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1. INTRODUCTION 

In this paper we prove theorems on the existence of solutions to the differential 
system 

(1.1) xw = f{t,x,x',...,xi-k-1)) 

satisfying the boundary condition 

(1.2) V(x) = o, 

where V is a continuous operator of boundary conditions and o is a zero point of the 

space Ukn, o = (0,0, . . . ,0) . 
We generalize the results of [2] where the second-order differential systems with 

L°°-Caratheodory right-hand sides are considered. Here we consider the k-th order 
differential system (1.1) with a Caratheodory function / . The problem (1.1), (1.2) 
is approximated by a sequence of problems with continuous right-hand sides. The 
existence of solutions of (1.1), (1.2) is obtained as a consequence of the existence of 
solutions of these auxiliary problems, 
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Let - co < a* $, a < b ^ b* < oo, / = [a,b], I* = [a*,b*\, R = (~oo,oo), n,k 
natural numbers. R" denotes the Euclidean n-space as usual and ||£|| denotes the 
Euclidean norm. Ck(I) = Ck([a, b], R") is the Banach space of functions u such that 
«W is continuous on / with the norm 

| | U | | t =inax{ | |u | | , | |u ' | | , | |u"H, . . . , | |uw ! !} , 

| |u| |=max{||u(t) | | , tel). 

Let Cn(I) denote the space C°(I). C^0(U) = C^0(U, R") is the space of functions 
ip such that for each I 6 {1,2,.. .} there exists a continuous on R function <pW and 
the support of the function tp is a bounded closed set, supp v? = {x e R; ||<p(a;)|| > 0}. 
Finally, let 1 <, p < oo, let L%(I) = L^((a,b), R") be as usual the space of Lebesgue 
integrable functions with the norm 

M»=(Jo N0l!Pd*J . 

let us denote IJ'(I) = L*(I), L(I) = Ll(I). 

Definition 1.1. A function f: I* x Ukn -> R" is a Caratheodory function 
provided 

(i) the map y i-» f(t,y) is continuous for almost every tel*, 
(ii) the map 11-» f(t,y) is measurable for all y £ R*"1, 

(iii) for each bounded subset B C R*" we have 

./W=sup{||/(t,y)||,yeB}eL(n. 

Throughout the paper let us assume / : I* x R*'1 -> R" is a Caratheodory function 
and V: Ck~l(I) -* R*" is a continuous operator. 

If / is continuous, by a solution on I to the equation (1.1) we mean a classical 
solution with a continuous fc-th derivative, while if / is a Caratheodory function, 
a solution will mean a function x which has an absolutely continuous (k - l)-st 
derivative such that x fulfils the equality a-W(t) = f(t,x(t),x'(t),... ,^*_ 1 )(*)) for 

almost every tel. 
By xy where x, y 6 R" we mean a scalar product of two vectors from R". 



2. REGULARIZATION OPERATOR 

Let tp in C J Q be such that 

<p(t)>-0 V i e R , s u p p v = [ - l , l ] , / <p(()di = l. 

For an example of such a function see [4], page 26. 

Instead of problem (1.1), (1-2) we will consider the equation 

(2.1,) xik) =fe(t,x,x',...,x(k-i)) 

with the boundary condition (1.2), where e is a positive real number and Vy G Ukn 

we have 

fS,v) = \J <p(^1)f(v,y)dn 

or equivalently 

fs(t,y) = J 7(t-£V,yMv)dn, 

( f(t,y) te{a\b*} 
where f(t.y) = < 

The following theorem is proved in [3] (a simple form for n = l is presented): 

T h e o r e m 2 .1 . Let u £ LP(T*), where 1 ^ p < oo, and for s > 0 let us denote 

(R€u)(t) = i y ^ ^(LLlL^r,) dr, = J u(t - er,MV) dr?, 

(u(t) te[a*,b*] 
where u(t) = < 

\ 0 t<t[o*,b*) 
Then 

(i) REu6 C°°(R) fore > 0, 

(ii) lim |.R£u — u\p = 0. 

L e m m a 2 .1 . Let B be a bounded subset in Rkn. Then the function fe(t,y) is 

continuous on I* x B for every e > 0. 

P r o o f . Continuity of fE follows from the theorem on continuous dependence of 
the integral on a parameter. D 



Definition 2.1 . Let w: I* x [0,oo) -4 [0, oo) be a Caratheodory function. We 
write w G M(I* x [0, oo); [0, co)) if w satisfies: 

(i) For almost every t G 7* and for every dx,d2 e [0,oo), dt < d2 we have 

w(t,di) ^w(t,d2). 

(ii) For almost every t 6 I* we have iu(£, 0) = o. 

Definition 2.2. Let B be a compact subset of Ukn, T e R, S e [0,oo) and 
e > 0. Let us denote by UI(T,S) the function 

W(T,S) = max{||/(T,3; l , . . . ,xk) - J(T,yx,...,yk)\\; 

(xu...,xk), (yi,...,yk)eB, \\xi-yi\\^6,i = l,...,k} 

and by tos (T, S) the function 

u'{T,s)=\ll •p{L~y(v,s)dv 

or equivalently 

W£(T, (5) = / U(T- £77, 5)v?(7?) drj. 

Lemma 2.2. Let B be a compact subset of Ukn. Then for every £ > 0 

(i) u>,we e M(I* x [0,oo);[0,oo)); 

(ii) lim fe(t,y) = f(t,y) and lim u>e(f.,<5) = u(t,S) for all y e B, 6 > 0 and 

for almost every t & I*; 

(iii) for every (xi ,...,xk), (ylt... ,yk) e B and for almost every t € P* we ijave 

| | / .(. ,ari , . . . ,xk) ~ fS.Vu- . . , » * ) - f(t,xu.. .,xk) + f(t,yu..., yk)\\ 

< LOc(t, nvax{\\xi - j / , - | | ; -i = 1 , 2 , . . . , &}) + w(t, max{ ||a'i -yi\\; i = 1 , 2 , . . . , A,-}); 

(iv) lim / (fe(T, X) — f(r, x)) AT — 0 uniformly on I x B. 

P r o o f . 

(i) Since / ( r , . ) is a Caratheodory function and B is a compact set, for almost 

every T 6 / " we'have 0 ^ V(T,8) ^ 21J(T), U(T, .) is nondecreasing and continuous, 

u(.,S) is measurable and 



It means that W(T, 0) = 0 for almost every Tel*. Therefore we can see that 
_>e M(I* x [0,oo);[0,oo)). 

By the theorem on continuous dependence of the integral on a parameter, a>e is a 
continuous function for arbitrary e > 0 . Therefore ue is a Caratheodory function 
such that WC(T, 0) = 0 for almost every T e /*. If <5i < <52, then for almost every 

T el* 

(2.2) 0<W(T,<5I ) <_>(T,<52) 

hence for almost every r\ 6 /* 

o<_l^y(,,5l)<i^y(vM 

and therefore 

(2.3) 0^US(T,SI) ^W £ (T,<5 2 ) . 

It means that w£ 6 M(I* x [0, oo); [0, oo)). 

(ii) This statement is a consequence of Theorem 2.1 which asserts that our as

sumption implies for every <5 > 0, y € B and i = 1,2,..., n 

lim / |w£(т,<5)-u>(т,<5)|dт = 0, £-+°+J_i 

lim / | Д i ( т , y ) - / i ( т ) ÿ ) | d т = 0) 

where /i, / e j are the i-th components of the functions /, fe, respectively, 

(iii) Obviously for ||xi - yi|| < <5, i = 1,..., fe 

\\fs(t,x1,...,xk)-f,(t,y1,...,yk)\\ 

II f1 - II 

= / <p(r))(f(t - er\,xx,. • -,xk) - f(t - £V,Vi,- • -,Vk)) d?? 

< / \\7(t-eri,xi,...,xk)-J(t-er),y1,...,yk)\\<p(ri)dri 

< / _>(t-£7J,<5)^(?j)d?T = We(t,<5). 

Now it is easy to see that the statement (iii) of the above lemma holds. 



(iv) We will prove that for every (t, x) £ I x B, x = (xi,..., Xk), and every e > 0 
there exist e0 > 0 and a neighbourhood 0(t,x) of (t, x) in the set I x B such that for 
every 0 < e < e0 and for every (t',y) e 0(tiX), y = (yi,.. -,yk), 

| Ѓ' II 
/ (Л(т,ÿ)- / (т,2/)) dт <e. 

By (ii) and by the Lebesgue dominated convergence theorem there exists £i > 0 
such that for every 0 < e < £i 

J \\fe(T,x)~f(T,x)\\dT<i. 

Since w e M(I* x [0, oo); [0, oo)) there exists such a 5 > 0 that 

y W ( T , J ) d T < | . 

By (ii) and the Lebesgue dominated convergence theorem there exists £2 > 0 such 
that for every 0 < e < £2 

/ We(T,6)dT < f. 

Let us denote 0 ( M ) = {(t',y) e I x B; \\x, - y{\\ < S, i = 1,2,..., fc} and e0 = 

min{ei,£2}. Now for every 0 < e < £0 and for every (t',y) £ 0(t/l.) we have 

| y ( / e(T,l /)- /(T,J/))dT| | 

< | j T (fc(r,x) - /(T,a;)) d r | 

+ II jT ( / , (T,X) - / f (T,y) - / (T ,X) + /(T,J/)) dTJ| 

=S / \\fs(T,x)-f{T,x)\\dT + J COs(T,S)+u(T,5)dT 

< t + f + H e-

This means that the system of the sets {0( l i X)} ( t . t)6/XB c o v e r s the compact set 

I x B and therefore there exists a finite subsystem which covers the set I x B and 

therefore the statement of (iv) holds. D 
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Lemma 2.3. Let B C Rfcn he a compact set. Let £ be a set of e > 0 such that 

the system of functions {.i:E}e€£, xs: I -t B, is equi-continuous mid 0 € £. 

Then lim / /t-(r,:z:e(r)) - /(r,.i:e(r)) dr = 0 uniformly on I. 
e~~>o+ Ja 

P r o o f . This proof is a modification of the proof of Lemma 3.1 in [6]. 

For e e £ let us denote 

aє = sup 
fll Ґ II ì 
| J fe(r,y) - f(r,y)dт ; a < s < ť < 6, y Є B j , 

f l l /"* II 1 
/3e=max<H / / e ( r , a : e ( r ) ) - / ( r , a : e ( r ) ) d r ;osCt <6V. 

By (iv) of Lemma 2.2 

lim ae = 0. 
e-->0 

We want to prove 

lim (ie = 0. 
e ^ o 

Let e > 0 be an arbitrary real number. Then by (i) of Lemma 2.2 there exists 

such a 5 > 0 that 

J w(T,6)dT<l, 

and by (i), (ii) of Lemma 2.2 such an ei > 0 that for every e € £, e < ei we have 

J we(T,<5)dr< f-

Since {a;e}e6e, xe = (x^,..., xek) is equi-continuous there exists So > 0 such that 

\\xH(t) - XH(T)\\ <5for t , T 6 / , i = l , . . . ,fc, | t - r | <<50, e £ <S. 

Let I be such an integer that I ^ ^ < I + 1. Let us denote t.,- = a + j80 and 
%(t) = x€(tj) for tj ^t< tj+i, where j = 0 , 1 , . . . , /. Then 

IIM*)-~*WII<<* 

for t e I, i = 1 , . . . , k and e £ £ and 

I ^ / e(r,57(r)) - }(T,X-,(T)) drll ^ (Z + l )a e 

for a < t < 6 and e < £o, e e £. 



Therefore by (iii) of Lemma 2.2 we obtain 

| ^ ( / e ( r , ~ e ( r ) ) - / ( r , ~ e ( r ) ) ) d r | | 

< / H/ .-(T,s e(r))-/(r ,a: e(T))-/ e(T,- e-(r)) + /(T,5e(T))||dT 

+ J j f (fe(r,x7(T)) - f(r,x7(r))) d r i 

< / (wE(T,5)+uj(T,S))dr + (l + l)aE<e + (l + l)aE 

for t e / , e < ei, e e £. 
Therefore fiE < e + (l + l)aE for e < ei, e e £. Since lim o> = 0 and e is arbitrary 

e-+0 
we conclude that lim 8E = 0. D 

e->0 

Theorem 2.2. Let / i i ' x R ' M Rn be a Caratheodory function. Denote by £ 
the set of positive e such that for each e € £ there exists a solution xc: I C I* —>• R" 
to the problem (2.1£), (1.2). Suppose that 0 e £ and that there exists a compact sub
set B c Ukn independent of e such that (xe(t),x'E(t),... ,x{k"l)(t)) 6 B is satisfied 
for each e 6 £ and for each t e / . 

Then there exist a sequence { e ^ } ^ and a soiution ~: / -+ R™ to the given 

boundary value problem (1.1), (1.2) such that es e £ for aii s € N, lim es = 0, 

(~(t) ,~ ' ( t ) , . . . , - t*-1 '^)) 6 J3 for aJJ t e J, lim 4?(f) = zw(<) uniformjy on I for 

any i = 1,2,..., k - 1, and lim z ^ W = a^H*) °« J • 

P r o o f . First let us prove that the set {xE}E€e is relatively compact in C*_1 (i). 
Really, for the assumptions of the Arzela-Ascoli theorem to be satisfied, it is necessary 
to prove equi-continuity of the set {~| ~1'}see' 

Let e > 0 be an arbitrary real number, suppose t\, t2 el and compute 

Wxf-'Kh) - 4fc_1)(*2)ii = IJ2 4k)(t) d . | 

= 1 J" Ut,xE(t),x'E(t),...,xf-l)(t))it\ 
WJtx II 

1 = 1 r I 7(*-«J.a:«W.a:'«(<).---.4*"1)WM»7)di.dt| 
II Jh J-I II 
I ft2 f1 I 

sj / / i ^ ^ - e - M ^ d - d t , 
I •'(l J-i I 



, hit) ter 
where l-(t) = < . Now for e close to 0 (e < £1, where ej is defined 

( 0 i i r 
below) we have 

' l-f(t-er))<p(r))dridt\ 
-l I 

< | /2«/(t)dt| + | f~ (f l-f(t-£vMv)dri-lf(t)) dil. 
\Jt, I I Jts \J-i J I 

Since ./(f) 6 L(I*) then f'lf(r)dT is a continuous function, every continuous 
function on a compact interval is uniformly continuous on that interval, and therefore 
there exists 6% > 0 such that for all |i] — t-\ < &\ we have 

I / 2 . / ( t ) d t | < § . 
I Jti I 

By Theorem 2.1 there exists ei such that for each e € £, 0 < e < ei, 

/ / lj(t-erj)<p(r))dr)-lf(t) di < f, 

and therefore for Ve e £, 0 < e < £\, we have 

I l't2 f1 I 
/ / Z/(i-£??M.?)dr/df <e. 

I Jti J - i I 
Now for e e £, ei ^ e, 

I jT jC ^(i" e,?M,?) d H * e I /" fa
ls{n)vC~r) d H ' 

Let $ = max{y?(t),t S J} . Then 

SI/V/^K^HH 
=S - I r / J/fo)*d»?d. < i | t l - t 2 | $ / i/(fj)di,. 

£l I Jti Ja I £1 J a 

Let <S2 = 3T7rf?-nr. then for lii -t-\< fa we obtain 

\l L w - єri)íp( )di-dt\ < i 



Let 5 = min{<51,<52} then for \h -t2\<& we have 

\\xik-l\tl)~xic^)(h)\\<e. 

This means that the set {xe}ee<* is relatively compact in c * - ^ / ) . Therefore 

there exist a sequence {es}, ss € C, es -> 0 and a function x: j _$. R™ such that 

(>(.),*'(.),... ,^*-1,W) e B, vt e /, se. -> a in c*-»(/)-
Now, since xe. is the solution to the equation (2.1£) for s = eS) w e have 

(2.4) xe
k-»(t) = xf-l)(a) + / / £ , ( T , I £ , ( T ) , < ( T ) , . . . , 4 W ) ( T ) ) AT, Vt e / . 

Using Lemma 2.3 we get 

x t * - 1 ^ ) = x^Ha) + J f(r,x(T),X'(T), .. .,xlk-V(T))dr, 

which means that x is a solution to the equation (1.1). 

Since xe, uniformly converges to x in Ck"l(I), V is a continuous operator V: 
Cn~l(I) ~* Rfen a n d ^ i s a solution to the problem (2.1e„), (1.2), we can see that 

V(xe.) = o, 

and therefore for e„ ->• 0 we have 

V(s) = o. 

It means that a; is a solution to the problem (1.1), (1.2). D 

R e m a r k 2.1. When lf(t) 6 LP(P) in Definition 1.1, where 1 ^ p < oo (in this 

case we speak about an Z^-Caratheodory function) we can prove that the convergence 

of XeJ to x^ is in the norm of LP(I*). To prove it we need only to assume in 

Definition 2.2 

^(T,5) = ma X { | |7 (T ,x 1 , . . . , ^ ) -7(T,? / i , . . . ,y f c ) | ! p } . 



3. AN APPLICATION 

As an example how to use Theorem 2.2 we may consider the equation 

(3.1) x" = f(t,x,x') 

with the four point boundary conditions 

(3.2) *(0)=x(c) , x(d)=x(l), 

where 0 < c < d < 1. In [1] the following result is proved. 

Theorem 3.1. Let f: [0,1] x R2n -> R" be a continuous function and let us 
consider the problem (3.1), (3.2). Assume 

(i) there is a constant M >. 0 such that uf(t,u,p) >. 0 for Vi e [0,1], Vu e R™, 
l|u|| > M and Vp € R", pu = 0, 

(ii) there exist continuous positive functions Aj,Bj, j e {1,2, . . . ,n} , 

Aj: [0,1] x R ' ^ ' - 1 -> R, By. [0,1] x R™*^1 -» R 

such that 

!/,-(*,-u,p)| <^ i( t ,« ,p1 ,p2 , . . . ,p ; , -_i)p2 + i3j( t>u,pi ,p2, . . . ,p i- i ) , 

where / = (/i, /2, • • •, /n), « e R'\ p G R", P = (pi,P2, • • • ,pn) and for j = 1, 
yli and J3i are independent of p functions. 

Then the problem (3.1), (3.2) has a solution. 

R e m a r k 3.1. From the proof of this theorem and from the topological transver-
sality theorem in [4] it follows that the solution to the problem (3.1), (3.2) is bounded 
in C„([0,1]) by a constant 9Jt which depends only on M, Aj, Bj. 

Now we can extend the results of Theorem 3.1 to the Caratheodory case similarly 
to [2], We allow discontinuities of functions AjtBj in contrast to [2]. 

Definition 3.1. Let k, I be natural numbers. A function / : I x Uk -> R' is an 
i°°-Caratheodory function provided / = f(t, u) satisfies 

(i) the map u H> f(t, u) is continuous for almost every t 6 I, 
(ii) the map t H> f(t,u) is measurable for all (u,p) e R*, 

(iii) for each bounded subset B C R*\ 

if(t) = su P { | | / ( i , u ) | | , «e i ?}e i : 0 0 ( / ) , 



where L°° is the space of Lebesgue integrable functions with the norm 

||/||oo = esssup||/ | | . 
tei 

Theorem 3.2. Let / : [0,1] x R2" -j- Rn be a Carathe'odory function and let us 
consider the problem (3.1), (3.2). Assume 

(i) there is a constant M .2 0 such that uf(t,u,p) > 0 for almost every t in [0,1], 
Vu € R", ||u|| > M and Vp 6 R", pu = 0, 

(ii) there exist positive L°°-Caratheodory functions Aj,Bj, where the index j is 
from { l , 2 , . . . , n } , 

Aj: [0,1] x R"+J-1 -> U, Bj : [0,1] x R"*'-1 - j . R, 

such that for almost every t _ [0,1] 

l/j(*,<*,P.I ^/ l j ( i , t t ,P l ,P2, . . . ,Pi- i )p J
2 + B;(*,",Pi ,P2, . . . ,Pj- i) , 

where / = (/x, /2 , . . . , / „ ) , _ € R", p £ R", p = (pi,P2, • • • ,Pn) and for j = 1, 
/-i and Bi are independent of p functions. 

Then the problem (3.1), (3.2) has a solution. 

P r o o f . Let fe be an approximated function as in Section 2, where a = a* = 0, 
b = 6* = 1 and fe = 2, that is 

f,(t,u,p)u = - / V ( ^ ^ ) / ( T ? , « , P ) C _ 7 , 

and let V: C1 ([0,1]) -» R2n be a continuous operator of boundary conditions V(i) = 
(a;(0) - _:(-), _ (fe) - a. (1)). Then 

1) for Ve € (0,1), for V. e [0,1], V« e Rn, ||u|| > M and Vp e Rn, pu = 0 we have 

fs(t,u,p)u= ( - / p (—^) / ( r? ,« ,p )d i?J t i = 

= i jT 1 v(^ - ) (/(»?, «,P)«)«-V^0 

by the assumption (i) of this theorem. . 
2) Let j e { l ,2 , . ' . . , n} , « € R n , p € R", p = ( P I , P 2 , ••. ,?«), 

•4i(«,Pi,P2, • • • ,P.- i ) = ess sup {Aj(t,u,puP2, • • • ,Pj-i)} 
te[o,i) 



Bj(u ,P i ,P2 , . . . ,P j - i )=esssup{B i ( t ,u ,p i ,p2 , . . . ,P j - i )} . 
te[o,i) 

Since Aj, Bj are £,°°-Caratheodory functions, Aj, Bj are obviously continuous. 
Now we have 

| /E . ( t ,u,p) | == / /j(t-er/,u,p)v?(r?)dr? < / \j)(t - ai,u,p)\<p(v) d?? 

«S / (-4i(«,Pi,P2,.-.,Pi-i)pJ
2 +Bj(u,pi,P2,---,Pj-i))<p(v)dri 

< / Aj(u,pi,p2,...,pj~1)p1<p(r))dr)+ jBj(w,pi,p2,.-.,Pj-i)ip(r?)dr? 

= -4j(«,Pl,P2, • • - ,Pj-l)Pj + Bj(u,pi,p2, • • • ,Pi_l). 

By Theorem 3.1 and Remark 3.1, for any £ > 0 there exists a solution a;£ to the 
approximated problem 

(3.1e) x" = fe(t,x,x') 

where x satisfies boundary conditions (3.2) such that ||,TE||I ^ fflt. 
Now all assumptions of Theorem 2.1 are fullfiled and therefore there exists a 

solution to the problem (1.1), (3.1). D 
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