for the calculation of asymp

totic series for v. For simplicity we suppose that the coordinate transformation 

x = x, 

y = y- h(x) 

has been already applied. Thus we deal with the system (6). Then the function 
v(x, y) satisfies the equation 

Av = - dvtt - {$(x, y) - $(x + v, 0)}, 

where 
Av = adA v + -^-By, &AA V = ^-Ax - Av 

dy dx 

and 

n(x,y) = (Hx,y)Mx,y)f. 
Let y • p* be a linear space of vector fields whose coefficients are homogeneous poly
nomials of degree i +1 and for every g G y • p* we have g(x, 0) = 0 Vx e Rm. Suppose 
further that we have the asymptotic series 

" = 5 Z "<• 
t= i 

n = V>, 
i>2 

*(x,y) - *(x + v,0) = Y^[$(x,y) - $(x + v,0)]i+1, 
i=l 

where vt, [$(x, y) — $(x + v, 0)]i+i € y • p l and H; G p \ p* is a linear space of vector 
fields whose coefficients are homogeneous polynomials of degree i. Then we have to 
solve for {vi}^lx the following linear equations in the linear spaces {y • p*}?^: 

(25) Av, = - VJ dvinj-[$(x,y)-$(x + v,0)]l+1 (1 = 1,2,...) 
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The solution {vi}^ exists and is unique. Namely, the following statement is true. 

Proposition 3.1. There exists A - 1 : y • p* -+ y • p* and 

A~1h=- f°° e-ATh(eATx,eBTy)dT 
Jo 

forhey-p*' (i = 1,2,...). 

Proof . Suppose there exists g ^ 0, g e y • p \ such that Ag = 0. Then 

ft{e-Atg(eAtx,eBty)} = 0. 

Thus 
e-Atg(eAtx,eBty) = g(x,y) 

for t > 0. But g € y • p* and consequently 

lhae-Atg(eAtx,eBty) = 0. 

Hence g(x,y) = 0. Thus Ag = 0 implies g = 0. This yields the existence of A - 1 . 

D 

E x a m p l e 3.1. Consider the polynomial system 

x = Ax + (Vnx + V12y)-(k,y), 

y = By + (V21x + V22y) • (k, y) , 

where the eigenvalues of A E RmXm have zero real parts, the eigenvalues of B € Rixn 
have negative real parts, Vu e RmXm, V12 <E Rmxn , V21 e Rnxm, V22 € RnXn ^nd 
k £ Rn. Then for ' = 1 the equation (25) has the form 

Kut = -(Vnx + Vuy) -{k,y) • 

Using Proposition 3.1, we obtain 

v1 = f e-AT(Vne
Mx + V12e

BTy) • (k,eBry) dr 
Jo 

and 
v = »1+0((\x\ + \y\f\y\)-
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4. ADDITIONAL SMOOTHNESS 

Smoothness and/or real analyticity of the decoupling normalizing transformation 

is completely determined by smoothness and/or real analyticity of a center manifold. 

Consider the sequence 

G> = - J e* T (e - r / )* [*(x , y, A) - ~(x, 0, A)] dr, & = TA&, • • •, & = T^-i, 

where <&(£,!/, A) and T\ are defined in the proof of Theorem 2.1. Then {£,}£L0
 a r e 

Ck functions whenever / is a Ck vector field and |A| < S, where 6 is a sufficiently 

small positive real value. It has been proved in Section 2 that lim & = v in the 

T * - 2 topology. Thus a restriction of v to any closed ball in Rm x Rn is. the limit 

°f {&}?=o m t n e C * - 2 topology. Moreover for sufficiently small 5 and |A| < 6 the 

(A; — 2)nd derivatives of v are uniformly Lipschitzian. Using this fact and the method 

of proof of Theorem 4.2 from [5], one can show that, for A sufficiently small, v is a 

Ck function on a closed ball in Rm x R". 

In general real analyticity of the vector field / does not imply the existence of a 

real analytic center manifold [8]. But if the function h(x) from Theorem 1.1 and the 

vector field / are real analytic and moreover 

A = -AT, 

then the decoupling normalizing transformation is also real analytic. To prove that 

one defines the norm 

\\g\U= sup \—-g(x,y)\ on y-p\ 

If A = — AT, then there exists a constant K > 0 such that 

(22) WA^Wt^K' V. = l , 2 , . . . . 

Thus using (21) one can show that 

(23) M l , <. M\ 

where the constant M > 0. (23) means real analyticity of v. The details of this 

scenario are quite laborious so we do not present them here. It is necessary only to 

note that the condition A = —AT is quite important. In general, for an arbitrary 

matrix A, whose eigenvalues have zero real parts, there exists no constant K > 0 for 

which (22) holds. 



5. LOCAL STABILIZATION OF NONLINEAR SYSTEM 

WITH NONCONTROLLABLE LINEARIZATION 

Here we continue the work begun in [1, 3]. Namely, we apply the results obtained 

above in order to investigate the local stabilization of the single-input nonlinear 

system 

$ = Ax + $(x, y) + G(x, y) • u, 
(26) 

y = By + V(x,y) + (q + Q(x, y)) • u, 

where the control value u e R and A, B, $ , \P have been defined in (1), 

G: Rm x R" -> Rm , 

are C°° function which vanish at the origin, i.e., G(0,0) = 0, Q(0,0) = 0. 

Definit ion 5.1. The system (26) is said to be locally stabilizable at the origin iff 

there exists a C2 feedback u = w(x, y) which vanishes together with its derivatives 

at the origin (i.e., w(Q,Q) = 0, dw(0,0) = 0), such that the zero solution of the closed 

loop system (the system (26) with u = w(x,y)) is asymptotically stable. 

Due to Theorem 2.2 there exists a decoupling normalizing transformation (4) under 

which the system (26) has the form 

(27) 

where 

-үî = Aî + Ф(î, h(x)) + G(x, i 

--y = By + * ( £ , y) + (q + Q(x, y)) • u, 

G(x,y) = G(x,y) + §;"(z,y- h(x))\z=iG(x,y) 

+ ^(x,Ok=y-m(q + Q(x,y) - ^h(x)G(x,y)), 

Q(x,y)=Q(x,y)-^=h(x)G(x,y) 

a^d (x,y), (x,y) are connected by the decoupling normalizing transformation (4). 

It is easy to see that y = 0 yields x = x and y = h(x). Thus 

G(x, 0) = G(x, h(x)) + ^-v(x, 0) (q + Q(i, h(x)) - ^h(x)G(x, h(x))). 
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The next theorem gives us some sufficient conditions for local stabilizability of the 

nonlinear system (26). 

T h e o r e m 5 . 1 . Let the system 

(28) ^-x = Ax + $(x,h(x)) 

be stable, let V(x) be its C°° weak Liapunov's function, i.e., there exists S > 0 

such that V(x) > 0 for all 0 < |f| < S, V(0) = 0, and (dV(x),Ax + $(x,h(x))) 

<. 0 V \x\ < 5. Suppose further that for every complete trajectory i(t, x(0)) = {x(t); 

\x(0)\ < S, 0 <. t < oo} of (26) which satisfies 

(29) (dV(x(t)),G(x(t),0))=0 V ^ O 

we have x(t) = 0. Then the system (27) is locally stabilizable at the origin by the 

feedback u = -(dV(x),G(x,y)). 

P r o o f . According to Theorem 1.1 the system (27) with u = — (dV(x),G(x,y)) 

has a center manifold y = H(x). Then due to Theorem 1.2 (and/or Theorem 2.2) the 

zero solution of the closed loop system is asymptotically stable iff the zero solution 

of the system 

(30) ^x = Ax + $(£,h(x)) - G(x,H(x))(dV(x),G(x,H(x))) 

is asymptotically stable. If there exists S > 0 such that lim x(t,x*) = 0 V|a;*| < <5, 

where x(t, x*) is the solution of (30) generated by the initial conditions x(0, x*) = x*, 

then the proof is completed. Otherwise for every S > 0 one can find 0 < \x* | < S 

such that lim x(t,x*) ^ 0 and x(t,x*) satisfies 

(dV(x(t,x*)),G(x(t,x*),H(x(t,x*)))) = 0 V t ^ O . 

But (x(t,x*), H(i(t, x*))) is a solution of the system (27) with u = 0. Hence, due 

to the stability of the zero solution of (28), lim H(x(t, x*)) = 0. Thus there exists a 

nontrivial trajectory of (28) which satisfies (29). This contradicts the conditions of 

the theorem. The proof is completed. • 

Using the sufficient conditions of stabilization obtained in [7] we can formulate the 

following corollary of Theorem 5.1. 

Coro l l a ry 1. Let $(x,h(x)) = 0, AT = -A, let G(x,0) be a C°° function and 

for S sufficiently small let 

rank{ad*AG(i,0)}f=
:O = m, V0 < \x\ <S 



where &d°AG(x,0) = G(x,0), ad^G(x,0) = ^G(x,0)^x-ylG(x,0) andad'AG(x,0) 
= ad/t(ad^_1 G(x,0)). Then the system (27) is locally stabilizable at the origin by 
the feedback u = —{x,G(x,y)). 

Other corollaries of Theorem 5.1 can be formulated with the help of the sufficient 
conditions of stabilization obtained in [9, 10]. 

The next theorem follows from the sufficient conditions of stability of homogeneous 
polynomial systems [2]. 

Theorem 5.2. Let A = -AT, 

$(Z,h(x)) = $o(x) + 0(\Z\9+1), 

G(x,y)=Gn(x,y)+0((\x\ + \y\r+1), 

where $« 6 p9, Gn € pn and p9, pv are defined in Section 3. Suppose further 
9 >. 2?7 + 1 and 

{ieS™-1; (x,Gn(x,0)) = 0}c {xeS"1'1; (x,$e(x)> < 0}, 

where 5 m _ 1 is the (m — l)-dimensional unit sphere. Then there exists 7 > 0 such 
that the feedback 

U(x) = -7(x,G„(x,0))|xr2"-1 

stabilizes the system (27). 

Proof . Consider the system (27) closed by u(x) = -7(x,Gr)(x,0))|x|('-2'>-1. 
Having applied Theorem 1.1 we obtain the existence of the center manifold y = H(x) 
for the closed loop system. Hence the feedback stabilizes the system (27), iff the zero 
solution of the system 

^ x = Ax + *(x, h(x)) - G(x,H(x)) • 7(x, G„(x,0))|x|"-2'>-1 

is asymptotically stable. Take Liapunov's function V(x) = \\x\2. Then 

(31) fv(x) = <x,$„(x)) -7«x,G„(x,0)» 2 • Ixl9"2""1 + 0(|x|*+2). 

According to the result of [2], there exists 7 > 0 such that 

(x,f , (x))< 7((x,G„(x,0)>)2|x|e-2"-1 Vx^O. 

Thus the statement of the theorem follows from (31). O 

245 



Now we formulate sufficient conditions for local stabilizability of the bilinear sys

tem 

x = Ax + (Vux + V12y)v, 
(32) 

y = By + (q + V21x + V22y)v, 

where the control value v 6 R, q 6 R", the system 

y = By + q • v 

is stabilizable and A, {Vy}?^=i are defined in Example 3.1. 

We will design the stabilizing feedback in the form 

(33) v = (k,y) + u(x,y) 

with u(0,0) = 0, du(0,0) = 0 and with k e Rn such that all eigenvalues of B = 

B + q • k have negative real parts. 

Substituting (33) in (32) we obtain 

x = Ax + (Vux + Via!/) • (k, y) + (Vux + V12y) • u, 
(34) 

y = By + (V21x + V22y) • (k, y) + (q + V21x + V22y) • u. 

T h e o r e m 5.3. If A = -AT and 

(35) (x,Vux)+ fO°(eATx,Vue
ATx)(k,eBTq)dT = 0 

Jo 

implies x = 0, then the system (32) is stabilized by the feedback 

(36) v = (k,y) - (x,Vnx) - I (eATx,Vue
ATx)(k,eBrq)dT. 

Jo 

P r o o f . It is easy to see that for the system (34) with u = 0 we have h(x) = 0 

and $(x, h(x)) = 0. The decoupling normalizing transformation is of the form 

(37) • = * + **,»). 
y = y, 

where 
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v = Г e~AT(Vue
ATx + V12e

bTy)(k,eBTy) d r + 0((|аг| + 
Jo 



as was calculated in Example 3.1. 
Under the normalizing transformation (37) the system (34) has the form 

(38) x = Ax + G(x,y)-u, 

y = By + V(x,y) + (q + Q(x,y)) • u, 

where 9, Q are analogous to the corresponding functions in (27). 
Consider the system (38) closed by 

(39) u(x) = -(x,Vnx) - Г(eAтx,Vne
Aтx)(k,eBтq)dт 

Jo 

where (x,y) and (x, y) are connected by the transformation (37). Then using Theo
rem 1.1 we obtain for the system (38) closed by (39) the center manifold y = H(x). 
Hence to prove the theorem we need to investigate the local behavior of the system 

(40) 4-x = Ax + G(x,H(x))-u(x), 
at 

where x = x — v(x,H(x)). Take Liapunov's function V(x) = \\x\2. Then 

At 

However, 

4-V(x) = (x,G(x,H(x)))-u(x). 

(x,G(x,H(x))) = (x,Vnx) + J (<&ATx,Vne
ATx)-(k,eBTq)aT + 0(\x\3), 

Jo 

u(x) = -(x,Vux) - [ (eATx,Vne
ATx)(k,eBTq)dT + 0(\x\3). 

Jo 

Therefore 

4-V(x) = -{(x,Vux) + J°°(eATx,Vne
ATx)(k,eBTq)dTy + 0(\x\ 

dí 

and due to the condition (35) this means asymptotic stability of the zero solution of 
(40). Hence the zero solution of the system (32) which is closed by the feedback (36) 
is also asymptotically stable. D 
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